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1 Purpose 
This work primarily focuses on improving registration procedures within augmented reality (AR) 
applications, by analyzing the reliability of point cloud reconstruction as a preprocessing step. 
Therefore, a state-of-the-art, transformer base network is utilized. For the training process a 
comprehensive dataset specifically designed for training deep learning models is created. This dataset 
will be tailored to the task of reconstructing partial liver views for augmented reality guidance in 
medical applications. The validation process for this dataset will be two-fold: 

 Deep Learning Network Training: The created dataset will be used to train a state-of-the-art 
deep learning network, specifically a transformer-based model, the “PoinTr”-network. This 
training will evaluate the dataset's effectiveness in facilitating accurate point cloud 
reconstruction. 

 Testing with Real-World Scenarios: A separate testing dataset, meticulously designed to reflect 
various real-world conditions encountered in AR guidance, such as variations in point cloud 
density, occlusions, and sensor noise, will be used to assess the performance of the trained 
model. This evaluation will analyze the model's ability to generate accurate reconstructions 
under diverse and potentially challenging scenarios. 
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2 Motivation 
The field of liver surgery has historically faced significant challenges. In the early 1950s, limitations in 
preoperative diagnosis led to low rates of successful liver resections, as evidenced by the first reported 
case of right hepatic lobe resection [1]. Between 1968-1977, due to the limited possibility of obtaining 
a preoperative diagnosis, in 4031 liver cases in Japan, only 4 % were treated by resection. 518 patients 
were subjected to exploratory laparotomy, with 3-year and 5-year survival probability as poor as 
19.6 % and 11.8 %, respectively [2]. 

Clinical outcomes improved rapidly in the 1980s due to refinements in technology like intraoperative 
ultrasonography and vein embolization [3]. However, even with these advancements, challenges 
remain. Performing liver resections using ultrasound presents a significant challenge. Techniques like 
ultrasound require a high level of skill and experience to intellectually integrate the ultrasound images 
with the actual surgical environment. Because of these constraints, a significant proportion of patients 
undergo suboptimal resections, characterized by inadequate surgical margins [4]. To address these 
obstacles, image-guidance systems have been integrated into the surgical process [5]. While these 
systems offer some advantages by projecting the orientation of surgical instruments onto a digital 
representation of anatomy, there are some challenges. The operators utilizing image-guided therapy 
must alternate their attention between the surgical area and the live feed displayed on the monitor 
which displaying real-time data. The complexity arises from the demand of intellectually aligning 
various imaging modalities. Accurately identifying targets within the patient's body requires careful 
examination and interpretation of the visual information on the screen, increasing the overall 
complexity of the procedure and potentially leading to higher surgical risks [6]. [7] 

 

 

 Figure 1. Illustrates the projected shipment forecast for augmented reality (AR) and virtual reality (VR) headsets 
globally, segmented by market (consumer and commercial) from 2021 to 2026 [7]. 

. 
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The limitations of image-guided therapy highlight the need for improved visualization and cognitive 
support for surgeons. This is where augmented reality (AR) emerges as a promising solution. The 
growing availability of advanced AR hardware, including Microsoft HoloLens, Oculus Quest, and Google 
Glass 2, has promoted their integration into healthcare settings (Figure 1). When augmented reality 
(AR) technology is integrated with image-guided interventions, it allows surgeons to directly visualize 
target organs and their surroundings within the actual surgical field. This means that hidden parts of 
organs inside the patient’s body become visible to the surgeon, enhancing their perception during the 
interventional procedure. Such advancements are exemplified by methods developed by Lonedi for 
distal locking screw procedures during intramedullary nail placement and Elmi-Terander for pedicle 
screw placement [8], [9]. By eliminating the need for numerous fluoroscopic images, these methods 
led to improvements in both surgical speed and accuracy. [10] 

 

 
Image registration is a critical step when using augmented reality technologies. It involves aligning 
feature points from patient imaging data, such as CT scans or MRIs, with corresponding points in the 
actual anatomy of patients. Other registration methods, such as surface registration, may also be 
employed. This ensures that the virtual information overlaid by AR matches the patient's real-world 
anatomy, with both sharing the same spatial coordinates [11]. Figure 2 presents the number of 
research publications across various surgical procedures in studies related to augmented reality 
surgical navigation. Notably, AR navigation is applied frequently in surgeries involving organs 
characterized by minimal motion and deformation, like orthopedic surgery, where tracking is often 
facilitated through invasive fiducial implantations [12]. However, the field of hepatic surgery poses 
additional challenges. The liver is a soft, non-rigid organ, that is frequently obscured by surrounding 
structures. These include the ribs, intestines, and other organs, significantly limiting the surgeon's 
direct view during the critical image registration process (Figure 3). Despite this, efforts have been 
made to apply mixed reality techniques to liver surgery. 

 

 

 

 

Figure 2. Illustrates the distribution of 103 research papers focusing on augmented 
reality (AR) applications in various surgical procedures [10]. 
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While Golse et al. explored using depth cameras (RGB-D) to access spatial information during open 
liver surgery, these methods can struggle with significant occlusions caused by surrounding organs. To 
address these limitations and achieve robust registration in such scenarios, alternative methods that 
handle occlusions effectively are necessary [4]. 

Prior to the rise of deep learning, traditional optimization-based methods offered solutions for 
registration tasks, such as the iterative closest point (ICP) and simultaneous localization and mapping 
(SLAM) algorithms [13], [14], [15]. Even though these algorithms utilized registration of objects in 
occluded point clouds, their high computational cost limits their application primarily to sparse point 
clouds [16]. The unique capabilities of deep learning algorithms to learn specific information from a 
dataset, reduce hardware and software costs and enhance registration performance [17]. However, 
deep learning methods face challenges in accurate registration of heavily occluded objects, especially 
when dealing with deformable structures [10]. 

Therefore, a second approach focuses on point cloud preprocessing techniques. These techniques play 
a crucial role in this process, as they aim to reconstruct a complete and accurate representation of the 
scene or object from incomplete or noisy data to enhance the performance of registration methods 
[18]. 

Reconstructing a point cloud poses a significant challenge due to the inherently disordered and 
unstructured nature of point clouds, which runs counter to the structured information needed for 
point cloud completion. Therefore, understanding the structural features of the point cloud is essential 
for achieving a more accurate and comprehensive reconstruction. Early efforts in applying deep 
learning for point cloud reconstruction borrowed methods used for image reconstruction tasks [19], 
[20], [21]. However, adapting these 2D techniques to 3D data significantly increased processing 
requirements due to the additional dimension [22]. 

 

Figure 3. Illustrates a surgeon's view of a partially exposed liver during open liver surgery. Image: Acquisition from the 
AIiAS data study, Lakumed Hospital Landshut-Achdorf. The study was approved by the Ethics Committee of the 

Technical University of Munich. BfArM study register number: DRKS00032826. 
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PointNet and PointNet++ achieved a breakthrough in the field of point cloud processing by enabling 
the direct computation of point clouds without the need for transforming them into voxel grids [23], 
[24]. This method was further applied in other completion techniques, that utilized an encoder-
decoder architecture [25], [26].  

The current progress in deep learning has significantly improved point cloud completion capabilities. 
As illustrated in Figure 4, existing point cloud completion network architectures can be broadly 
categorized into point-based, view-based, convolution-based, graph-based, transformer-based, and 
generative model-based approaches. 

Figure 4. Illustrates different point cloud completion techniques. 
 

