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1 Purpose 
This work focuses on providing a convolutional neural network (CNN) architecture for the classification 

of 3D MRI head scans. In order to offer a comprehensible recommendation for an architecture, this 

work has four main objectives:  

• Implementation of two CNN architectures based on transfer learning, for the classification of 

3D MRI head scans 

• Optimization of both architectures to provide a fair comparison 

• Comparison of both architectures with relevant criteria for the usage of the CNNs in medical 

diagnosis 

• Evaluation of the effects of transfer learning on both architectures 
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2 Motivation 

2.1 The relevance of artificial intelligence in medical imaging 

In recent years artificial intelligence (AI) is obtaining an increasing interest in many different scientific 

areas. Especially in medical healthcare, there are a lot of possible applications, in which AI can provide 

assistance. For example, an algorithm for detecting atrial fibrillation in an Electrocardiogram (ECG) 

reached a sensitivity of 82.3% and a specificity of 83.4% [1]. Another field of intense interest is the 

automatic classification of lung nodules in computed tomography (CT) lung cancer screening. A neural 

network from 2017, designed for this task, achieved an error rate of 4.59% [2]. A more recent model 

from 2019 for predicting the risk of lung cancer on CT volumes, claims to achieve a better performance 

compared to six different radiologists in a situation, where there weren’t any previous CT scans of the 

patient available [3]. Additionally, more abstract usage for machine learning can be found in medicine, 

e.g. predicting the risk of suicide for patients with a history of self-injury. This model can forecast a 

patient's suicide seven days prior, with accuracy under the curve (AUC) of 84% [4]. 

With an increasing interest in AI, the demand for medical imaging examination was also growing over 

the last two decades. The annual increase in image examinations in the USA and Canada rose 

continuously from 2000 to 2016, with annual growth rates of 11.6% from 2000 to 2006 and 3.7% from 

2013 to 2016 [5]. Although the diagnostic quality benefits from an increasing amount of data, on the 

other hand, they significantly increase the workload of radiologists analyzing them. The average time 

expended by a radiologist for the complete diagnosis of a magnetic resonance imaging (MRI) head scan 

is about 18 minutes (Appendix A) [6]. An increasing number of imaging examinations, resulting in less 

time for the radiologist to analyze the data, or longer working shifts, could lead to higher error rates 

of their diagnosis [7]. Figure 1 shows that examinations of the head make up the largest portion of CT- 

and MRI-examinations in Germany in 2009. 

 

Figure 1. The number of CT- and MRI-Examinations in Germany by region in 2009 [8]. 
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A statistic from the German radiology Mühleninsel in Landshut (Appendix B) shows that 56.36% of 

their MRI head scans and 60.20% of their CT head scans were normal findings. A different study from 

India indicates an even higher percentage of 78.2% for CT head scans [9]. As a result, radiologists lose 

much time in diagnosing normal findings, especially for examinations of the head, which they could 

spend on pathological diagnosis instead. Having a machine learning algorithm, that assists radiologists 

in their daily workflow, could lead to an improvement of temporal efficiency for diagnosing medical 

imaging scans, especially when it comes to automatic diagnosis of normal findings. Another benefit of 

a computer aided diagnosis (CAD) system, would be the constant availability of a second opinion for 

the radiologist. Two studies [10,11] demonstrated the benefit of a radiologist's second opinion when 

it comes to classification accuracy and patient care. 

There is already research being conducted for the analysis of MRI head scans with AI. For example, 

Dong et al. developed an algorithm for the segmentation and detection of brain tumors that reached 

an accuracy of 86% in tumor segmentation on the 2015 Multimodal Brain Tumor Segmentation 

Challenge (BRATS) [12]. A different algorithm for the diagnosis of Alzheimer’s disease (AD) in MRI head 

scans was developed by Lian et al. and reached an accuracy of 90% [13]. Other examples for research 

on the classification of MRI head scans with machine learning algorithms are from Suk et al. [14], Lin 

et al. [15] and Khvostikov et al. [16]. Despite many publications, there is no commercially available CAD 

system on the market right now, which uses a machine-learning algorithm for the classification of MRI 

head scans. 

2.2 CNN - a powerful neural network for computer vision 

All of the previously mentioned examples of machine-learning algorithms have one thing in common: 

They are based on artificial neural networks (ANN). More specifically, when it comes to medical image 

classification, almost all models inherit the architecture of a convolutional neural network (CNN). The 

modern CNN architecture was first introduced by Yann LeCun and Patrick Haffner in the paper: “Object 

Recognition with Gradient-Based Learning” in 1999 [17]. The model invented by the authors, called 

“LeNet-5”, consisted of only two convolutional layers but managed to achieve an error rate of 0.7% on 

the MNIST dataset. Concluding this paper, they stated: “For 2D shape recognition, convolutional neural 

networks have been shown to eliminate the need for hand-crafted feature extractors” [17], already 

realizing the potential CNNs have for computer vision. Although the “Le-Net” architecture had proven 

to be comparable or even better than feature extracting algorithms, the real breakthrough for CNNs 

happened in 2012, with the introduction of a deep convolutional neural network called “AlexNet”. The 

model consisted of five convolutional layers and classified an image input with a size of 224 x 224 x 3 

into 1000 different classes. At the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) from 

2010, the model managed to achieve first place, with top-1 and top-5 error rates of 37.5% and 17.0% 

[18]. 

Since then, multiple new models with different architectures were published, which continuously push 

the performance of CNN’s even further. Two examples for that are the “Inception Network” or also 

called “GoogLeNet”, which introduced the Inception Module [19], and the “ResNet”, which established 

way deeper networks with 110 or even 1202 layers [20]. An issue that arises with deep neural networks 

is that the amount of data required for training a CNN rises with the depth of the neural network. This 

issue creates a problem for neural networks in medical applications due to the lack of publicly available 

data. 
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2.3 The problem of data shortage with medical images 

As earlier stated, there has been a general upward trend in the usage of medical imaging over the last 

two decades. Therefore, every year, more and more medical scans should be available, which could 

function as training data for CNNs. Although these data exist, most of them are not accessible due to 

patient privacy and security policies [21]. The Health Insurance Policy (HIPAA) [22] of the USA and the 

Regulation 2016/679 [23] of the EU limit the storage and accessibility of medical data for the public. In 

other fields of computer vision, there are large publicly available datasets, like the Kinetics 400 dataset. 

It consists of 306 245 video clips from 400 different action classes [24] that were used by Google 

DeepMind to pretrain the “Two-Stream Inflated 3D ConvNet” [25]. Datasets for medical images are 

generally smaller; E.g., the Open Access Series of Imaging Studies (OASIS) dataset consists of 2 168 

medical scans [26] and the Alzheimer Disease Neuroimaging Initiative (ADNI) dataset consists of about 

1 500 MRI head scans altogether [27]. Another challenge for utilizing a large number of medical 

imaging scans is the generalizability of data. There are apparent differences in contrast between 

different MRI sequences, even for the same pathologies, and even differences between the same 

sequences from different MRI scanners. As a result, it is challenging to combine different MRI scans 

for building a large benchmark dataset [28]. 

So especially compared to datasets used for the training of CNNs in other areas, for medical image 

classification, there are not enough data publicly available to train a CNN from the beginning. Too little 

data could lead to overfitting, which results in a worse performance of the network. Using  the weights 

of pretrained CNNs with transfer learning can compensate for the lack of available data [29].  

2.4 The problem of computational power for 3D CNNs 

Another limiting factor for training deep neural networks is the requirement of computational power. 

