TY - INPR A1 - Haghofer, Andreas A1 - Parlak, Eda A1 - Bartel, Alexander A1 - Donovan, Taryn A. A1 - Assenmacher, Charles-Antoine A1 - Bolfa, Pompei A1 - Dark, Michael J. A1 - Fuchs-Baumgartinger, Andrea A1 - Klang, Andrea A1 - Jäger, Kathrin A1 - Klopfleisch, Robert A1 - Merz, Sophie A1 - Richter, Barbara A1 - Schulman, F. Yvonne A1 - Ganz, Jonathan A1 - Scharinger, Josef A1 - Aubreville, Marc A1 - Winkler, Stephan M. A1 - Kiupel, Matti A1 - Bertram, Christof T1 - Nuclear Morphometry using a Deep Learning-based Algorithm has Prognostic Relevance for Canine Cutaneous Mast Cell Tumors N2 - Variation in nuclear size and shape is an important criterion of malignancy for many tumor types; however, categorical estimates by pathologists have poor reproducibility. Measurements of nuclear characteristics (morphometry) can improve reproducibility, but manual methods are time consuming. In this study, we evaluated fully automated morphometry using a deep learning-based algorithm in 96 canine cutaneous mast cell tumors with information on patient survival. Algorithmic morphometry was compared with karyomegaly estimates by 11 pathologists, manual nuclear morphometry of 12 cells by 9 pathologists, and the mitotic count as a benchmark. The prognostic value of automated morphometry was high with an area under the ROC curve regarding the tumor-specific survival of 0.943 (95% CI: 0.889 - 0.996) for the standard deviation (SD) of nuclear area, which was higher than manual morphometry of all pathologists combined (0.868, 95% CI: 0.737 - 0.991) and the mitotic count (0.885, 95% CI: 0.765 - 1.00). At the proposed thresholds, the hazard ratio for algorithmic morphometry (SD of nuclear area ≥9.0μm2) was 18.3 (95% CI: 5.0 - 67.1), for manual morphometry (SD of nuclear area ≥10.9μm2) 9.0 (95% CI: 6.0 - 13.4), for karyomegaly estimates 7.6 (95% CI: 5.7 - 10.1), and for the mitotic count 30.5 (95% CI: 7.8 - 118.0). Inter-rater reproducibility for karyomegaly estimates was fair (κ = 0.226) with highly variable sensitivity/specificity values for the individual pathologists. Reproducibility for manual morphometry (SD of nuclear area) was good (ICC = 0.654). This study supports the use of algorithmic morphometry as a prognostic test to overcome the limitations of estimates and manual measurements. Y1 - 2023 UR - https://opus4.kobv.de/opus4-haw/frontdoor/index/index/docId/4140 UR - https://doi.org/10.48550/arXiv.2309.15031 UR - https://nbn-resolving.org/urn:nbn:de:bvb:573-41401 PB - arXiv CY - Ithaca ER -