Point-based methods treat each point independently, employing multi-layer perceptron’s (MLPs) to 
model them individually. To capture global features, a symmetric function like max-pooling is often 
utilized. An early example derived from PointNet was PU-Net, but due to the structural loss brought 
by multi-layer-perceptron, it is mainly used for upsampling of sparse point clouds [27]. To address the 
limitations of point-based methods, attention assisted mechanisms have been used to adaptively 
weight relevant information. Additionally folding methods that reconstruct point clouds by deforming 
a 2D grid into a 3D surface were implemented [28], [29]. While point-based methods work around the 
permutations issue, the independent treatment of points misses geometric relations between points 
and their neighbors [22]. One limitation of most point-based methods is their high computational cost. 
This stems from working directly with points, which can become computationally expensive, especially 
for complex objects with many data points.  

View-based methods leverage image information to improve the reconstruction process. Zhang et al. 
proposed a view-guided network that enhances partial point cloud reconstruction [30]. However, this 
model produced unsatisfactory completion results on real-world data, suggesting a potential limitation 
to its generalizability. This issue might be addressed by using different datasets for training. 

Convolution-based methods typically voxelize the point cloud data, converting it into a volume 
representation. This approach suffers from high storage requirements, because the grid also contains 
empty spaces in areas where the object is not present [22]. Additionally, voxelization leads to an 
irreversible loss of geometrical information. To address these challenges, Xie et al. proposed a method 
that utilizes differentiable Gridding and Gridding Reverse layers [31]. These layers allow for converting 
a point cloud directly, without the need for voxelization, thus preserving valuable structural 
information. While the method enables convolutional networks to work on point clouds, the 
computational demand grows cubically with the resolution.  
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Graph-based methods treat every point like vertices of graphs. The proposed method of Wang et al. 
introduced edge convolution [32]. This method aggregates the edge features associated with edges 
from each connected vertex. The convolution is applied on a set of k-nearest neighbors and the graphs 
are dynamically updated, leading to nonlocal information diffusion throughout the point cloud. This 
method has been further improved by utilizing attention mechanism [33].  

Generative-based models like generative adversarial networks (GANs) or variational autoencoders 
(VAEs) face additional challenges in extending the initial 2D problem to 3D objects. To address these 
limitations, researchers have explored advanced approaches like multi-view GANs, which can leverage 
information from multiple viewpoints to create a more comprehensive 3D representation. 
Additionally, integrating generative models with techniques like reinforced learning and graph 
convolution has shown promise in tackling complex 3D tasks [34], [35], [36].  

Transformer architecture was first proposed for natural language processing [37]. Since then, 
transformer architectures have shown remarkable success in various fields, including point cloud 
completion. One such application is the PoinTr-network by Yu et al., which formulates point cloud 
completion as a set-to-set translation problem [38], [39], [40]. While the transformer showed 
promising results in the reconstruction of point clouds, the size of the model limits its deployment on 
devices compared to other methods [22]. Most networks leverage a combination of the techniques 
shown in Figure 4 with each method offering unique strengths and limitations. 

However, deep learning methods require large amounts of annotated datasets. Even though several 
large 3D-Object datasets like KITTI, ShapeNet, PartNet are publicly available, this is not the case for 
medical imaging data [41], [42], [43]. The abundance of annotated liver data for registration tasks 
poses a significant challenge. The DEPOLL dataset, designed to evaluate registration accuracy in liver 
surgery using augmented reality, serves as an example [44]. Its limitation to a single pig liver with only 
13 deformations underscores the critical need for more extensive, human-specific data for registration 
algorithms. The aim of this thesis is twofold: 

1. Generating a dataset for liver point cloud reconstruction in open liver surgery applications. 
2. Assessing the suitability of the generated dataset for training a deep learning model that can 

reconstruct partial liver views during open liver surgery procedures. 
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3 A theoretical base for point cloud reconstruction 

3.1 Point cloud theory 
The use of 3D models is becoming increasingly prevalent in daily life. Applications such as autonomous 
driving and virtual reality rely on advanced processing and analysis of collected 3D data. Three-
dimensional objects can be represented in various formats, including voxels, point clouds and polygon 
meshes, as depicted in Figure 5. [45] 

 

The rise of reality capture techniques has propelled point clouds to become a crucial data source, 
ranking as the third most important format after vector maps and imagery [46]. Hence, algorithms 
must be utilized for the conversion between data types. While CT scans are often stored as voxels, 
particular attention is given to the conversion into triangular mesh formats [47]. Various algorithms, 
including convolutional neural networks, can process voxel data to create triangular meshes by 
encoding the voxel data and decoding a spherical mesh and features into a triangular mesh [48]. 
However, this work specifically emphasizes the use of marching cubes.  

3.2 Marching cubes algorithm 
Marching cubes is one of the most popular algorithms for surface reconstruction [49]. Since its 
development in 1980, many variations have been developed, like marching cubes based on edge 
growth [50]. The original algorithm mainly works in two steps. [51] 

 

 

 

Figure 5. Illustrates different representations of a rabbit as point cloud, voxel grid, and polygon mesh [45]. 

. 

Figure 6. Illustrates a logical cube, a key element in the marching cubes algorithm for 3D surface reconstruction. The 
algorithm analyzes a grid of data points (voxels) at the cube's vertices. Each voxel in the grid can be assigned a value 

based on a specific property, such as density or intensity [51].  
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Logical cubes, used in image processing, are constructed from eight pixels drawn from two neighboring 
image slices (Figure 6). The marching cubes algorithm analyzes each cube to determine how a surface 
intersects it, then proceeds to the next cube in the data. Within each cube, vertices above the surface 
are marked as "inside," and those below are marked as "outside". This helps identify where the surface 
intersects the cube's edges. [52] 

 

 

This approach allows for determining the surface’s topology within each cube, with the exact 
intersection location determined later. Considering all possible combinations of vertices inside and 
outside would result in 256 different cases, but by making use of symmetries, this can be reduced to 
14 patterns that are usually stored in a look-up table. In the second step, unit normals for each triangle 
vertex are calculated (Figure 7). This involves estimating the gradient vector at the cube vertices and 
then linearly interpolating it at the point of intersection.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Illustrates example surfaces reconstructed from a logical cube. The figure illustrates how different 
configurations of vertex values within a cube can result in various triangulated surfaces [52]. 
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3.3 Ray casting 
Since the Hololens2 utilizes a Time-of-Flight sensor, initial point clouds obtained directly from these 
devices tend to be sparse and incomplete due to various factors such as occlusions, reflections, 
transparency and limitations in device resolution and viewing angles [46]. Data used for training and 
testing should reflect these properties. One method to create photorealistic pictures of virtual objects 
is ray casting. [53] 

 

This technique was first described in 1968 and simulates how light interacts with objects in a scene to 
create a photorealistic image [54]. Since then, ray casting found its way into many applications like the 
visualization in CAD solid modeling [55], [56]. In computer graphics, ray casting is a technique used to 
render images by simulating how light travels from a virtual camera to objects in the scene. The system 
then checks for the closest object each ray intersects. As illustrated in Figure 8, based on the properties 
of the object at the intersection point, the color and lighting of that pixel are determined. This 
approach allows for efficient rendering, making it a valuable tool for various applications.  

However, it's important to consider limitations of ray casting. One constraint is aliasing, which arises 
due to the sampling of the scene at discrete points. This effect can be amplified with sparse data, as 
there is less information to reconstruct smooth surfaces. Filtering can help mitigate aliasing problems 
[57]. Ray casting simulations also typically neglect complex light interactions like reflections, 
refractions, and soft shadows. The realistic simulation of reflections can be made possible by 
calculating secondary beams, but this can significantly increase the computational effort [58].  

