@inproceedings{PirklCenciniKurzawskietal.2021, author = {Pirkl, Carolin and Cencini, Matteo and Kurzawski, Jan W. and Waldmannstetter, Diana and Li, Hongwei and Sekuboyina, Anjany and Endt, Sebastian and Peretti, Luca and Donatelli, Graziella and Pasquariello, Rosa and Costagli, Mauro and Buonincontri, Guido and Tosetti, Michela and Menzel, Marion Irene and Menze, Bjoern H.}, title = {Residual learning for 3D motion corrected quantitative MRI}, booktitle = {Medical Imaging with Deep Learning MIDL 2021}, subtitle = {Robust clinical T1, T2 and proton density mapping}, publisher = {OpenReview}, url = {https://openreview.net/forum?id=hxgQM71AuRA}, year = {2021}, language = {en} } @article{EndtEngelNaldietal.2023, author = {Endt, Sebastian and Engel, Maria and Naldi, Emanuele and Assereto, Rodolfo and Molendowska, Malwina and Mueller, Lars and Verdun, Claudio and Pirkl, Carolin and Palombo, Marco and Jones, Derek K. and Menzel, Marion Irene}, title = {In Vivo Myelin Water Quantification Using Diffusion-Relaxation Correlation MRI: A Comparison of 1D and 2D Methods}, volume = {54}, journal = {Applied Magnetic Resonance}, number = {11-12}, publisher = {Springer}, address = {Wien}, issn = {0937-9347}, doi = {https://doi.org/10.1007/s00723-023-01584-1}, pages = {1571 -- 1588}, year = {2023}, abstract = {Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion-relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF). We observe a distinct spectral peak that we attribute to myelin water in multi-component T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. Due to lower achievable echo times compared to diffusometry, MWF maps from relaxometry have higher quality. Whilst 1D multi-component T1 data allows much faster myelin mapping, 2D approaches could offer unique insights into tissue microstructure and especially myelin diffusion.}, language = {en} } @unpublished{PirklGomezLippetal.2020, author = {Pirkl, Carolin and G{\´o}mez, Pedro A. and Lipp, Ilona and Buonincontri, Guido and Molina-Romero, Miguel and Sekuboyina, Anjany and Waldmannstetter, Diana and Dannenberg, Jonathan and Endt, Sebastian and Merola, Alberto and Whittaker, Joseph R. and Tomassini, Valentina and Tosetti, Michela and Jones, Derek K. and Menze, Bjoern H. and Menzel, Marion Irene}, title = {Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting}, publisher = {arXiv}, address = {Ithaca}, doi = {https://doi.org/10.48550/arXiv.2005.02020}, year = {2020}, language = {en} } @inproceedings{PirklGomezLippetal.2020, author = {Pirkl, Carolin and G{\´o}mez, Pedro A. and Lipp, Ilona and Buonincontri, Guido and Molina-Romero, Miguel and Sekuboyina, Anjany and Waldmannstetter, Diana and Dannenberg, Jonathan and Endt, Sebastian and Merola, Alberto and Whittaker, Joseph R. and Tomassini, Valentina and Tosetti, Michela and Jones, Derek K. and Menze, Bjoern H. and Menzel, Marion Irene}, title = {Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting}, booktitle = {Proceedings of Machine Learning Research}, number = {121}, publisher = {PMLR}, address = {[s. l.]}, issn = {2640-3498}, url = {https://proceedings.mlr.press/v121/pirk20a.html}, pages = {639 -- 654}, year = {2020}, language = {en} } @inproceedings{PirklCenciniKurzawskietal.2021, author = {Pirkl, Carolin and Cencini, Matteo and Kurzawski, Jan W. and Waldmannstetter, Diana and Li, Hongwei and Sekuboyina, Anjany and Endt, Sebastian and Peretti, Luca and Donatelli, Graziella and Pasquariello, Rosa and Costagli, Mauro and Buonincontri, Guido and Tosetti, Michela and Menzel, Marion Irene and Menze, Bjoern H.}, title = {Residual learning for 3D motion corrected quantitative MRI: Robust clinical T1, T2 and proton density mapping}, booktitle = {Proceedings of Machine Learning Research}, publisher = {PMLR}, address = {[s. l.]}, url = {https://proceedings.mlr.press/v143/pirkl21a.html}, pages = {618 -- 632}, year = {2021}, language = {en} } @article{PirklNunezGonzalezKofleretal.2021, author = {Pirkl, Carolin and Nunez-Gonzalez, Laura and Kofler, Florian and Endt, Sebastian and Grundl, Lioba and Golbabaee, Mohammad and G{\´o}mez, Pedro A. and Cencini, Matteo and Buonincontri, Guido and Schulte, Rolf F. and Smits, Marion and Wiestler, Benedikt and Menze, Bjoern H. and Menzel, Marion Irene and Hernandez-Tamames, Juan A.