Most smaller research institutions do not have the financial resources to build a powerful computer 

with many  graphics processing units (GPU). When compared to 2D images, CT or MR scans are 

acquired with multiple slices through the patient, which results in a  3D Volume [30]. To point out the 

size difference between 2D and 3D data, e.g., the images used by Szegedy et al. [19] have the size 224 

x 224, which results in 50 176 pixels. An MRI scan from the ADNI dataset has the dimensions 192 x 192 

x 160, which amounts to 5 898 240 voxels. As a result, more computational power is needed to process 

this data. As an example of the required computational power, the 3D “ResNext” model was trained 

on the Kinetics dataset with 8 Tesla P100 NVIDIA GPUs [31], each costing about 5000 – 6000 €. The 

earlier mentioned “Two-Stream Inflated 3D ConvNet”, was trained with 64 GPUs [25]. As a comparison, 

for the models used in this work, there is only a single NVIDIA GTX 1080ti GPU available.  

Transfer learning utilizes pretrained CNNs to reduce the amount of training data needed [32], which 

also comes with less computational expense for training the CNN. There are many pretrained 2D CNNs 

that are publicly available, e.g., the Inception-V3, Inception-V4, ResNet, or the VGG16 network in 

Keras, which were trained on the ImageNet dataset [33]. For 3D data, there are less pretrained CNNs 

available due to the earlier mentioned lack of data and computational power. There are two different 

strategies that make use of pretrained neural networks for the classification of MRI head scans, which 

are explained in sections 4.2.1 and 4.2.2. The purpose of this work is to compare these two strategies 

with respect to the quality and applicability of the resulting CNNs. This comparison is meant to support 

the foundation of developing commercially available CAD software that provides assistance for 

radiologists in the analyzation and classification of 3D MRI head scans. 
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3 A theoretical basis for understanding CNNs 
CNNs are state of the art for computer vision tasks. They are a specialized architecture of the artificial 

neural network (ANN). Therefore, in order to understand CNNs, first, the theory of ANNs has to be 

introduced. 

3.1 The artificial neural network 

The ANN is a machine learning algorithm that tries to imitate the architecture of a human brain to be 

able to learn and store knowledge. It processes an input X to an output Y [34]. The core structure of an 

ANN, the artificial neuron, was first modeled in 1958 by Frank Rosenblatt [35]. Its implementation is 

based on the architecture of a real neuron. Visualized in Figure 2, the neuron consists of multiple inputs 

�⃗� = [𝑥1, 𝑥2, … , 𝑥𝑛], which all have a corresponding weight �⃗⃗⃗� = [𝜔1, 𝜔2, … , 𝜔𝑛]. 

 

Figure 2. The architecture of an artificial neuron [36]. 

To compute the output y of an artificial neuron, all inputs are multiplied with their respective weights, 

and afterward, the sum of them is formed. After that, the bias term b is added to the sum as a threshold 

for the output, as described in equation (1). The result is applied to the activation of the neuron ϕ(), 

which specifies its output range, as described in equation (2) [34].  

𝑢 =  ∑ 𝑥𝑖 ∙ 𝜔𝑖 +  𝑏

𝑖

𝑖=0

 (1) 

𝑦 = 𝜙(𝑢) (2) 

There are many different possible activation functions, like e.g., the Sigmoid or the Rectified Linear 

Unit (ReLU), which are shown in Figure 3. The softmax activation function is an abbreviation of the 

traditional sigmoid activation function, with the difference that the sum of all its’ outputs is always 

equal to one [37]. 
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Figure 3. Five different activation functions, which all define different ranges of output values for a neuron. [38] 

Multiple concatenated artificial neurons form a layer of an ANN. A model consisting of only an input 

and an output layer is called single-layer feedforward architecture. A model consisting of an input, an 

output layer, and at least one hidden layer in between is called multi-layer feedforward architecture 

[34]. The neurons in hidden layers are responsible for retrieving complex information and patterns out 

of the input data. An essential characteristic of a multi-layer feedforward architecture is that the 

output of every neuron from a previous layer is connected with every neuron of the following layer 

[34]. Figure 4 shows the structure of an ANN with one input layer, two hidden layers, and one output 

layer. For a classification task, the number of neurons in the output layers usually corresponds to the 

number of possible classes, so that every neuron outputs the likelihood of its specific class.  

 

Figure 4. The architecture of a feedforward ANN with all connections between the layers. Each node represents a neuron 
as shown in Figure 2. [34] 



 
 

Hochschule Landshut – Bachelorarbeit – Roland Stolz Seite 12 
 

3.2 Training an artificial neural network 

For the training of an ANN, labeled data is necessary. One way to label data is the so-called “One Hot 

Encoding”. With this method, the label for each class is a vector with the same length as the number 

of classes available in the dataset. So in the example of classifying a dataset of cats, dogs, and hamsters, 

the vector would have three digits. Each digit represents a class, e.g., the first digit represents the cat, 

the second represents the dog, and the third represents the hamster. 

𝑐𝑎𝑡:
1
0
0

 ;  𝑑𝑜𝑔: 
0
1
0

 ;  ℎ𝑎𝑚𝑠𝑡𝑒𝑟: 
0
0
1

  

The ANN to this task would have three output neurons, that predict the likelihood of its corresponding 

class. Processing the output of an NN is called forward propagation. The resulting vector of the forward 

propagation of an image of a cat could look like this: 

0.8
0.1
0.1

 

The loss function of an ANN calculates the individual error for each output node. E.g., the Squared 

Error loss function calculates the error in the following way: 

(
1
0
0

−  
0.8
0.1
0.1

)

 2

=  
0.04
0.01
0.01

 

The loss values are passed to the optimizer of a NN, which uses backpropagation, to determine the 

amount in which the weights of the networked have to be adapted [32]. Some state of the art 

optimizers are, for example, Adam [39], Root Mean Square Propagation (RMSprop) [40], or Stochastic 

Gradient Descent (SGD) [41]. This way, the weights of the ANN can adapt to a specific task like 

classifying images of cats, dogs, and hamsters. 

3.3 Convolutional neural networks 

When it comes to the task of computer vision, ANNs with a feedforward architecture face a few 

problems: Due to all neurons of one layer being connected to all neurons in the next layer, there are 

too many parameters in the network, which would require an extensive amount of training data [17]. 

For example, an ANN that processes an image of the size 30 x 30 pixels would require a total number 

of 900 nodes in the input layer. When containing e.g., 500 nodes in the hidden layer, there are already 

900 ∙ 500 + 500 = 450 500 parameters (number of input nodes ∙ number of neurons + number of 

biases). With 10 output nodes, the network contains an additional 500 ∙ 10 + 10 = 5 010, and in total 

450500 + 5010 = 455 510 parameters. Additionally, modern neural networks are deeper than three 

layers because it has been found that increasing the size of a neural network generally increases its 

performance [19]. So for larger images and deeper networks, the feedforward (fully-connected) 

architecture is very inefficient, and therefore not applicable. Another disadvantage of the fully-

connected architecture is that it ignores the spatial structure of an image so that it cannot receive any 

information about the correlation between local pixels [17].  
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The solution to these problems is the architecture of a Convolutional Neural Network. The basic idea 

is to mimic the organization of receptive fields in the visual cortex, which was first described by Hubel 

and Wiesel in 1962. They state that the visual cortex of a cat is divided into multiple regions, which 

have specific neurons only connected to that single region [17]. So, a CNN mimics the visual cortex by 

connecting only units from one layer to units in adjacent layers with the same local position. As a result, 

the network can detect basic visual shapes, like edges or corners, and pass them through the network 

without losing the information about the location of those features [17].  

3.3.1 The convolutional layer 

The way a CNN achieves this local connection is through the mathematical operation of convolution. 

Figure 5 shows an example of this operation on an image. The black numbers represent the pixel values 

of the image, and the red numbers represent the values of the 3 x 3 convolutional kernel. The output 

value is calculated by building the sum of each multiplication of pixel value with overlapping kernel 

value. This calculation is repeated for every pixel in the image, thus resulting in a new image with the 

output values at the corresponding position, where the kernel was positioned, calculating them [42]. 