 

 

 

 

 

 

Figure 8. Shows the concept of ray casting in computer graphics. It shows a camera, a light 
source, a scene object and an image with the projected object [53]. 
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3.4 Transformer theory 
Introduced by Vaswani et al. in 2017, the transformer, revolutionized the field of natural language 
processing (NLP)[37]. Its core concept is the self-attention mechanism, which allows a model to attend 
to relevant parts of its own input sequence, rather than relying solely on sequential processing, like 
RNNs. Since then, the transformer architecture itself has been adopted in many different fields, 
including computer vision and point cloud completion. This section should give brief introduction to 
the functionality of the original concept that was proposed in the paper, "Attention is all you need". 
[37] 

  

 

  

Figure 9 illustrates the proposed model architecture, featuring an encoder on the left and a decoder 
on the right. These components are connected through a cross-attention layer, where the encoder's 
output values are passed as queries and keys to a multi-head attention layer within the decoder. The 
paper proposes an encoder-decoder architecture with six identical layers, each referred to as a "head" 
by the authors. This architecture allows each head of the transformer to access every value of the input 
sequence with a reduced dimension, as depicted in Figure 10.  

The encoder begins with positional encoding, a crucial step for transformers, as they do not inherently 
possess a sense of sequence order. To address this, positional encoding involves adding a fixed value 
to each position of the input sequence. The input is passed through a multi-head-attention layer 
(Figure 10) that calculates the self-attention for every input value.  

Figure 9. Illustrates the transformer architecture like proposed in "Attention is all you 
need" utilizing cross a and self-attention [37]. 



 
 

Guido Reinfurt  16 

The decoder also utilizes positional encoding, followed by a self-attention layer. Additionally, for every 
sequence, cross attention is utilized. The output of the encoder, which consists of the entire input 
sequence is passed as queries and keys. For every output of the decoder, cross-attention is used, for 
which the output-value of the encoder is reused as keys and queries to adapt the decoder output to 
the input values. Subsequently, self-attention in the decoder takes all already generated outputs into 
account, while the cross-attention takes the user prompt from the encoder into account. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Illustrates a multi-head attention layer, a core component in transformer models used for various natural 
language processing (NLP) tasks such as machine translation and text summarization. The multi-head attention 

mechanism allows the model to focus on the most relevant parts of an input sequence for each word or token, enabling 
it to capture long-range dependencies within the sequence. 
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3.4.1 Transformer finetuning 
Fine-tuning is a powerful technique used to leverage pre-trained deep-learning networks for new 
tasks. Research in convolutional neural networks (CNNs) suggests that lower layers capture general 
representations, while higher layers learn more task-specific features [59]. Similar observations were 
made in natural language processing with the BERT model. Clark et al. demonstrated that the bottom 
layers of BERT attend broadly, while the top layers focus on capturing linguistic syntax [60]. BERT, 
introduced by Devlin et al., is a pre-trained transformer model trained on a massive unlabeled dataset. 
It is often fine-tuned on labeled datasets for supervised learning tasks, significantly reducing the 
computational cost compared to training from scratch. Studies have shown that fine-tuning only a 
small portion of the final layers can achieve high performance, with some studies indicating that fine-
tuning as few as a quarter of the final layers can still achieve 90 % of the original quality [61]. 

Several fine-tuning approaches exist for transformers. Selective methods, arguably one of the earliest 
examples, involve fine-tuning only a few top layers of the network [62]. Additive methods augment 
the pre-trained model with additional parameters or layers, while only optimizing the newly added 
parameters during training [63]. Although these models introduce additional parameters to the 
network, significant improvements in training time and memory efficiency are made by reducing the 
size of the gradients. By saving memory through frozen model parameters, much larger networks can 
be trained. Reparameterization-based methods utilize low-rank representations to minimize the 
number of trainable parameters. Aghajanyan et al. demonstrated that the size of the subspace that 
needs adaptation is smaller for larger models [64].  

 

3.5 PoinTr: Diverse point cloud completion with geometry-aware transformers  
 

[38] 

Inspired by the huge success of transformers in language translation, Yu et al. adapted the point cloud 
completion task as a transformer-based set-to-set translation [38]. As illustrated in Figure 11, the 
network architecture is split into five main parts. Overall, an encoder-decoder architecture is utilized 
to convert the completion into a translation problem. Point proxies that represent the local point cloud 
as a set of feature vectors are extracted by first localizing a fixed number of center points through 
furthest point sampling. With the use of dynamic graph CNN, features of the center points are 
extracted. A point proxy combines features around a center point with its location information. This 
combined data is then passed to the encoder. A geometry-aware transformer (encoder), that 

Figure 11. PoinTr pipeline: A partial point cloud is downsampled to extract local features around center points. Positional 
encoding is added before feeding these features to a transformer encoder-decoder for point proxy prediction. Finally, a 

two-stage refinement process with an MLP and FoldingNet completes the point cloud [38]. 



 
 

Guido Reinfurt  18 

facilitates a kNN-attention layer, captures the geometric relation in the point cloud. These feature 
vectors are passed to a query generator that dynamically creates queries by summarizing the encoder 
output with a linear projection to a higher dimension, followed by a max pooling operation to reshape 
the features as coordinates. The features are then concatenated with the coordinates and passed 
through a multilayer perceptron (MLP) to produce query embeddings for the encoder. A geometry-
aware transformer (decoder) utilizes self- and cross-attention to predict point proxies of the missing 
part while taking into account local features in addition to global information and relationship between 
queries and outputs of the encoder. Lastly, a multiscale point cloud generation is used to convert the 
generated point proxies into the missing point cloud. To recover the detailed shapes around the center 
points of the predicted proxies, Folding Net is fed with the features of each point proxy [29].  

During training, PoinTr receives a partial point cloud as input. Unlike transformers for natural language 
processing (NLP), which can incorporate previous predictions, PoinTr utilizes a refinement process. 
This process involves iteratively predicting new points based on the current partial cloud. These 
predicted points are evaluated based on their coherence with existing points and their contribution to 
the overall reconstruction compared to the ground truth. While some points might be rejected, they 
still contribute to the loss function for weight updates. The chamfer distance is adapted as the loss 
function to calculate the loss separately for the predicted centers and the completed dense point 
cloud. The metric measures the similarity between two sets of points by calculating the sum of the 
squared distances between the closest points in each set. 
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4 Method 
This work investigates the potential of incorporating a PoinTr network into the pre-processing pipeline 
for partial liver point clouds. The goal is to improve the performance of downstream registration tasks. 
The influence of various parameters, including noise, point cloud density, and viewpoint, is analyzed. 
Therefore, this task can be separated into two main stages: 

Data generation: This stage focuses on creating a training dataset suitable for reconstructing liver 
point clouds from partial data, similar to scenarios encountered in AR-guided open liver surgery 
applications. A key aspect of this process involves incorporating variations in noise levels. 

Network training and evaluation: The generated data is then used to train and validate a point cloud 
completion model. The model's performance is evaluated under varying parameters that could affect 
completion accuracy. 

 

  

A comprehensive literature review identified the PoinTr network as a suitable choice for point cloud 
completion tasks due to its transformer-based architecture [38]. Two PoinTr models are trained with 
different noise levels and their performance is evaluated. Additionally, the test dataset is analyzed to 
understand the impact of viewing angle, noise level and point cloud density. 

To this end, the methodology covers five key steps. This initial step focuses on constructing a pipeline 
specifically designed to generate suitable data for training the point cloud completion model (4.1). A 
crucial aspect of this pipeline involves incorporating variations in noise levels (4.1.1). The second step 

Figure 12. Illustrates the methodological framework employed in this work. The left side (blue) depicts the data generation 
process, where high-fidelity 3D object models (meshes) and extracted point clouds are created. Subsequently, partial 

meshes and point clouds with added noise were generated to simulate real-world scenarios. The right side (green boxes) 
showcases the training and validation process for a PoinTr network and the generated data.  



