@unpublished{HaghoferParlakBarteletal.2023, author = {Haghofer, Andreas and Parlak, Eda and Bartel, Alexander and Donovan, Taryn A. and Assenmacher, Charles-Antoine and Bolfa, Pompei and Dark, Michael J. and Fuchs-Baumgartinger, Andrea and Klang, Andrea and J{\"a}ger, Kathrin and Klopfleisch, Robert and Merz, Sophie and Richter, Barbara and Schulman, F. Yvonne and Ganz, Jonathan and Scharinger, Josef and Aubreville, Marc and Winkler, Stephan M. and Kiupel, Matti and Bertram, Christof}, title = {Nuclear Morphometry using a Deep Learning-based Algorithm has Prognostic Relevance for Canine Cutaneous Mast Cell Tumors}, publisher = {arXiv}, address = {Ithaca}, doi = {https://doi.org/10.48550/arXiv.2309.15031}, year = {2023}, abstract = {Variation in nuclear size and shape is an important criterion of malignancy for many tumor types; however, categorical estimates by pathologists have poor reproducibility. Measurements of nuclear characteristics (morphometry) can improve reproducibility, but manual methods are time consuming. In this study, we evaluated fully automated morphometry using a deep learning-based algorithm in 96 canine cutaneous mast cell tumors with information on patient survival. Algorithmic morphometry was compared with karyomegaly estimates by 11 pathologists, manual nuclear morphometry of 12 cells by 9 pathologists, and the mitotic count as a benchmark. The prognostic value of automated morphometry was high with an area under the ROC curve regarding the tumor-specific survival of 0.943 (95\% CI: 0.889 - 0.996) for the standard deviation (SD) of nuclear area, which was higher than manual morphometry of all pathologists combined (0.868, 95\% CI: 0.737 - 0.991) and the mitotic count (0.885, 95\% CI: 0.765 - 1.00). At the proposed thresholds, the hazard ratio for algorithmic morphometry (SD of nuclear area ≥9.0μm2) was 18.3 (95\% CI: 5.0 - 67.1), for manual morphometry (SD of nuclear area ≥10.9μm2) 9.0 (95\% CI: 6.0 - 13.4), for karyomegaly estimates 7.6 (95\% CI: 5.7 - 10.1), and for the mitotic count 30.5 (95\% CI: 7.8 - 118.0). Inter-rater reproducibility for karyomegaly estimates was fair (κ = 0.226) with highly variable sensitivity/specificity values for the individual pathologists. Reproducibility for manual morphometry (SD of nuclear area) was good (ICC = 0.654). This study supports the use of algorithmic morphometry as a prognostic test to overcome the limitations of estimates and manual measurements.}, language = {en} } @article{BertramAubrevilleDonovanetal.2021, author = {Bertram, Christof and Aubreville, Marc and Donovan, Taryn A. and Bartel, Alexander and Wilm, Frauke and Marzahl, Christian and Assenmacher, Charles-Antoine and Becker, Kathrin and Bennett, Mark and Corner, Sarah M. and Cossic, Brieuc and Denk, Daniela and Dettwiler, Martina and Garcia Gonzalez, Beatriz and Gurtner, Corinne and Haverkamp, Ann-Kathrin and Heier, Annabelle and Lehmbecker, Annika and Merz, Sophie and Noland, Erica L. and Plog, Stephanie and Schmidt, Anja and Sebastian, Franziska and Sledge, Dodd G. and Smedley, Rebecca C. and Tecilla, Marco and Thaiwong, Tuddow and Fuchs-Baumgartinger, Andrea and Meuten, Donald J. and Breininger, Katharina and Kiupel, Matti and Maier, Andreas and Klopfleisch, Robert}, title = {Computer-assisted mitotic count using a deep learning-based algorithm improves interobserver reproducibility and accuracy}, volume = {59}, journal = {Veterinary Pathology}, number = {2}, publisher = {SAGE Publications Inc}, address = {London}, issn = {1544-2217}, doi = {https://doi.org/10.1177/03009858211067478}, pages = {211 -- 226}, year = {2021}, abstract = {The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full (additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and improving classification against imposters. The interobserver consistency for the MC significantly increased with computer assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38\%. The results of this study demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs.}, language = {en} } @inproceedings{WilmBertramMarzahletal.2021, author = {Wilm, Frauke and Bertram, Christof and Marzahl, Christian and Bartel, Alexander and Donovan, Taryn A. and Assenmacher, Charles-Antoine and Becker, Kathrin and Bennett, Mark and Corner, Sarah M. and Cossic, Brieuc and Denk, Daniela and Dettwiler, Martina and Garcia Gonzalez, Beatriz and Gurtner, Corinne and Heier, Annabelle and Lehmbecker, Annika and Merz, Sophie and Plog, Stephanie and Schmidt, Anja and Sebastian, Franziska and Smedley, Rebecca C. and Tecilla, Marco and Thaiwong, Tuddow and Breininger, Katharina and Kiupel, Matti and Maier, Andreas and Klopfleisch, Robert and Aubreville, Marc}, title = {Influence of inter-annotator variability on automatic mitotic figure assessment}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2021}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-658-33198-6}, doi = {https://doi.org/10.1007/978-3-658-33198-6_56}, pages = {241 -- 246}, year = {2021}, language = {en} } @article{GlahnHaghoferDonovanetal.2024, author = {Glahn, Imaine and Haghofer, Andreas and Donovan, Taryn A. and Degasperi, Brigitte and Bartel, Alexander and Kreilmeier-Berger, Theresa and Hyndman, Philip S. and Janout, Hannah and Assenmacher, Charles-Antoine and Bartenschlager, Florian and Bolfa, Pompei and Dark, Michael J. and Klang, Andrea and Klopfleisch, Robert and Merz, Sophie and Richter, Barbara and Schulman, F. Yvonne and Ganz, Jonathan and Scharinger, Josef and Aubreville, Marc and Winkler, Stephan M. and Bertram, Christof A.}, title = {Automated Nuclear Morphometry: A Deep Learning Approach for Prognostication in Canine Pulmonary Carcinoma to Enhance Reproducibility}, volume = {11}, pages = {278}, journal = {Veterinary Sciences}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2306-7381}, doi = {https://doi.org/10.3390/vetsci11060278}, year = {2024}, abstract = {The integration of deep learning-based tools into diagnostic workflows is increasingly prevalent due to their efficiency and reproducibility in various settings. We investigated the utility of automated nuclear morphometry for assessing nuclear pleomorphism (NP), a criterion of malignancy in the current grading system in canine pulmonary carcinoma (cPC), and its prognostic implications. We developed a deep learning-based algorithm for evaluating NP (variation in size, i.e., anisokaryosis and/or shape) using a segmentation model. Its performance was evaluated on 46 cPC cases with comprehensive follow-up data regarding its accuracy in nuclear segmentation and its prognostic ability. Its assessment of NP was compared to manual morphometry and established prognostic tests (pathologists' NP estimates (n = 11), mitotic count, histological grading, and TNM-stage). The standard deviation (SD) of the nuclear area, indicative of anisokaryosis, exhibited good discriminatory ability for tumor-specific survival, with an area under the curve (AUC) of 0.80 and a hazard ratio (HR) of 3.38. The algorithm achieved values comparable to manual morphometry. In contrast, the pathologists' estimates of anisokaryosis resulted in HR values ranging from 0.86 to 34.8, with slight inter-observer reproducibility (k = 0.204). Other conventional tests had no significant prognostic value in our study cohort. Fully automated morphometry promises a time-efficient and reproducible assessment of NP with a high prognostic value. Further refinement of the algorithm, particularly to address undersegmentation, and application to a larger study population are required.}, language = {en} }