 

 

Figure 5. An example of a convolution operation. The kernel slides over the input image to produce an output image. The 
numbers of the input image represent the greyscale values of the respective pixel. The numbers in the red convolutional 

kernel represent the weights of the kernel. At each position, the result of the convolution is calculated (125.7 in this 
example). 

The core structure of a CNN is the convolutional layer, which consists of one or multiple convolutional 

kernels. It takes a batch of images or features as input and calculates another batch of features by 

applying the convolution operation. It serves a similar function as the hidden layer of a feedforward 

network, with the convolutional kernel replacing the weights. A 2D convolutional layer generally has 

four dimensions: [height, width, n_input_features, n_output_features]. Height and width define the 

dimensions of the convolutional kernel. The term n_input_features stands for the number of input 

features that are forwarded to the convolutional layer. The term n_output_features describes the 

number of output features, the layer produces. This is defined by the number of convolutional kernels 

the layer consists of [32]. For example, the input to a convolutional layer has 32 features. When the 

layer should consist of 3x3 convolutional kernels and produce 64 output features, its’ dimensions must 

be: [3, 3, 32, 64]. Similar to the neurons of a feedforward neural network, the outputs of the 
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convolutional layers are passed to an activation function before being forwarded to the next layer [32]. 

The weights of the convolutional kernels are the parameters of a CNN that can be changed during back 

propagation. So a CNN learns by adapting the convolutional kernels that can best detect the individual 

features of the input images [32]. In the earlier layers of a CNN, general features like e.g., edges or 

circles are detected, and in the deeper layers, more features that are more specific to the input data 

are detected.  

CNNs can also consist of other layers, like a max pooling layer, which looks at a patch from the input 

feature map, takes the maximum value out of the patch, and discards the other values. Afterward, the 

image size is significantly reduced, as shown in Figure 6. The size reduction is essential for lowering the 

computational power required for processing a CNN [43]. 

 

Figure 6. The size reduction of an image by a max pooling layer [32]. 

In summary, the CNN architecture is an adaption of the ANN architecture, with fewer parameters and 

additional information about the positions of pixels in the input image. The convolutional layer of the 

CNN resembles the hidden layer of an ANN with the convolutional kernels replacing the artificial 

neurons. 

A CNN additionally consists of  fully connected (FC) layers at the end, which are of the same structure 

as an ANN and therefore require a 1D vector as input. As a result, the output of the last convolutional 

layer has to be reshaped to consist of one dimension. In a CNN constructed for a classification task, the 

last FC layer usually consists of the same number of neurons as there are classes in the classification 

task. The last layers’ output, represents the output or prediction of the whole CNN. As shown in Figure 

7, the same principles of forward- and back propagation of a feedforward ANN, apply to the CNN. 



 
 

Hochschule Landshut – Bachelorarbeit – Roland Stolz Seite 15 
 

 

Figure 7. The complete structure of a CNN with the path of forward- and back propagation. As explained earlier, the 
kernels of the convolutional layer are updated during back propagation. The loss of a CNN is calculated in the same way 

as for the ANN [32]. 

3.3.2 Hyperparameters 

Hyperparameters are characteristics of a CNN that influence its general architecture or functionality. 

They are set before training and can have a big influence on the models’ performance [32]. A few 

examples of important hyperparameters are: 

• Batch size: Number of data that are parallelly processed by the network (Also influences the 

calculation of the loss) 

• Epochs: Number of iterations, the complete training data is passed through the network 

• Loss function: The function, that computes the loss (error) of a batch 

• Optimizer: The optimizer algorithm minimizes the error of the loss function 

• Learning rate: The rate in which weights are updated in the optimizer 

• Activation function: The layer-specific activation function, that determines the value range of 

the output feature maps (See Figure 3) 

Every neural network needs individual optimization for its specific hyperparameters in order to achieve 

the best possible performance. A kind of brute-force method for doing so is called grid search. With it, 

a specific value range is specified for every hyperparameter that has to be optimized. E.g. learning-

rate: [0.001, 0.01, 0.1] and batch-size: [8, 16, 32]. After that, the models’ performance with every 

hyperparameter configuration is evaluated with performing a complete training session on it. So, in 

this case, the total number of training sessions, the grid search algorithm has to perform, would be 3 ∙

3 = 9. Afterward, the best performing configuration is evaluated on chosen criteria and the process 

can be repeated with new value ranges [44]. Normally, the results of every configuration are validated 

with cross-validation, to reduce the impact of statistical outliers. Cross-validation trains the neural 

network with multiple iterations, each time choosing a different portion of the whole dataset to be 

training and validation data (Figure 8). The outcome of cross-validation is calculated by taking the mean 

of each training result [45]. 
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Figure 8. The different distributions of training- and test data over multiple iterations (or folds) for cross-validation. 

3.3.3 The 3D CNN 

The input to 2D CNN is limited to the dimensions of an image. When it comes to 3D medical scans, it 

is desirable to process the whole 3D volume. Therefore 3D CNNs have to be used for medical scan 

classification. Although the general architecture of both network types is the same, 3D CNNs have few 

differences. The input to a 3D CNN is a five-dimensional tensor (or matrix), e.g. of the shape: [batch 

size, height, width, depth, features]. Batch size is a placeholder for the number of parallelly processed 

data by the CNN. The convolutional layer that processes the input volume also must contain five 

dimensions. So in general, a convolutional layer of a 3D CNN consists of the five dimensions [height, 

width, depth, n_input_features, n_output_features] (see section 3.3.1) [46]. Figure 9 shows the 3D 

convolutional operation on a 3D input volume.  

 

Figure 9. A 3D convolution operation with the input volume (blue), the convolutional kernel (orange) and the output 
volume (green). The input volume in this example consists of only one channel (feature). The 3D convolutional kernel 

slides across all three dimensions of the input volume to produce the output volume. [47] 
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3.4 Transfer learning as a solution for data shortage 

The underlying supposition to transfer learning is that every object consists of fundamental features, 

like edges or circles, which describe, e.g., dogs as well as human brains. Like explained earlier, every 

CNN extracts those simple features in the first convolutional layers and detects more complex 

structures in the last layers. Therefore, the first convolutional layers should be similar for every CNN 

with a computer vision task. Transfer learning makes use of this assumption by taking pretrained CNNs 

(usually pre-trained on large image datasets like ImageNet) and transforming them to fit a new task 

[48]. The process discards the fully connected layers at the end of the original network so that only the 

convolutional layers (convolutional base) are left. After that, a new feature extractor is constructed at 

the end of the new network that outputs the result for the new classification task. The original network 

will be referred to as “base model” in this work. There are two different approaches to training the 

resulting network, which can be seen in Figure 10. The first is to freeze the complete convolutional 

base and only train the new fully-connected layers. This approach does not apply to medical image 

data because the features of medical images are too diverse from typical images. The second method 

also finetunes the convolutional base of the model [32]. An important decision to make with this 

method is how many layers of the convolutional base should be frozen and how many should be 

finetuned. Yosinski et al. have shown that finetuning the complete convolutional base results in better 

accuracy compared to freezing convolutional layers. The accuracy gap increases when more layers of 

the convolutional base are frozen [29]. The authors claim that the reason is “related to splitting 

networks in the middle of fragilely co-adapted layers” [29]. Kruithof et al. have shown that the effect 

of freezing layers is mostly dependent on the number of images per class in the dataset for finetuning. 

For one to ten images per class, the accuracy of the model stays the same or slightly increases with the 

number of frozen layers. For 50 or more images per class, the accuracy sharply decreases with the 

number of frozen layers [49]. This result supports the conclusion of Yosinski et al. 