 
 

Guido Reinfurt  20 

centers around constructing the training dataset, that will be used to train the PoinTr network (4.1.2.). 
Third, a test dataset is constructed that mirrors real-world applications using Hololens2 time-of-flight 
(ToF) sensor (4.1.3). Fourth, a description of the specific modifications made to the PoinTr network to 
tailor it for this particular application (4.2). The final step involves providing detailed descriptions of 
the experiments conducted. To enhance readability and ensure clarity, a traceability matrix is included 
(Table 4). This matrix links the research questions to the corresponding experiments, allowing for 
easier comprehension of how each experiment contributes to addressing the overall research 
objectives (4.3). 

 

4.1 Data generation 
This section details the process of generating a dataset suitable for training a point cloud completion 
model, for reconstructing partial liver point clouds. As mentioned earlier, publicly available 3D data of 
human organs is scarce.  

While there is no publicly available data specifically for liver point cloud completion, there are public 
datasets of anonymized patient CT data, such as CT-ORG and liver tumor segmentation (LiTS) datasets 
[65], [66]. LiTS offers a valuable advantage: it provides comprehensive segmentation labels for all 
datasets, including segmentations for background tissue, liver and cancer.  The LiTS dataset consists of 

 

Figure 13. Illustrates the data generation process. Top left: Annotated CT data. Top right:  Generation of meshes 
through marching cubes algorithm. Bottom left: Generation of complete point cloud through possion disk sampling. 

Bottom right: Generation of partial views through raycasting. 
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131 annotated CT datasets. This data is stored in a unified NIFTI format and includes pre- and post-
therapy abdominal CT scans.  

It is important to note that the CT scans within the LiTS dataset are acquired using different CT 
scanners, resulting in varying image resolutions (ranging from 0.56 mm to 1.00 mm) and slice 
thicknesses (between 0.45 mm and 6 mm). As shown in Figure 13, a selection process is applied to the 
voxels within the CT data. Only voxels that carry specific labels are included in this process. In this case, 
voxel with label “liver” or “tumor” are selected. These selected voxels, along with their corresponding 
voxel size information, are then fed into the marching cubes algorithm to create a watertight mesh 
representing the liver and potential tumors. 

The mesh generated from the segmented LiTS data serves as the foundation for creating both 
complete and partial point clouds. For the generation of complete point clouds, the Poisson-disc 
sampling is utilized to generate uniformly distributed point clouds with 7500 points. This value is 
empirically tested to reflect the amount of data points generated by the Hololense2 depth sensor when 
scanning a full liver phantom.  

Several techniques exist for creating partial point clouds of objects. One approach, as proposed by 
Pfeiffer et al., involves cropping a subvolume around the object's bounding box from the original point 
cloud [67]. This work employs the ray casting technique to simulate real-world views captured by a 
Hololens2 sensor. To enable fast computation, a virtual ray casting scene must be created, where the 
mesh is transformed into a tensor format. Single rays can be calculated by providing a start point and 
a direction as a 6-dimensional vector. A helper function is used that creates a pinhole camera in the 
virtual space. The parameters of the function are listed in Table 1. 

Table 1. Details of virtual pinhole camera parameters for ray casting scene 

Parameter Values 

Angel of view (fov_deg) 120° 

Camera view of direction (center) (𝑥ଵ, 𝑦ଵ, 𝑧ଵ)  

Camera position (eye) (𝑥ଶ, 𝑦ଶ, 𝑧ଶ) ⋅ 𝑐𝑎𝑚𝑒𝑟𝑎𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + (𝑥ଵ, 𝑦ଵ, 𝑧ଵ  

Vector in upward direction (up)  [0, 1, 0] 

Rays in x-direction (width_px) 1024 

Ray in y-direction (height_px) 1024 

 

While the parameters  "Angle of view"  and “Rays in x-direction” and “Rays in y-direction” are directly 
taken from the Hololens2 ToF sensor datasheet, other virtual pinhole camera parameters require 
further determination [68]. The vector specifying the up-position of the camera is empirically 
evaluated within the liver mesh and set as a unit vector pointing in the positive y-direction. 
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The “camera view of direction (center)” parameter, denoted in Equation 1, determines a 3D vector 
specifying the direction in which the virtual camera is pointing. This vector is calculated based on the 
center of mass of the mesh, which is computed by finding the mean value of all vertex coordinates 
within the mesh. 

 

The “camera position (eye)” consists of the camera position as a unit vector (𝑥ଶ, 𝑦ଶ, 𝑧ଶ), that is 
multiplied by the camera distance. Then the center of the mesh (𝑥ଵ, 𝑦ଵ, 𝑧ଵ)  is added to compensate 
for the translation of the liver.  

4.1.1 Noise generation 
Real-world sensors, including the time-of-flight (ToF) sensor in the Hololens2, are subject to limitations 
such as noise during data acquisition. The Hololens2 datasheet specifies a depth uncertainty of 0.2 % 
of the camera distance [68]. To incorporate this, Gaussian noise is added to the length of each ray 
during the virtual scene generation. This noise is introduced in the direction of the ray itself. The 
standard deviation of the added Gaussian noise is set to the specified depth uncertainty from the 
Hololens2 datasheet, as illustrated in Figure 14. 

 

Figure 14. Illustrates the noise generation process. For each point where a ray intersects an object, a Gaussian-
sampled value with a standard deviation of 0.2 %, of the camera distance along the ray direction is added to the 

intersection point.  

(𝑥ଵ, 𝑦ଵ, 𝑧ଵ) =
1

𝑛
෍൫𝑥௩௘௥௧௜௖௘௦,   ௜, 𝑦௩௘௥௧௜௖௘௦,   ௜, 𝑧௩௘௥௧௜௖௘௦,   ௜൯

௡

௜ୀଵ

 

(𝑥ଵ, 𝑦ଵ, 𝑧ଵ) = 𝑐𝑒𝑛𝑡𝑒𝑟𝑝𝑜𝑖𝑛𝑡 

(𝑥ଶ, 𝑦ଶ, 𝑧ଶ) = 𝑐𝑎𝑚𝑒𝑟𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

Equation 1 
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To create a comprehensive training and testing dataset, two approaches were employed for calculating 
the camera position. These are further shown for the training dataset in 4.1.2 and for the testing 
dataset in 4.1.3. For both the training and testing data, two versions are generated with and without 
noise added to the partial point clouds as illustrated in Figure 15.  

 

 

4.1.2 Training data generation 
The training process aims to equip the network with a deep understanding of the liver's 3D structure. 
As illustrated in Figure 17, golden angle sampling typically used to distribute an arbitrary number of 
points with maximum uniformity on a circle, is leveraged here to generate 250 different views of the 
liver. This technique ensures that viewpoints encompass the entire 3D structure effectively. However, 
a direct adaptation to 3D would not work. To extend this into a three-dimensional world, in each step, 
the golden angle is multiplied by an index variable “i” to create an azimuth angle (β). Simultaneously, 
another angle iterates uniformly across π, representing the polar distance angle. This angle controls 
the distance from a reference point. The combination of azimuth and pole distance angle is then 
calculated into a unit vector representing the camera angle.  

For each liver, a suitable camera distance must be calculated to ensure a full view of the liver. To 
achieve this, the maximum distance between every node in the mesh is calculated and the maximum 
value selected. This value represents the maximum point distance within the mesh and is used to 
determine the appropriate camera distance as shown in Figure 16. 

To investigate the impact of real-world sensor noise on the network's performance, the dataset was 
generated in two versions: with and without noise added to the partial point cloud generation. Training 
the network on both noisy and clean versions of the partial point clouds allows for the assessment of 
how exposure to realistic variations affects the reconstruction process. This has the potential to 
improve the network's overall robustness. 