}, title = {Accelerated 3D whole-brain T1, T2, and proton density mapping}, volume = {63}, journal = {Neuroradiology}, subtitle = {feasibility for clinical glioma MR imaging}, number = {11}, publisher = {Springer}, address = {Berlin}, doi = {https://doi.org/10.1007/s00234-021-02703-0}, pages = {1831 -- 1851}, year = {2021}, abstract = {Purpose: Advanced MRI-based biomarkers offer comprehensive and quantitative information for the evaluation and characterization of brain tumors. In this study, we report initial clinical experience in routine glioma imaging with a novel, fully 3D multiparametric quantitative transient-state imaging (QTI) method for tissue characterization based on T1 and T2 values. Methods: To demonstrate the viability of the proposed 3D QTI technique, nine glioma patients (grade II-IV), with a variety of disease states and treatment histories, were included in this study. First, we investigated the feasibility of 3D QTI (6:25 min scan time) for its use in clinical routine imaging, focusing on image reconstruction, parameter estimation, and contrast-weighted image synthesis. Second, for an initial assessment of 3D QTI-based quantitative MR biomarkers, we performed a ROI-based analysis to characterize T1 and T2 components in tumor and peritumoral tissue. Results: The 3D acquisition combined with a compressed sensing reconstruction and neural network-based parameter inference produced parametric maps with high isotropic resolution (1.125 × 1.125 × 1.125 mm3 voxel size) and whole-brain coverage (22.5 × 22.5 × 22.5 cm3 FOV), enabling the synthesis of clinically relevant T1-weighted, T2-weighted, and FLAIR contrasts without any extra scan time. Our study revealed increased T1 and T2 values in tumor and peritumoral regions compared to contralateral white matter, good agreement with healthy volunteer data, and high inter-subject consistency. Conclusion: 3D QTI demonstrated comprehensive tissue assessment of tumor substructures captured in T1 and T2 parameters. Aiming for fast acquisition of quantitative MR biomarkers, 3D QTI has potential to improve disease characterization in brain tumor patients under tight clinical time-constraints.}, language = {en} } @unpublished{EndtEngelNaldietal.2023, author = {Endt, Sebastian and Engel, Maria and Naldi, Emanuele and Assereto, Rodolfo and Molendowska, Malwina and Mueller, Lars and Verdun, Claudio and Pirkl, Carolin and Palombo, Marco and Jones, Derek K. and Menzel, Marion Irene}, title = {In-vivo myelin water quantification using diffusion-relaxation correlation MRI: a comparison of 1D and 2D methods}, titleParent = {Research Square}, publisher = {Research Square}, address = {Durham}, doi = {https://doi.org/10.21203/rs.3.rs-3069146/v1}, year = {2023}, abstract = {Multidimensional Magnetic Resonance Imaging (MRI) is a versatile tool for microstructure mapping. We use a diffusion weighted inversion-recovery spin echo (DW-IR-SE) sequence with spiral readouts at ultra-strong gradients to acquire a rich diffusion-relaxation data set with sensitivity to myelin water. We reconstruct 1D and 2D spectra with a two-step convex optimization approach and investigate a variety of multidimensional MRI methods, including 1D multi-component relaxometry, 1D multi-component diffusometry, 2D relaxation correlation imaging, and 2D diffusion-relaxation correlation spectroscopic imaging (DR-CSI), in terms of their potential to quantify tissue microstructure, including the myelin water fraction (MWF). We observe a distinct spectral peak that we attribute to myelin water in multi-component T1 relaxometry, T1-T2 correlation, T1-D correlation, and T2-D correlation imaging. Due to lower achievable echo times compared to diffusometry, MWF maps from relaxometry have higher quality. While 1D multi-component T1 data allows much faster myelin mapping, 2D approaches could offer unique insights into tissue microstructure and especially myelin diffusion.}, language = {en} } @inproceedings{EndtPirklVerdunetal.2021, author = {Endt, Sebastian and Pirkl, Carolin and Verdun, Claudio and Menze, Bjoern H. and Menzel, Marion Irene}, title = {Unmixing tissue compartments via deep learning T1-T2-relaxation correlation imaging}, booktitle = {17th International Symposium on Medical Information Processing and Analysis}, editor = {Romero, Eduardo and Costa, Eduardo Tavares and Brieva, Jorge and Rittner, Leticia and Linguraru, Marius George and Lepore, Natasha}, publisher = {SPIE}, address = {Bellingham}, isbn = {978-1-5106-5053-4}, doi = {https://doi.org/10.1117/12.2604737}, year = {2021}, language = {en} }