 

Figure 10. The different methods of transfer learning. Not trainable layers are depicted in blue, and trainable layers are 
depicted in green. The approaches differ with respect to the number of frozen layers in the new constructed CNN. 
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3.5 The Inception architecture 

The inception architecture was developed by Google DeepMind and published in 2014. The underline 

argument to the authors was that “the most straightforward way of improving the performance of 

deep neural networks is by increasing their size” [19].  However, the adverse effects of doing so are 

the need for a larger dataset and more computational resources. So in order to minimize those 

negative effects while still taking the benefit of a deeper network, the authors developed the inception 

module, which can be seen in Figure 11. It consists of four different branches: A convolutional layer 

with a kernel size of 1x1, a 3x3 convolution, a 5x5 convolution, and a 3x3 max pooling layer. The 

convolutional layers with sizes larger than 1x1 are serially connected with a 1x1 convolutional layer, to 

reduce the size of the input features, in order to lessen the computational cost. All four branches are 

concatenated at the end, to form a collective output for the inception module. This output is then 

passed on to the next inception module. The whole network was first called “GoogLeNet”, but is now 

commonly referred to as “Inception-V1”. It consists of 9 inception modules stacked on top of each 

other, followed by fully connected layers, that result in the classification output [19]. A newer version, 

called “Inception-V3”, updated the architecture of the old inception model, to further decrease 

computational cost, by replacing the 5x5 convolutional layer with two 3x3 layers. The reason for that 

decision was that a 5x5 convolution is 2.78 times more computationally expensive than a 3x3 

convolution. Another improvement was to replace some nxn convolutions with an nx1 followed by a 

1xn convolution, which further reduced the computational cost. With some additional changes, like 

using a different optimizer, the model managed to outperform its predecessor in the same 

classification task [50]. 

 

Figure 11. The architecture of the inception module. The blue squares mark the layers responsible for feature extraction, 
and the yellow layers are responsible for dimension reduction. 



 
 

Hochschule Landshut – Bachelorarbeit – Roland Stolz Seite 19 
 

4 Method 

4.1 Criteria and objectives of the comparison 

The focus of this work is to create a comparison of two different architectures of CNNs that utilize 

transfer learning. The comparison evaluates, which of the two architectures is better suited for the 

classification of 3D MRI head scans. Therefore, other criteria, in addition to the accuracy of the CNN, 

are compared. The criteria serve to illustrate two important characteristics of CNNs for medical 

imaging tasks – The quality and the applicability (Figure 12). 

 

Figure 12. The criteria for the comparison of this work. 

The relevance of all criteria are described in the following: 

Accuracy, Specificity and Sensitivity (Quality): These criteria describe the statistical metrics of the 

architecture. A model with better statistical metrics is more valuable as a second opinion for a 

radiologist due to its lower error rates. 

Model size (Applicability): This criterion looks at the memory usage of the model in bytes. The model 

size is important for the applicability of the architecture due to smaller models being integrated more 

easily in software that is meant for distribution. Additionally, models with larger size allocate more 

memory of the GPU during training. 

Temporal efficiency (Applicability): The criterion describes the duration for training the model and the 

duration for the classification of one MRI head scan. Long training durations are disadvantageous 

because they limit the possible options for hyperparameter optimization . Additionally, the duration 

for one classification has to be low enough that it does not delay the workflow of a radiologist. 

GPU load (Applicability): The criterion evaluates the size of the input data the model can process 

before an Out of Memory (OOM) error occurs in the GPU. A model with a lower GPU load can be 
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executed on more systems with less computational power, which facilitates the distribution. 

Additionally, the size of the input data can be larger for models with less GPU load. 

In addition to the criteria mentioned above, the adaptability of the convolutional kernels of each 

model, with transfer learning is evaluated. This is not included in the comparison, because no 

conclusion can be made, whether much adaption has a positive effect on the performance of a model. 

Instead, the adaptability serves as a visual confirmation, whether transfer learning leads to significant 

adaptions in the kernels of the models. 

4.2 The architectures of two different approaches to transfer learning 

4.2.1 The inflation of a 2D CNN to a 3D CNN 

The underlying principle for the inflation method is to use the filters of a 2D CNN and to scale them 

into the third dimension. In this way, the resulting 3D CNN can adapt the architecture and the 

pretrained convolutional base of the 2D CNN. A two-dimensional convolutional kernel of the 

dimension N x N is simply stacked on top of itself to have the dimensions N x N x N. The already kind 

of pretrained filters reduce the expense for training the 3D network, which leads to an increase in 

accuracy compared to the same model with randomly initialized 3D convolutional filtekernelsrs [25]. 

The inflated 3D model used in this work was developed by João Carreira and Andrew Zisserman from 

Google DeepMind and is called “Inflated 3D ConvNet” (I3D). It uses the architecture, the filters and the 

pooling layers of the Inception-V1 CNN (section 3.5), but inflates them into the third dimension. 

Additionally, the I3D model is additionally trained on the Kinetics-400 dataset to convert its inflated 

2D filters into 3D filters with structures [25].  

The complete architecture of the implemented I3D model for this work can be seen in Figure 13.  

 

Figure 13. The 3D Inception model for this work. The dimensions of the input tensors leading into an element are 
displayed on top of the arrows (batch is the placeholder for the hyperparameter batch size). The layers that are changed 

from the original architecture are depicted in green and the convolutional base is depicted in blue. 
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The Keras implementation of the Inflated 3D ConvNet is provided on GitHub by the user “dplbc” [51]. 

The method of transfer learning is used in order to adapt the I3D model to the classification of MRI 

head scans. Therefore, the fully-connected layers of the model are replaced. The output of the 

convolutional base is passed into a global average pooling layer, which produces a one-dimensional 

vector. A dropout layer is attached to it, and after that, the two artificial neurons of the final fully-

connected layer, produce the classification output of the neural network. All layers of the convolutional 

base are set to be trainable with transfer learning. 

4.2.2 The multi-view CNN 

An entirely different approach to processing 3D volumes with a CNN is to use multiple parallel 2D 

CNNs. An architecture based on this idea was developed by Su et al. [52] in order to challenge the 

conventional 3D CNN architecture. The authors' method was to create multiple views of a 3D volume 

by rendering their shape from different angles. The resulting images each serve as input to a 2D CNN, 

as shown in Figure 14. All parallel 2D CNNs compute an output, which is then summed up, to result in 

the output of the complete Multi-View CNN [52]. The 2D CNN Su et al. use in their work is called VGG-M 

[53]. 

 

Figure 14. The architecture of the Multi-View CNN from Su et al. All 2D CNNs receive a rendered image of the 3D model 
as input. The outputs of the 2D CNNs are added up to produce the output of the complete MV CNN on the right. This 

figure is based on a figure from [52]. 

In order to use the Multi-View CNN for MRI image classification, the workflow of the model is different 

from Su et al. architecture. Instead of rendering multiple views of a 3D Volume, the individual slices of 

the MRI scan data are used as input to the 2D CNNs. To reduce the complexity of the approach, only 

eight slices are selected from each MRI head scan. In this way, the convolutional kernel of each 2D 

model can adapt to the individual features of its’ corresponding slice. The distance between the slices 

is variable due to incoherent MRI sequence parameters (section 4.6). As shown in Figure 15, all eight 

Inception-V3 models produce an output vector of length two, which all are concatenated to a vector 

of length 16. This concatenation layer is fully-connected to the last layer, which produces the 

classification output of the Multi-View CNN.  