 

 
Figure 15. Ray casting results without noise (left) and with noise added (right). 
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Figure 16. Calculating camera distance for full liver coverage. Left side: Calculating of maximum mesh distance, Right 

side: Camera distance calculation based on maximum mesh distance. 

 

Figure 17. Training data generation. The flowchart on the left illustrates how camera positions are generated in each 
step by varying two angles and utilizing golden angle sampling. The angles used for this are azimuth and pole distance 

angle as depicted on the right. 
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4.1.3 Test data generation  
The testing dataset is designed to simulate data captured by HoloLens 2 during open liver surgery, 
particularly focusing on procedures like right or left hepatectomies. Unlike the training data, which 
included all possible views, the test data focuses on three key influencing factors specifically relevant 
to this surgical context as shown in Figure 18: 

 Camera distance 
 Camera view point 
 Noise level  

  
Figure 18. Test data generation. The figure shows three different views to reflect different surgeon views in open liver 

surgery. 

 

To assess the network's performance under realistic surgical conditions, the testing dataset 
incorporates limitations similar to those encountered during surgery. The camera distance is set to 1 m 
and 2 m to effectively limit the number of points available in the partial point cloud. This simulates 
situations where the surgeon might be working at a distance, leading to fewer points captured by the 
depth sensor. For testing the dependencies on viewpoints, the virtual camera is rotated by 45°, 90° 
and 135° around the z-Axis as shown in Figure 19. Also, noise is introduced to the test data according 
to the method in 4.1.1. 
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Figure 19. Partial point clouds generated through raycasting. For a better understanding of the process the complete 

mesh is also displayed. 

 

4.2 Training of PoinTr 
The network is trained on the generated training datasets including 103 complete liver point clouds 
with associated partial point clouds. In this case, an 80/20 split was used, allocating 80 % of the data 
for training and 20 % for evaluation. Originally, PoinTr was trained on big datasets like ShapeNet55 
where 55 different classes with about 51,300 unique 3D-models are included [42]. The generated 
dataset only consists of 131 3D-objetcs with the associated 250 partial views for each liver. Due to the 
limited size and specific focus of the dataset compared to ShapeNet55, directly training PoinTr from 
scratch might be inefficient. Consequently, the approach chosen here involves fine-tuning (3.4.1) a 
pre-trained PoinTr model on this focused dataset. The authors of PoinTr offer several pre-trained 
models on different datasets (ShapeNet55, ShapeNet34, PCN, and KITTI [26], [41], [42]). The model 
trained on ShapeNet55 achieved the best performance, with a Chamfer distance of 1.09e-3 compared 
to the others (ShapeNet34: 2.05e-3, PCN-dataset: 7.26e-3). Lower Chamfer distance values (in meter) 
indicate better reconstruction accuracy. Given its superior performance, the ShapeNet55-trained 
model was chosen as the baseline for the fine-tuning process. Therefore, the pretrained model was 
fine-tuned on the created training data. Two models were generated, trained by the original and the 
noisy data for 250 epochs, while the best checkpoints, evaluated on the validation data during the 
training, is utilized for further testing. 

While PoinTr was designed for complete point clouds like those in ShapeNet55, it included a function 
to generate partial views by randomly selecting points from the ground truth data. However, this 
approach would not be suitable for training on the customized dataset. As shown in Figure 19, a new 
function specifically tailored for the dataset is implemented. This function loads a corresponding 
partial view from the training data for each ground truth point cloud. The parameters used for training 
the network are listed in Table 2. 
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Table 2. Hyperparameters of the PoinTr network used in training process and reconstruction. 

Optimizer  Scheduler  BNM-
Scheduler 

 Model  

Type:  Adam Type: LambdaLR Type: Lambda Name: PoinTr 

Learning 
rate: 

0.0005 Decay step: 21 Decay step: 21 Number of 
predictions: 

5625 

weight 
decay: 

0.0005 Learning 
rate decay: 

0.76 BN-decay: 0.5 Number of 
queries: 

96 

  Lowest 
decay: 

0.02 BN-
momentum: 

0.9 Knn-Layers: 1 

    Lowest 
decay: 

0.01 Trans-
dimensions: 

384 

      Batch size: 96 

 

Figure 19. Flow chart of PoinTr training process.  This flowchart illustrates the PoinTr training process. The blue boxes 
represent the standard training pipeline, while the green box highlight adaptations made specifically for training with 

ray-casted data. 
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4.3 Description of experiments  
Three experiments are carried out to answer the research question. The initial experiment (Test data 
description: 4.3.1) evaluates the quality of the test data itself. The second experiment (Comparison of 
model trained on noisy data to model trained on clean data: 4.3.2) focuses on evaluating the 
robustness of the reconstruction performance. In the third experiment both trained models are 
evaluated on the entire test dataset to determine which one yields superior results. The final stage 
(Comparison of different test data categories on model trained on noise-free and model trained on 
noisy data: 4.3.3) employs a Design of Experiments (DoE) approach to compare the influence factors 
camera distance, field of view and noise on the reconstruction performance. 

4.3.1 Experiment 1. Test data description 
This stage is about creating simulated depth sensor data using raycasting methods like shown in 4.1.3. 
Two metrics were used to evaluate the quality of the ray casted data: 

 Percentage Area coverage: This metric quantifies the portion of the object's surface area 
captured in the partial mesh compared to the complete mesh. A higher percentage indicates 
a more comprehensive representation of the object, potentially providing more global 
information for the neural network during reconstruction. 

 Points per visible Area: This metric measures the density of the point cloud within the visible 
region of the object. A higher value indicates a denser point cloud, potentially providing more 
local information for the neural network during reconstruction. 

Both values combined should provide a comprehensive overview of the information included in the 
partial point clouds for each category.  

4.3.2 Experiment 2. Comparison of model trained on noisy data to model trained on clean data 
Two separate neural network models were trained: 

 Model A: Trained on noise-free ray casted data. 
 Model B: Trained on ray casted data with simulated noise. 

Both models are trained using data created according to 4.1.2. This initial evaluation focuses on 
comparing the performance of Model A and Model B on the entire test dataset generated according 
to section 4.1.3. Reconstruction quality is assessed using the chamfer distance metric. A paired t-test 
is used to statistically compare the chamfer distance values obtained from both models at each 
category across the test dataset.  

4.3.3 Experiment 3. Comparison of different test data categories on Model A and Model B  
Both models are subjected to further testing using a design of experiment (DoE) approach. The DoE 
involves systematically varying factors such as: 

 Viewing angles 
 Noise levels  
 Camera distances  

By systematically varying these factors within the DoE framework, as shown in Table 3, the main effects 
of each factor on the reconstruction quality can effectively be calculated. The chamfer distance metric 
is applied to quantify the reconstruction accuracy and completeness under different DoE conditions. 
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Table 3. Full factorial experiment design table. This table presents a full factorial design experiment, outlining all 
combinations of tested parameters to comprehensively analyze their potential influence on the reconstruction process. 

Test Angle Distance [m] Noise 

1 45° 1 + 
2 45° 1 - 
3 90° 1 + 
4 90° 1 - 
5 135° 1 + 
6 135° 1 - 
7 45° 2 + 
8 45° 2 - 
9 90° 2 + 

10 90° 2 - 
11 135° 2 + 
12 135° 2 - 

 

Table 4. Traceability of the research question to related experiments and results. 

Traceability matrix 
Subject of experiment: Experiment description: Results: N-samples 

(test data): 
Test data with categories:  

 Camera distance 
 Noise-level 
 Viewpoints 

 

Validation of test data on metrics: Area 
percentage and points per visible area. 

