@article{daSilvaJuniorBirknerNakhaieJazaretal.2023, author = {da Silva Junior, Amauri and Birkner, Christian and Nakhaie Jazar, Reza and Marzbani, Hormoz}, title = {Coupled Lateral and Longitudinal Controller for Over-Actuated Vehicle in Evasive Maneuvering with Sliding Mode Control Strategy}, volume = {11}, journal = {IEEE Access}, publisher = {IEEE}, address = {Piscataway}, issn = {2169-3536}, doi = {https://doi.org/10.1109/ACCESS.2023.3264277}, pages = {33792 -- 33811}, year = {2023}, abstract = {Coupled controllers are vital for safely handling vehicles, especially in critical driving situations that include changing lanes to avoid obstacles. Controllers specialized in emergencies must keep road users safe in critical situations. In this paper, we develop the coupled controller to handle evasive maneuvers for an over-actuated vehicle. The controller is based on the second-order sliding mode control theory. We use the bicycle model to establish the equivalent and robust steering equations as a control-oriented model. The lateral and longitudinal vehicle motions are coupled to each other by the lateral vehicle information on the longitudinal sliding surface, and the dependence of the lateral sliding surface on the longitudinal velocity. The torque vectoring method based on fuzzy logic adjusts the yaw moment. We address the tire slip circle on the slip controller to stabilize the vehicle while maneuvering. We simulate and evaluate our controller in a rear-end collision situation with a short time window to maneuver the vehicle. The ego vehicle detects the preceding vehicle and performs an evasive lane change while simultaneously applying brakes to bring the vehicle to a halt. Our research is the earliest in providing an ultimate emergency control to successfully avoid crashes up to 130 km/h in short time crash detection.}, language = {en} } @inproceedings{daSilvaJuniorBirknerJazaretal.2022, author = {da Silva Junior, Amauri and Birkner, Christian and Jazar, Reza Nakhaie and Marzbani, Hormoz}, title = {Vehicle lateral dynamics with sliding mode control strategy for evasive maneuvering}, booktitle = {Proceedings of the 2021 9th International Conference on Systems and Control}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-6654-0782-3}, doi = {https://doi.org/10.1109/ICSC50472.2021.9666598}, pages = {165 -- 172}, year = {2022}, language = {en} } @article{DaSilvaJuniorBirknerJazaretal.2024, author = {Da Silva Junior, Amauri and Birkner, Christian and Jazar, Reza Nakhaie and Marzbani, Hormoz}, title = {Crash-Prone Fault Combination Identification for Over-Actuated Vehicles During Evasive Maneuvers}, volume = {12}, journal = {IEEE Access}, publisher = {IEEE}, address = {New York}, issn = {2169-3536}, doi = {https://doi.org/10.1109/ACCESS.2024.3374524}, pages = {37256 -- 37275}, year = {2024}, abstract = {Throughout a vehicle's lifecycle, systems may fail during operation, requiring effective fault management by the vehicle controller. Various system faults affect vehicle handling differently. Additionally, vehicle velocity and road friction directly impact handling and stability. Thus, it is essential to investigate relevant factors, such as actuator faults, vehicle velocity, road friction, and their combinations, before developing a fault-tolerant controller to mitigate potential critical situations. Our work thus focuses on identifying faults and fault combinations that might lead to crashes for over-actuated vehicles during evasive maneuvers and those impacting comfort parameters. We employ a state-of-the-art vehicle controller optimized for evasive lane changes for over-actuated vehicles. The driving scenario encompasses critical conditions defined in ISO 26262 with ASIL-D, including velocities up to 130 km/h and requiring steering away from obstacles. Failure Mode and Effects Analysis, Design of Experiments, and statistical tools are used to determine fault combinations most likely to lead to crashes during evasive maneuvers. Our results indicate that the vehicle controller successfully handled the maneuver in over 53\% of investigated cases, reaching up to 75.1\% on dry surfaces. Road friction emerges as the most critical parameter for collision avoidance and comfort. Brake faults exhibit a higher influence on vehicle handling than other actuator faults, while single motor faults do not significantly impact vehicle parameters. Regarding two-factor interactions, brake actuators dominate, followed by steering and motor. These findings provide valuable insights for developing fault-tolerant controllers for over-actuated vehicles, guiding decisions on addressing specific faults to enhance safety and comfort parameters.}, language = {en} } @inproceedings{daSilvaJuniorBirknerShirur2020, author = {da Silva Junior, Amauri and Birkner, Christian and Shirur, Naveen}, title = {Development of Lateral Control for Different Electric Vehicle Drive and Steering Systems}, booktitle = {FISITA Web Congress 2020}, publisher = {FISITA}, address = {Bishops Stortford}, url = {https://www.fisita.com/library/f2020-vdc-075}, year = {2020}, language = {en} }