The base 2D CNN, used for the MV CNN in this work, is the “Inception-V3” model, pretrained on 

Imagenet, which is explained in section 3.5. The Inception-V3 model is a subsequent version of the 

Inception-V3 model, on which the I3D architecture is based on (section 4.2.1). The implementation of 

the model is provided by the Keras library. For the method of transfer learning, the fully connected 

layers at the end of the model are replaced, and a new classifier is constructed with the architecture 
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shown in Figure 16. The output of the Inception-V3 model’s convolutional base is passed to a 1x1 

convolutional layer, to decrease the number of its features. After that, the output is forwarded to a 

global average pooling layer, which transforms the four-dimensional tensor to a vector. This vector 

serves as input to a dropout layer whose output is passed to the final fully-connected classification 

layer with two output nodes. All layers of the convolutional base are set to be trainable with transfer 

learning. All eight 2D CNNs, in Figure 15, are constructed with this architecture. 

 

Figure 15 The architecture of the Multi-View CNN for this work. It utilizes eight parallel 2D CNNs (blue). Their architecture 
is described in Figure 16. The dimension of the input tensors leading into an element are displayed on top of the arrows 

(batch is the placeholder for the hyperparameter batch size). The layers for the distribution of the input data and the 
concatenation of the output data are depicted in green. The 2D CNNs are depicted in blue. 

 

Figure 16. The 2D Inception-V3 model used in the MV CNN of this work. The dimensions of the input tensors leading into 
an element are displayed on top of the arrows (batch is the placeholder for the hyperparameter batch size). The layers 
that are changed from the original architecture are depicted in green and the convolutional base is depicted in blue. All 

eight 2D CNNs, in Figure 15, are constructed with this architecture. 
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4.3 Hyperparameter optimization 

In order to provide a fair comparison, hyperparameter optimization is performed for both models. To 

roughly narrow down the range of effective hyperparameters, grid-search, in combination with manual 

presets, is applied. Due to the limited availability of computational power, resulting in longer training 

periods, only a single training instead of cross-validation is performed for each hyperparameter 

configuration. 

The following hyperparameters are pre-defined for both architectures, and therefore are not 

optimized with the grid search method: 

• Number of epochs: 100 

• Batch size: 8 

• Activation function for the fully-connected layer: ReLU 

• Activation function for the last layer: Softmax 

• Loss function: Categorical Cross-Entropy 

The hyperparameters learning rate, optimizer and dropout rate are optimized with the grid search 

method. Their value ranges are the same for both models: 

• Learning rate: [10-6, 5∙10-6, 10-5] 

• Optimizer: [Adam, RMSprop] 

• Dropout rate: [0.3, 0.5, 0.7] 

The grid search for the optimization of the MV CNN is performed with only one 2D Inception-V3 model, 

to reduce the duration of the method. 

In summary, eighteen different iterations of training are performed for both architectures. The 

configuration with the best accuracy is utilized for training the respective model for the comparison. 

4.4 Tests for the comparison and evaluation of criteria 

The comparison is constructed in a way that six criteria of the models are compared with each other. 

Therefore, the criteria have to be evaluated with different tests. The structure of the tests is described 

in this section. 

Test 1 – The statistical metrics (Quality): 

The statistical metrics accuracy, specificity, and sensitivity are calculated by cross-validation with ten 

folds of the dataset, which results in a split of 90% training data and 10% test data. Training of the 

model is only performed with five of the ten folds due to long training times. The equations (3), (4) and 

(5) are used to calculate the statistical metrics of a CNN. True positive (TP) is the number of AD data 

classified as AD, false positive (FP) is the number of normal data classified as AD, true negative (TN) is 

the number of normal data classified as normal, and false negative (FN) is the number of AD data 

classified as normal [54]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (3) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (5) 

Test 2 – The model size (Applicability): 

The model size is determined by the size of the respective models’ save file in bytes. 

Test 3 – The temporal efficiency (Applicability): 

The duration for training the model is calculated by taking the average of the five training sessions that 

are performed for the cross-validation in test 1. The duration for the classification of one MRI head 

scan is calculated by measuring the time the respective models take for producing a classification 

output for one MRI head scan. Five different durations for five different scans are measured for each 

model, and the average value of them is calculated. The durations are measured with pre-loaded 

models so that the loading times do not affect the outcome. 

Test 4 – The GPU load (Applicability): 

The GPU load of a model is defined by the maximum possible input size, the model can process with 

the Nvidia Geforce GTX 1080ti GPU. Multiple sessions of training are performed with varying input 

sizes. The respective input volume is calculated by the following equation: 

𝐼𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 ∙ 𝑠𝑙𝑖𝑐𝑒𝑠 ∙ 𝑤𝑖𝑑𝑡ℎ ∙ ℎ𝑒𝑖𝑔ℎ𝑡 (6) 

It is recorded whether an OOM error occurred during training. As a result, the largest input volume, 

that does not cause an OOM error is an estimation of the maximum input volume for a model on the 

Nvidia Geforce GTX 1080ti GPU. The model with a larger maximum input volume, therefore, causes 

less GPU load.  

Test 5 – The adaptability with transfer learning: 

In order to evaluate a models’ adaptability with transfer learning, the difference of the convolutional 

kernels before and after finetuning is compared. The difference is calculated with the equations (7) 

and (8), using following parameters: 

• 𝑑𝑖: The difference between the kernels of two CNNs. 

• 𝑛: The number of convolutional layers in the CNN. 

• 𝑘𝑖 and 𝑘𝑖,𝑛: The tensors of the nth convolutional kernel of the finetuned model and the base 

model, respectively. 

• 𝑎𝑖 , 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 , 𝑒𝑖: The dimensions of the tensor of the nth convolutional layer. 

𝑑𝑖2𝐷 =
1

𝑛
∑

1

𝑎𝑖 ∙ 𝑏𝑖 ∙ 𝑐𝑖 ∙ 𝑑𝑖
∑ ∑ ∑ ∑|𝑘𝑖(𝑎, 𝑏, 𝑐, 𝑑) −  𝑘0,𝑖(𝑎, 𝑏, 𝑐, 𝑑)|

𝑑𝑖

𝑑=0

𝑐𝑖

𝑐=0

𝑏𝑖

𝑏=0

𝑎𝑖

𝑎=0

𝑛

𝑖=0

 (7) 
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𝑑𝑖3𝐷 =
1

𝑛
∑

1

𝑎𝑖 ∙ 𝑏𝑖 ∙ 𝑐𝑖 ∙ 𝑑𝑖 ∙ 𝑒𝑖
∑ ∑ ∑ ∑ ∑|𝑘𝑖(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)

𝑒𝑖

𝑒=0

𝑑𝑖

𝑑=0

𝑐𝑖

𝑐=0

𝑏𝑖

𝑏=0

𝑎𝑖

𝑎=0

𝑛

𝑖=0

−  𝑘0,𝑖(𝑎, 𝑏, 𝑐, 𝑑, 𝑒)| 

(8) 

1x1, 1xn, and nx1 convolutional layers are not included in the calculation. 

The convolutional kernels and the activation maps of the base models and the finetuned models are 

visualized, in order to provide a better visual comparison and understanding of the effects of transfer 

learning on the two CNNs. The method used for the visualization is explained in the following: 

The weights of the convolutional kernels are fetched from the model and visualized on a graph. The 

activation maps are the output of a convolutional layer. In order to receive the values of them, a new 

CNN is built. Its input is the same as the original model, but its output is the output of the chosen 

convolutional layer. With that, the new model outputs the activation maps of the convolutional layer, 

which then can be visualized on a graph. The method for the visualization can be seen in Figure 17. Its 

implementation is inspired by a Keras blog post [55]. 

 

Figure 17. The method for visualizing the activation maps of a model. Model A is the original model for classification and 
Model B is the new model that calculates the activation maps. 