5.1 126 

Two PoinTr-models trained 
on clean and noisy data. 

Validation of PoinTr performance on test 
data using chamfer distance. 

5.2 126 

Test data with categories:  
 Camera distance 
 Noise-level 
 Viewpoints 

Validation of the parameter influence on 
the reconstruction results using a design of 
experiment approach.  

5.3 126 
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4.4 Materials 
The used deep learning network PoinTr, which is described under 3.5, is publicly available [69]. The 
source code has been modified to fit the specific needs for using a dataset generated through 
raycasting. For both training and testing of the PoinTr framework and the created dataset, the used 
materials are listed in Table 5.  
 

Table 5. Overview of materials used for both training and test of the PoinTr framework. 

 Materials: 

Computer used for training CPU: Intel Core i5-13600KF 3.5GHz 
RAM: 32 GB 
GPU: NVIDIA GeForce RTX 4070 
OS: Windows 10 Enterprise Version 22H 

Programming language  Python 3.9.18 

IDE within anaconda framework PyCharm Professional 2023.2.5 

Key packages used in the code tensorboard 2.15.1 
tensorflow 2.15.0 
torch 2.1.2 + cu118 
torchaudio 2.1.2 +cu118 
torchvision 0.16.2+cu118 
open3d 0.17.0 
timm 0.9.12 
 

Software tool for imaging Meshlab 2023.12 
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5 Results 

5.1 Test data description   
The first experiment explores the influence of two key parameters on partial point cloud generation: 
percentage of visible area (distribution visualized in Figure 20) and points per visible area (plotted in 
Figure 21), where a distribution of these values for all categories of the test dataset is plotted. Table 6 
provides detailed mean and standard deviation values for both parameters across all categories. Figure 
22, showcases a partial point cloud generated from the three characteristic viewpoints, to illustrate 
the impact of varying visible areas and point densities on the captured information. 

 

 
Figure 20. Illustrates area percentage by distance and angle. This figure illustrates the percentage of visible area with 

respect to the complete object. The distribution of these values is shown for the two camera distances 1 m (at the 
top) and 2 m (at the bottom) for the camera positions at 45° (blue), 90° (orange) and 135° (green). 
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Table 6. Lists mean and standard deviation for area in percentage and points per area of all test data categories. 

 

 

 

Figure 21. Illustrates the number of points in each partial point cloud relative to the visible area of the associated 
partial mesh. The distribution of these values is shown for the two camera-distances: 1 m (at the top) and 2 m (at the 

bottom) for the camera positions at 45° (blue), 90° (orange), and 135° (green). 

Category N-samples Points per Area  
[points/(mm²x1000)] 

 

Area Percentage 
[%] 

Mean  Standard 
Deviation 

Mean  Standard 
Deviation 1m, 45° 14 57.6619 3.8075 35.7364 3.2852 

1m, 90° 14 54.3066 6.6102 32.9139 2.7858 

1m, 135° 14 40.3023 4.8770 32.2509 4.6462 

2m, 45° 14 14.3290 0.9471 35.7364 3.2852 

2m, 90° 14 13.3816 1.5716 32.9139 2.7858 

2m, 135° 14 10.0569 1.0314 32.2509 4.6462 
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Results “Test data validation” description: 

Experiment “Test data validation” analyzed point cloud density across different categories. Figure 20 
shows minimal variations in the mean area percentage across viewpoints. While the deviations from 
the mean increase slightly from 90° and 45° to 135°, the overall changes remain minor. Notably, the 
figure suggests no significant difference in area percentage based on camera distance.  

Figure 21 illustrates how points per area vary across categories for each viewpoint. Interestingly, the 
value consistently increases from the 135° viewpoint to the 45° viewpoint for both 1 m and 2 m camera 
distances. Additionally, the figure suggests that partial point clouds generated from a 2 m camera 
distance have significantly fewer points per area, compared to those generated from a 1 m distance.  

Table 6 summarizes the results from these graphs and adds for each metric and category the standard 
deviation. The table reveals small standard deviations for area percentage, ranging from +/- 2.8 % for 
the 90° viewpoint to 4.6 % for the 135° viewpoint. The points per area variations tend to be the lowest 
at the 135° viewpoint and highest at the 45° viewpoint.  

 

 

 

 

 
Figure 22. Illustrates the complete mesh (top) and the corresponding partial views generated from different 

viewpoints (45°, 90°, and 135°, from left to right). 
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5.2 Comparison of model trained on noisy data to model trained on clean data 
Following the exploration of partial point cloud properties, this section investigates the performance 
of the model trained on clean and noisy data. Figure 23 plots the model's performance for different 
camera distances and noise levels within the test data. By comparing the clean and noisy data plots 
within each figure, the impact of training data noise on the model's reconstruction accuracy at 
different camera distances and noise levels is evaluated. For the plot, a table with the results of the 
paired t-test is provided. 

 
Figure 23. Shows the model's performance (reconstruction error) using boxplots. The turquoise boxes represent the 

clean model, while the orange boxes represent the model trained on noisy data. The x-axis categories represent 
camera distance (1 m and 2 m) with and without additional noise in the test data. Stars indicate statistically significant 

differences (α = 0.05) between clean and noisy data performance for each category. 

 

Table 7. Paired t-test results: Clean vs. Noisy Model Performance (n, t, p-value; p < 0.05 indicates statistical significance) 

Paired t-test (model clean to model noisy α = 5%) 

 Camera 1 m Camera 1 m + noise Camera 2 m Camera 2 m + noise 

N-Samples 42 42 42 42 

T-Value 0.0810 -0.9533 1.3781 -3.4000 

P-Value 0.9358 0.3459 0.1756 0.0015 
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Results “Comparison of model trained on noisy data to model trained on clean data” description: 

The paired t-tests revealed a statistically significant difference (p-value < 0.05) between the models' 
performance for the category distance at 2 m and added noise to the partial point cloud data.  

 

5.3 Comparison of different test data categories on Model A and Model B 
Building upon the previous analysis of viewpoint-specific performance and noise sensitivity, this 
section delves deeper into the main effects of individual categories on the model's reconstruction 
quality. In this work, the design of experiments framework is leveraged to systematically analyze how 
variations within each category (viewpoint, camera distance, noise level) affect the reconstruction 
performance for both models. The main effects of Model A are presented in Figure 24, while the main 
effects of Model B are shown in Figure 25. 

 

 
Figure 24. Illustrates the main effects of the clean model. This plot depicts the main effects of individual categories, on 

the reconstruction performance of the model trained on clean data, as identified through a design of experiments 
analysis. Each category (from left to right: view point at 45°, 90°, 135°; camera distance at 1 m, 2 m; noise-level with 
noise, without noise) represented on the x-axis is investigated independently to determine its impact on the model's 

output. The vertical axis represents the main effect, visualized through a change of the chamfer distance, which 
signifies the average change in reconstruction error (lower is better).  
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Figure 25. Illustrates the main effects of the noisy model. This plot depicts the main effects of individual categories, on 

the reconstruction performance of the model trained on clean data, as identified through a design of experiments 
analysis. Each category (from left to right: view point at 45°, 90°, 135°; camera distance at 1 m, 2 m; noise-level with 
noise, without noise) represented on the x-axis is investigated independently to determine its impact on the model's 

output. The vertical axis represents the main effect, visualized through a change of the chamfer distance, which 
signifies the average change in reconstruction error (lower is better). 

 

Results “Comparison of different test data categories on Model A and Model B” description: 

The model performance over the viewpoints varied depending on the viewing angel and on the model 
used for the reconstruction. Both models showed a decrease in reconstruction performance at a 
camera distance of 1 m compared to 2 m. This effect was more pronounced for the model trained on 
noisy data. While noise in the test dataset shows a decrease in performance over the model trained 
on clean data, the model trained on noisy data exhibits minimal performance degradation due to the 
noise addition. 

5.4 Qualitative Results 
Following the analysis of reconstruction errors through metrics like chamfer distance, this section 
delves deeper by showcasing the visual quality of reconstructions. Here, exemplars from the test data 
category of camera distance 1 m and camera position 45° are presented. One example representing 
the best reconstruction (Table 8) and another representing the worst reconstruction (Table 9) within 
this category. By visually comparing these two reconstructions alongside their corresponding point 
clouds and ground truth data, a qualitative understanding of how chamfer distance translates into 
reconstruction fidelity is gained.



 

 

Table 8. This table visualizes the best reconstruction (lowest chamfer distance) for the test data category with camera distance 1 m and camera position 45°. The left side shows the ground truth 
data: the point cloud representation at the top and the mesh representation at the bottom. The right side displays the reconstruction results in two different views: the reconstructed point cloud 

visualized in blue points and a partially mesh that represents the partial point cloud that the network receives as input for reconstructing the complete object. 

Camera 1 m at 45° - Best reconstruction 

Ground Truth: Reconstruction: (Chamfer Distance: 1.7074244) - Reconstructed points in blue, partial 
mesh in grey. 
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Table 9.  This table visualizes the worst reconstruction (highest chamfer distance) for the test data category with camera distance 1 m and camera position 45°. The left side shows the ground 
truth data: the point cloud representation at the top and the mesh representation at the bottom. The right side displays the reconstruction results in two different views: the reconstructed point 

cloud visualized in blue points and a partially mesh that represents the partial point cloud that the network receives as input for reconstructing the complete object. 

Camera 1 m at 45° - Worst reconstruction 
Ground Truth: Reconstruction: (Chamfer Distance: 16.06927) - Reconstructed points in blue, partial mesh 

in grey 

 

 

 



 

 

6 Discussion 
This chapter builds upon the results presented earlier, delving deeper into their significance and 
implications. The discussion focuses on the performance of the deep learning reconstruction network 
on the categorized test dataset. Key observations regarding reconstruction accuracy and the impact of 
different categories are explored. Additionally, the limitations of the current approach will be 
addressed, and potential avenues for future research to further improve the network's capabilities will 
be suggested. 

 

6.1 Test data validation:  

6.1.1 Analysis of Captured Area Percentage 
The analysis of captured area percentage in Figure 20  reveals consistency, with an average variation 
of only ±4 % across viewpoints (45° to 135°) and object distances (1 m, 2 m). This indicates that the 
data generation process captured a consistent portion of the ground truth object's surface area, 
averaging around 34 %, regardless of these variations. Koo et al. showed that 30-50 % of the liver 
surface is visible in laparoscopic surgery, therefore value of just 34 % might not capture sufficient detail 
for high-fidelity reconstruction in open liver surgery applications [70].  

6.1.2 Analysis of Points Per Area 
As expected, Figure 21 shows that point cloud density, measured by points per area, increases for 
objects closer to the sensor (1 m) compared to farther distances (2 m), demonstrating a higher level of 
detail captured for nearby objects. Interestingly, points per area shows a slight decrease with changes 
in viewpoint (from 45° to 135). This decrease can be attributed to the limited resolution of the sensor 
data. As the viewpoint changes, certain object surfaces become nearly parallel to the sensor rays, as 
shown in Figure 26. Surfaces that are nearly parallel experience fewer ray intersections which leads to 
a lower point cloud density in those regions compared to areas facing the sensor more directly. The 
figure also reveals a significant drop in points per area from 1 m to 2 m camera distance, which leads 

to a large area, from 15 – 35 [ ௣௢௜௡௧௦

௠௠మ⋅ଵ଴଴଴
] not being covered by data points. 

Preview for future optimizations: 

The test data validation provides a controlled environment ideal for evaluating reconstruction 
performance, but it is highly idealized.  The used method only considers self-occlusion of the object. In 
real-world applications, the visible portion of the target object would be significantly smaller, 
especially at viewpoints like 45° and 135°, as depicted in Figure 3. To generate a continuous point cloud 
density value, generating partial point clouds with multiple camera distances is recommended. 
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Figure 26. Illustrates the influence of object geometry on point cloud density captured by a virtual sensor (camera). The 
left side showcases a 135° viewpoint, highlighting surfaces in orange that are nearly parallel to the sensor rays in this 

view. The right side depicts the mesh and camera from a perpendicular viewpoint, emphasizing the near-parallel 
orientation of these marked surfaces relative to the sensor rays. 

 

6.2 Comparison of model trained on noisy data to model trained on clean data 
Figure 23 illustrates the difference in reconstruction performance between the model trained on clean 
and on noisy data. All medians from the model trained on noisy data, showed the same or slightly 
improved performance in reconstruction. Notably, one condition exhibited a statistically significant 
improvement according to a t-test, suggesting that training on noisy data can generate a more robust 
model that can outperform the clean data model under different conditions. While the limited number 
of data points used raises concerns about assuming normal distribution for the t-test, the overall trend 
suggests the potential benefit of incorporating noise in training. 

Preview for future applications: 

The beneficial behavior of artificial noise added to the training data is also observed by Neelakantan 
et al. and should be considered for future applications [71].   

 

6.3 Comparison of the influence of test data parameters on the reconstruction 
performance 

As illustrated in Figure 24 and Figure 25, the variation in performance across viewpoints and the two 
different models, suggest a potential interaction effect between training data noise and the geometric 
complexity of the visible surface. At the 45° view point, presenting the right liver lobe, the model 
trained on clean data shows superior performance compared to the 90° and 135° viewpoints. The 
model trained on noisy data exhibits medium performance at the 45° viewpoint.  
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Like demonstrated from Khajarian et al. both models might benefit from the presence of rich geometric 
features like those encountered at the 45° view point [72]. The best performance of the noisy model 
is observed at the 90° viewpoint. Through the training on noisy data the model might rely more on 
global features like the top and underside of the liver (Figure 22). These surfaces might offer the 
network more characteristic central points (global features) compared to the potentially richer 
geometric features (local features) encountered at viewpoints like 45°. The presence of these 
characteristic central points, even with potential noise in the training data, could be sufficient for the 
network to achieve superior performance to the clean data model for this specific view. Further 
investigation is needed to explore the specific reasons behind the model’s performance at 135°. This 
could involve analyzing the geometric features at this viewpoint in detail. 

The usage of a model trained on noisy data proofed beneficial, showing a more robust reconstruction 
performance for all viewpoints. Over all three camera positions the model showed less reliance to 
camera view point and only minor effects to noise added in the testing data. Additionally, the standard 
deviation for all parameters increased, suggesting a higher variability in performance across all 
parameters. 

As displayed in Table 10, both the points per visible area and the points per partial point cloud in the 
training dataset correlate more closely with the test dataset at 1 m camera distance than 2 m. Counter 
to the expectations, both models exhibited lower performance when the partial point clouds were 
captured from a 1 m camera distance. This observation needs further investigation to understand the 
underlying mechanisms.  

Table 10. Average points per area, number of points and average visible area for ground truth, training data, and testing 
data at 1 m and 2 m. 

 

One explanation for this problem could arise through the used metric itself. In the original PoinTr 
network, a complete point cloud is randomly cropped to a fixed number of points. The partial point 
cloud is used for reconstruction while the complete point cloud is used as ground truth for calculating 
the loss. This workflow ensures that the points in the partial point cloud are at exactly the same 
position as in the ground truth, therefore with no contribution in the chamfer distance. For this work, 
ray casting was utilized to create partial point clouds, therefore no point in the partial point cloud is 
located at the same position as in the ground truth. In this case, the partial point cloud itself would 
contribute in the loss calculation. Additionally, Wu et al. showed a high dependency of chamfer 
distance on variations in point cloud density [73]. This complex relationship between point cloud 
density and average kNN-distance could lead to unexpected behavior, like higher chamfer distances in 
denser point clouds. 