4.5 The value benefit analysis for evaluating the test results 

To determine which model is better suited for the classification of MRI head scans, the value benefit 

analysis is performed [56]. An example of the workflow of the method is shown in Figure 18. The first 

step is to define the weights for every criterion of the comparison. With the results of the five tests, 

the level of achievement is evaluated for each criterion. The level can range from one to three, with 

one being the worst and three being the best level of achievement. After that, the sum of all weights 

multiplied with the respective levels is taken. As a result, the model with the highest sum is better 

suited for this task, and therefore the winner of the comparison.  
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Figure 18. An example of the Value Benefit Analysis. 

The level of achievement in a criterion is defined in the following way:  

• The level of achievement is 3 for the architecture with a better result and 2 or 1 for the 

architecture with the worse result 

• If higher values are better in the criterion, the level of achievement for the worse (lower) value 

is 2, if the worse value is above 70% of the better value, and 1, if it is below 70% 

• If lower values are better in the criterion, the level of achievement for the worse (higher) value 

is 2, if the worse value is below 140% of the better value, and 1, if it is above 140% 

• Both values are treated as equal if the difference is smaller than the standard deviation of both 

values. The level of achievement, in this case, is defined as 2 for both architectures 

For example, if the accuracy values are 90% for the I3D and 80% for the MV CNN, the level would be 

3 for the I3D, and 2 for the MV CNN, because 80% is higher than 0.7 ∙ 90% = 63%. 

The weights for the Value Benefit Analysis are defined with the method of Pairwise Comparison, as 

shown in Table 1 [57].  

Table 1. The pairwise comparison for the criteria of the comparison in this work. The weights of the respective criteria 
are marked green. 
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Accuracy   2 2 2 2 2 10 33 

Specificity 0   1 2 2 1 6 20 

Sensitivity 0 1   2 2 1 6 20 

Model size 0 0 0   1 0 1 3.3 

Temporal efficiency 0 0 0 1   0 1 3.3 

GPU load 0 1 1 2 2   6 20 

Sum             30 100 
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Each criterion is compared to the other criteria, and points are distributed between them. Two points 

indicate that the criterion is more important than the other criteria, one point indicates that they are 

equally important, and zero points indicate that it is less important. The sum of the points for each 

criterion is taken. The weight is determined by calculating the percentage of the individual sum [57].  

4.6 The medical data 

The medical scans used for this comparison are provided by the Alzheimer Disease Neuroimaging 

Initiative (ADNI). Their database consists of MRI- and positron emission tomography (PET) -head scans 

from a control group and people with different stages of Alzheimer’s Disease (AD) [27]. The data used 

for training the CNNs contain only MRI head scans from the control group (CN) with no medical findings 

and scans from patients with AD. They were recorded with the Magnetization Prepared Rapid Gradient 

Echo (MP-RAGE), which is a 3D T1 weighted MRI sequence [58]. There are dissimilarities of the MRI 

sequence parameters between different scans, which makes the dataset inhomogeneous. The 

volumes of the dimensions of the volumes are also incoherent. They range from 146 to 184 pixels in 

height, from 192 to 256 pixels in width and 192 to 256 slices in depth. ADNI provides processed images 

with gradient warp, if necessary B1 correction, and scaling of the volume [59]. The complete dataset 

for the comparison consists of 849 CN scans and 552 AD scans (1401 scans in total). For the I3D 

architecture, 50 slices of the original volume are taken, as shown in Figure 19, and for the MV CNN 

architecture, 8 slices of the original volume are taken, as shown in Figure 20. For both architectures, 

all slices are resized with image interpolation [60], to have the dimensions 150 x 150. As a result, the 

input volumes to the I3D model and the MV CNN model consist of the dimensions [50, 150, 150] and 

[8, 150, 150], respectively. The data is labeled with one-hot encoding, so the label for AD is the vector 

[
1
0

], and for CN, it is [
0
1

]. 

 

Figure 19. The method for choosing the 50 slices for the input data of the I3D architecture. The image shown is from an 
MRI scan of the ADNI dataset. 
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Figure 20. The method for choosing the 8 slices for the input data of the MV CNN architecture. The image shown is from 
an MRI scan of the ADNI dataset. 

4.7 Materials 

All models, functions, and scripts are implemented in the programming language Python, version 3.7.4 

[61]. Anacondas’ virtual environments are used to manage external libraries and their versions [62]. 

The deep learning library Keras (Version 2.1.5) [63] with Tensorflow (Version 1.14.0) [64] as the 

backend is used for the implementation, training, and validation of both CNNs. Following additional 

libraries are used in this work: 

• Nibabel: Version 2.5.0 [65] 

• Numpy: Version 1.16.4 [66] 

• Scikit-learn: Version 0.21.3 [67] 

• Matplotlib: Version 3.1.3 [68] 

• OpenCV: Version 4.1.1.2.6 [69] 

• tqdm: Version 4.36.0 [70] 

The CNNs are processed on the Nvidia Geforce GTX 1080ti GPU. 
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5 Results 

5.1 Results of the hyperparameter optimization 

The results of the hyperparameter optimization for both architectures of this work are presented in 

this section. Table 2 shows the results of the grid search method for the I3D architecture. The mean 

accuracy value is 87.8% and the highest accuracy value is 93.2%. The model achieves it with a learning 

rate of 10-5, a dropout rate of 0.5, and Adam optimizer. Therefore, this hyperparameter configuration 

is chosen for the cross-validation of the model. Out of all three hyperparameters, the learning rate has 

the most significant impact on the accuracy of the model. Figure 21 shows the validation accuracy over 

all 100 epochs for three models from the grid search. The graph depicts the models with the best, 

worst, and medium accuracy. 

 

Figure 21. The validation accuracy over 100 epochs of three models from the grid search of the Inflated 3D ConvNet. The 
orange line depicts the model with the best accuracy, the green line depicts the model wit the worst accuracy and the 

blue line depicts the model with the medium accuracy. 

Table 2. The results of the grid search method for the 3D ConvNet. The values of the hyperparameters are shown on the 
left, and the corresponding accuracy is shown on the right. 

Configuration   

Learning rate Optimizer Dropout rate Accuracy 

10-6 Adam 0.3 0.809 

10-6 Adam 0.5 0.829 

10-6 Adam 0.7 0.794 

10-6 RMSprop 0.3 0.849 

10-6 RMSprop 0.5 0.831 

10-6 RMSprop 0.7 0.79 

5 ∙ 10-5 Adam 0.3 0.89 

5 ∙ 10-5 Adam 0.5 0.891 

5 ∙ 10-5 Adam 0.7 0.896 

5 ∙ 10-5 RMSprop 0.3 0.922 

5 ∙ 10-5 RMSprop 0.5 0.918 
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5 ∙ 10-5 RMSprop 0.7 0.889 

10-5 Adam 0.3 0.908 

10-5 Adam 0.5 0.932 

10-5 Adam 0.7 0.914 

10-5 RMSprop 0.3 0.899 

10-5 RMSprop 0.5 0.921 

10-5 RMSprop 0.7 0.923 

 

The results of the grid search for the 2D Inception-V3 can be seen in Table 3. The mean accuracy value 

is 79.96% and the highest accuracy value is 84.2%.  The model achieves it with a learning rate of 10-5, 

a dropout rate of 0.7 and an RMSprop optimizer. Therefore, this hyperparameter configuration is 

chosen for all 2D CNNs in the MV CNN, when performing the cross-validation. Out of all three 

hyperparameters, the learning rate has the most significant impact on the accuracy of the model. 

Figure 22 shows the validation accuracy over all 100 epochs for three models from the grid search. The 

graph depicts the models with the best, worst, and medium accuracy. 

 

Figure 22. The validation accuracy over 100 epochs of three models from the grid search of the 2D Inception-V3. The 
green line depicts the model with the best accuracy, the red line depicts the model with the worst accuracy and the blue 

line depicts the model with the medium accuracy. 

Table 3. The results of the grid search method for the 2D Inception-V3. The values of the hyperparameters are shown on 
the left, and the corresponding accuracy is shown on the right. 

Configuration   

Learning rate Optimizer Dropout rate Accuracy 

10-6 Adam 0.3 0.777 
10-6 Adam 0.5 0.768 
10-6 Adam 0.7 0.771 
10-6 RMSprop 0.3 0.762 
10-6 RMSprop 0.5 0.781 
10-6 RMSprop 0.7 0.771 

5 ∙ 10-5 Adam 0.3 0.836 
5 ∙ 10-5 Adam 0.5 0.807 
5 ∙ 10-5 Adam 0.7 0.797 
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5 ∙ 10-5 RMSprop 0.3 0.82 
5 ∙ 10-5 RMSprop 0.5 0.799 
5 ∙ 10-5 RMSprop 0.7 0.75 

10-5 Adam 0.3 0.795 
10-5 Adam 0.5 0.824 
10-5 Adam 0.7 0.84 
10-5 RMSprop 0.3 0.83 
10-5 RMSprop 0.5 0.823 
10-5 RMSprop 0.7 0.842 

 

The accuracies of the grid-search algorithm with models, whose layers are frozen up to the seventh 

inception module are displayed in Table 4. The best performing model in this grid-search achieves an 

accuracy of 67.4%. The mean value of the accuracies is 50.53%. 

Table 4. The results of the grid search method for the partially frozen 2D Inception-V3. The values of the 
hyperparameters are shown on the left, and the corresponding accuracy is shown on the right. 

Configuration   

Learning rate Optimizer Dropout rate Accuracy 

10-6 Adam 0.3 0.558 
10-6 Adam 0.5 0.559 
10-6 Adam 0.7 0.573 
10-6 RMSprop 0.3 0.548 
10-6 RMSprop 0.5 0.539 
10-6 RMSprop 0.7 0.59 

5 ∙ 10-5 Adam 0.3 0.674 
5 ∙ 10-5 Adam 0.5 0.582 
5 ∙ 10-5 Adam 0.7 0.542 
5 ∙ 10-5 RMSprop 0.3 0.416 
5 ∙ 10-5 RMSprop 0.5 0.417 
5 ∙ 10-5 RMSprop 0.7 0.39 

10-5 Adam 0.3 0.624 
10-5 Adam 0.5 0.484 
10-5 Adam 0.7 0.427 
10-5 RMSprop 0.3 0.391 
10-5 RMSprop 0.5 0.392 
10-5 RMSprop 0.7 0.39 

 

5.2 Results for the quality of the architectures 

The results of cross-validation for both models can be seen in Table 5. The I3D model achieves a mean 

accuracy of 92.99%, with its specificity and sensitivity being at similar values. The mean accuracy of 

the MV CNN is at 80.66% noticeably lower than the accuracy of the I3D. The sensitivity of the MV CNN 

is at 93.75% noticeably higher than its specificity at 73.28% and at a similar value as the sensitivity of 

the I3D. The standard deviation of the I3D is lower than the MV CNN for accuracy and specificity but 

slightly higher for sensitivity. 
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Table 5. The results of the cross-validation for the Inflated 3D ConvNet and the Multi-View CNN. The mean value of 
accuracy specificity and sensitivity can be seen in the bottom row. 

  Inflated 3D ConvNet Multi-View CNN 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Iteration 1 0.9231 0.9254 0.9200 0.8416 0.7879 0.9429 

Iteration 2 0.9231 0.9091 0.9412 0.7900 0.7031 0.9444 

Iteration 3 0.9487 0.9545 0.9412 0.8000 0.7018 0.9302 

Iteration 4 0.8974 0.9178 0.8636 0.8614 0.8333 0.9024 

Iteration 5 0.9573 0.9620 0.9474 0.7400 0.6377 0.9677 

Mean 0.9299 0.9338 0.9227 0.8066 0.7328 0.9375 

Standard Deviation 0.0212 0.0208 0.0309 0.0424 0.0693 0.0213 

 

5.3 Results for the applicability of the architectures 

The results of the tests on the applicability of the models are presented in the following.  

Model size: 

The total size of the I3D model for this work is 96.025 Mb. The total size of the MV CNN model is 

1431.675 Mb. 

Temporal efficiency: 

The mean duration of training the I3D with 100 epochs is 2 hours and 59 minutes, and the mean 

duration of training the MV CNN is 10 hours and 33 minutes, as shown in Table 6. The mean time for 

the classification of  one image is 56 milliseconds for the I3D and 542 milliseconds for the MV CNN. 

The standard deviation of the I3D architecture is for both durations lower compared to the MV CNN. 

Table 6. The duration of training the model with 100 epochs and classification of one input volume. The values of the 
Inflated 3D ConvNet are on the left side, and the values of the Multi-View CNN are on the right side.  

  Inflated 3D ConvNet Multi-View CNN 

  100 epochs [h] One volume [s] 100 epochs [h] One volume [s] 

Iteration 1 3:00 0.056 10:39 0.567 

Iteration 2 3:00 0.055 10:06 0.531 

Iteration 3 2:59 0.048 10:57 0.550 

Iteration 4 3:00 0.053 10:22 0.516 

Iteration 5 2:59 0.048 10:42 0.547 

Mean 2:59 0.05 10:33 0.542 

Standard Deviation 00:00:29 0.003 00:17:34 0.017 

 

GPU load 

The results for the approximation of the maximum input volume of  the I3D architecture are shown in 

Table 7. All input volumes greater than or equal to 16 000 000 data points produced an OOM Error 

during training. The largest input volume that did not produce an error consisted of 13 500 000 data 

points. Consequently, the maximum possible input value for the I3D must be between 13 500 000 and 

16 000 000 data points. 
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Table 7.The input volume size and related out of memory error events that occurred during training of the I3D. The input 
volume is calculated with batch size ∙ slices ∙ width ∙ height. The listings are sorted ascending by the input volume. 

Inflated 3D ConvNet 

Batch size Slices Width Height Input Volume Out of Memory Error 

8 32 32 32 262 144 No 

8 50 100 100 4 000 000 No 

16 50 100 100 8 000 000 No 

8 50 150 150 9 000 000 No 

12 50 150 150 13 500 000 No 

32 50 100 100 16 000 000 Yes 

16 50 150 150 18 000 000 Yes 

32 50 150 150 36 000 000 Yes 

 

The results for the approximation of the maximum input volume of the MV CNN architecture are 

shown in Table 8. All input volumes greater than or equal to 5 040 000 data points produced an OOM 

Error during training. The largest input volume that did not produce an error consisted of 4 320 000 

data points. Consequently, the maximum possible input value for the MV CNN must be between 

5 040 000  and 4 320 000 data points. 

Table 8. The input volume size and related out of memory error events that occurred during training of the MV CN. The 
input volume is calculated with batch size ∙ slices ∙ width ∙ height. The listings are sorted ascending by the input volume. 

Multi-View CNN 

Batch size Slices Width Height Input Volume Out of Memory Error 

8 8 150 150 1 440 000 No 

16 8 150 150 2 880 000 No 

20 8 150 150 3 600 000 No 

24 8 150 150 4 320 000 No 

28 8 150 150 5 040 000 Yes 

32 8 150 150 5 760 000 Yes 

64 8 150 150 11 520 000 Yes 

128 8 150 150 23 040 000 Yes 

 

5.4 Results of the comparison with the value component analysis 

Table 9 shows the level of achievement for each criterion for both architectures. The levels are defined 

with the method described in section 4.5.  