  

 Ground Truth Training data Test data: 1m  Test data: 2m 

Average points per area 
[𝑚𝑚ିଶ ⋅ 10ିଷ] 

66.04 65.63 50.75 13.72 

Average number of points  7500 2048 2102 524 

Average visible Area [𝑚𝑚ଶ] 113552.32 32364.66 38191.88 38191.88 
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Preview for future optimizations: 

For future work, exploring higher-order interaction effects using techniques like response surface 
methodology or plotting interaction terms would be beneficial. This could reveal more complex 
relationships between the parameters, providing a more comprehensive understanding of how they 
influence reconstruction accuracy. For evaluating the reconstruction performance, it should be 
considered to use metrics that are independent from variations in point cloud densities, like hyperbolic 
chamfer distance or density-aware chamfer distance [73], [74]. Additionally, incorporating a wider 
range of camera distances and potentially including dynamic viewpoints that simulate a surgeon's 
movements during an operation could provide valuable insights for real-world applications.  

 

6.4 Data generation 
The data generation process plays a fundamental role in achieving successful training for accurate 
reconstruction. While examining partial point clouds revealed that the generation process functions 
as intended in most cases, some challenges remain. 

6.4.1 Mesh generation 
The generation process leverages the publicly available LiTS dataset, which includes CT data with 
corresponding labels for background tissue, liver, and cancer. These labels are ideal for further 
processing. However, challenges arise due to the use of different CT units, resulting in CT images with 
varying slice thicknesses. For images with large slice thicknesses, the discrete segmentation process 
can lead to meshes with stepped surfaces, as illustrated in Figure 27. While Palomar et al. proposed 
mesh smoothing algorithms to address this problem, in this work, it was decided to not utilize 
smoothing operations, to avoid altering the ground truth data [75].  

 

Figure 27. Illustrates a mesh generated from the LiTS dataset using CT scans with low voxel resolution. The low-
resolution results in a mesh with a stepped surface, where the smooth anatomical features of the liver are not accurately 

captured. 
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Figure 28. Illustrates planar surfaces with a stepped structure, highlighted in orange, extend over the visible mesh 
surface. These artifacts likely arise due to the presence of stepped surfaces within the training data. 

 

As shown in Figure 28, an examination of the reconstructed point cloud overlaid on the partial mesh 
representing the input data reveals prominent stair-stepping artifacts. These artifacts, particularly 
evident on edges or boundaries, resemble the stepped surfaces observed in the training data with thick 
slices in Figure 27. This suggests the model has learned to reconstruct these features, potentially 
impacting the accuracy of reconstructions on unseen data with smoother surfaces.  

The CT-data in the LITs-datasets includes three labels for liver, tumor and background tissue. For this 
work, all voxels with labels corresponding to liver and tumor were selected for further processing 
through the marching cubes algorithm to avoid holes in the mesh. However, since the dataset 
specializes in CT data with liver tumors, some CT images contain malignant tumors that extend over 
the liver surface, as visualized in Figure 29. In these cases, including the tumor labels, effectively 
changes the geometry of the organ. Due to the limited number of training data, this can lead to outliers 
in reconstruction performance, observed in both the testing and training datasets. A notable example 
of this challenge can be seen in Figure 29, where a large tumor is present on the liver surface, resulting 
in the worst reconstruction performance across all test set categories as shown in  Figure 23. 

Preview for future optimizations: 

In medical imaging the generation of staircase artifact through the marching cubes algorithm is a well-
known challenge. For future work, exploring the capabilities of smoothing operations like Laplacian 
smoothing and Taubin smoothing could be beneficial. However, these techniques introduce additional 
processing stages and control parameters that require careful consideration [76], [77].  

Additionally, utilizing a dataset that excludes tumors could prove beneficial for improved learning of 
the anatomical properties of healthy liver surfaces. 
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Figure 29. Illustrated at the top a mesh excluding the tumor, resulting in a incomplete mesh. At the bottom, a liver mesh 
generated with liver and tumor together is shown. The tumor is marked in orange.  

 

6.4.2 Partial point cloud generation 
Partial point clouds are generated using a method called ray casting. This method has proven beneficial 
for creating partial point clouds from a complete mesh. However, as discussed in 6.1, the 45° and 135° 
camera viewpoints might not reflect realistic occlusions encountered in real-world scenarios. Ray 
casting with a single mesh only considers self-occlusion, meaning it excludes occlusions caused by 
other organs. Consequently, these specific viewpoints might incorporate surfaces of the mesh that 
would normally be hidden behind other organs in a real-world setting. 

Preview for future optimizations: 

In future works, it would be beneficial to explore more complex and realistic datasets that incorporate 
various occlusion scenarios present in real-world situations. This could involve using multiple 
viewpoints or even dynamic viewpoints that simulate a surgeon's movements during an operation. 

 

6.5 Training process 
As described under 4.1.2, the training process for the PoinTr network involves randomly selecting one 
partial point cloud from 250 available views in each epoch for reconstruction. Since the entire training 
dataset consists of 250 partial views with a fixed number of 2048 points each, there are only minor 
variations in point cloud density.  This limited variation might not be ideal for achieving a robust 
reconstruction model. Additionally, the random selection process does not guarantee that all available 
data gets utilized during training.  
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Furthermore, as discussed in section 6.3, points within the generated partial point clouds do not 
correspond exactly to the positions of points in the ground truth data. Raycasting also inherently 
introduces continuous changes in point cloud density across the surface. Due to these factors, the 
chamfer distance might not be the most suitable metric for evaluating reconstruction performance, 
especially when training data with overall varying point cloud densities is used. However, it remains a 
valuable loss function during training due to its efficiency and focus on minimizing point-to-point 
distances. 

Preview for future optimizations: 

For future works, it would be beneficial to consider using training data with variations in the number 
of points per partial point cloud. This variation can help the model learn and generalize better to 
unseen data with different point densities, leading to a more robust reconstruction process. 
Additionally, replacing the random selection of one point cloud per epoch with a method that 
randomly picks a point from the entire dataset, ensuring each point is chosen only once and all data 
has been processed during training, could improve the utilization of the training data.  Finally, adopting 
a density-independent chamfer distance metric could be more effective in evaluating reconstruction 
performance when dealing with variations in point cloud density. 
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7 Conclusion 
This work presented a workflow for generating a reconstruction dataset from CT data. This dataset 
includes complete and partial point clouds representing multiple viewpoints, along with a trained 
reconstruction network. The workflow offers theoretical applicability to other organs, provided labeled 
CT data exists.  

The key finding of this work is the possibility of using the reconstruction network as a pre-processing 
step to enhance registration accuracy and efficiency. By generating a more complete point cloud 
representation of the organ, the reconstruction process could provide a better foundation for 
subsequent registration algorithms. 

While the reconstruction results are promising, there are limitations to consider. State-of-the-art deep 
learning algorithms designed specifically for partial registration tasks are constantly improving. As 
these algorithms become more sophisticated, the need for a separate pre-processing step to address 
self-occlusion with reconstruction networks might become less critical. 

However, the potential of this reconstruction workflow extends beyond registration. In the exciting 
realm of future augmented reality applications for open liver surgery, real-time organ reconstruction 
offers significant advantages. By dynamically reconstructing the operated organ during surgery, AR 
could provide surgeons with invaluable visualizations of the operative field. 
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