The results of the value component analysis can be seen in Table 10. The I3D architecture achieves a 

higher score (2.788) than the MV CNN architecture (1.726). 
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Table 9. The test results and the corresponding level of achievement for each criterion. The better level of achievement is 
depicted in green. The sensitivity values of both models are regarded as equal due to the standard deviation being higher 

than the difference (Table 5). 

 

Table 10. The result of the value component analysis. The achieved score of both architectures is depicted in purple. 

 

5.5 The adaptability of the architectures with transfer learning 

The mean difference in kernel weights between the two finetuned models and their corresponding 

base models can be seen in Figure 23.  

 

Figure 23. The difference between filters of the finetuned models and the base models. The blue and red line depict the 
difference for the Inflated 3D ConvNet and the MV-CNN, respectively. 

Value
Level of 

achievement
Value

Level of 

achievement

Accuracy (higher is better) 92.99% 3 80.66% 2

Specificity (higher is better) 93.38% 3 73.28% 2

Sensitivity (higher is better) 92.27% 2 93.75% 2

Model size (lower is better) 65.025 Mb 3 1431.675 Mb 1

Temporal efficiency (lower is better) 2:59 h 3 10:33 h 1

GPU load (higher is better) 13 500 000 3 4 032 000 1

Criterion

I3D MV CNN

Level of 

achievement
Weight Result

Level of 

achievement
Weight Result

Accuracy 3 0.330 0.990 2 0.330 0.660

Specificity 3 0.200 0.600 2 0.200 0.400

Sensitivity 2 0.200 0.400 2 0.200 0.400

Model size 3 0.033 0.099 1 0.033 0.033

Temporal efficiency 3 0.033 0.099 1 0.033 0.033

GPU load 3 0.200 0.600 1 0.200 0.200

Sum 2.788 Sum 1.726
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The difference increases throughout the layers of the network for both architectures. For the Inflated 

3D ConvNet, the difference is highest at the last layer, with a value of 0.008379, and the mean 

difference is 0.002306. The maximum value for the MV CNN at the last layer is 0.001004, and the mean 

difference is 0.000717.  

5.5.1 The visualized convolutional kernels 

The following four figures visualize the weight difference between convolutional kernels of the base 

model and the finetuned model, for both architectures. Figure 24 and Figure 25 serve as a visual 

comparison of the first layer of the I3D architecture and the last layer, respectively. Although there are 

differences between the convolutional kernels of the first layer, as shown in Figure 23, they are not 

noticeable in Figure 24. Apparently, the finetuning has little effect on the kernels of the first 

convolutional layer. Figure 25 shows more apparent differences, but still no qualitative changes to the 

kernel structure. 

 

Figure 24. Slices of the 3D 7x7 convolutional kernels of the first convolutional layer of two Inflated 3D ConvNets. The 
kernels of the base model are on the left side and the kernels of the finetuned model are on the right side. Next to each 

kernel is a colorbar that defines the numerical value for each color. 
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Figure 25. Slices of the 3D 3x3 convolutional kernels of the last convolutional layer of two Inflated 3D ConvNets. The 
kernels of the base model are on the left side and the kernels of the finetuned model are on the right side. Next to each 

kernel is a colorbar that defines the numerical value for each color. 
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Figure 26 and Figure 27 serve as a visual comparison of the first layer of the MV CNN architecture and 

the last layer respectively. Same as for the I3D architecture, there are no noticeable differences 

between the first layer in Figure 26, and small differences between the last layer in Figure 27. However, 

there are also no qualitative changes to the kernel structure. 

 

Figure 26. The 3x3 convolutional kernels of the first convolutional layer of two 2D Inception-V3 models. The kernels of 
the base model are on the left side and the kernels of the finetuned model are on the right side. Next to each kernel is a 

colorbar that defines the numerical value for each color. 
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Figure 27. The 3x3 convolutional kernels of the last convolutional layer of two 2D Inception-V3 models. The kernels of 
the base model are on the left side and the kernels of the finetuned model are on the right side. Next to each kernel is a 

colorbar that defines the numerical value for each color. 

5.5.2 The visualized activation maps 

Figure 28 and Figure 29 show an activation map from every convolutional layer of the base I3D model 

and the finetuned I3D model, respectively (except for 1x1 convolutional layers). Figure 29 shows the 

same for the finetuned I3D model. There are apparent differences between the activation maps of the 

two models. It is noticeable that in the last two layers of the finetuned I3D in Figure 29, the higher 

values (positive and negative) are centered in the activation maps. 
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Figure 28. The slices of 20 activation maps from the base Inflated 3D ConvNet. They are ordered chronologically, with 
Conv_3d_1a being an activation map of the first convolutional layer, and Conv3d_5c being an activation map of the last 

convolutional layer. The dimensions of all activation maps from the respective convolutional layer are depicted in square 
brackets. Next to each activation map is a colorbar that defines the numerical value for each color. 
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Figure 29. The slices of 20 activation maps from the finetuned Inflated 3D ConvNet. They are ordered chronologically, 
with Conv_3d_1a being an activation map of the first convolutional layer, and Conv3d_5c being an activation map from 
the last convolutional layer. The dimensions of all activation maps from the respective convolutional layer are depicted 

in square brackets. Next to each activation map is a colorbar that defines the numerical value for each color. 

 Figure 30 and Figure 31 show an activation map from every convolutional layer of the base 2D 

Inception-V3 model and the finetuned 2D Inception-V3 model, respectively (except for 1x1 

convolutional layers). There are noticeable differences between the activation maps of the two 

models. The maps decrease in size throughout the network. 
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Figure 30. Twenty activation maps from the base 2D Inception-V3 model. They are ordered chronologically, with bn_1 
being an activation map of the first convolutional layer, and bn_91 being an activation map from the last convolutional 

layer. The dimensions of all activation maps from the respective convolutional layer are depicted in square brackets. 
Next to each activation map is a colorbar that defines the numerical value for each color. 
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Figure 31. Twenty activation maps from the finetuned 2D Inception-V3 model. They are ordered chronologically, with 
bn_1 being an activation map of the first convolutional layer, and bn_91 being an activation map from the last 

convolutional layer. The dimensions of all activation maps of the respective convolutional layer are depicted in square 
brackets. Next to each activation map is a colorbar that describes the numerical value for each color. 

In summary, finetuning the CNN with the MRI data has more impact on the I3D architecture than on 

the MV CNN architecture. The difference is notable through calculation and visual comparison. 

However, there are no qualitative changes noticeable between the base models and finetuned models 

for both architectures. 
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6 Discussion 
The Inflated 3D ConvNet from Carreira and Zisserman [25] was chosen as an architecture for the 

comparison, due to it being a 3D CNN based on the established Inception-V1 [19] architecture, with 

publically available pretrained weights. Since the publication of the Inception-V1 architecture in 2014, 

models with better performance on benchmark datasets have been developed, like e.g., the Inception-

V3 architecture [50]. However, no 3D Versions of those 2D models with pretrained weights have yet 

been published. Therefore, the MV CNN architecture of this work was developed. It allows the 

classification of 3D medical imaging data with recently published, state of the art 2D CNNs. The 

Inception-V3 architecture was chosen as 2D CNN for the MV CNN because it is the predecessor of the 

Inception-V1 architecture, with better performance on the ImageNet benchmark dataset. 

Before the Inflated 3D Inception ConvNet could be compared with the Multi-View CNN, both models' 

hyperparameters had to be optimized in order to provide a fair comparison ground. Although Bergstra 

and Bengio [71] show that random search is more efficient, grid search was chosen as the method for 

hyperparameter optimization. The reason for this choice was that the number of training sessions that 

could be performed was limited due to the long training times shown in section 5.3. The long training 

durations were also the reasons why no cross-validation was performed for every hyperparameter 

configuration. As a result, grid search was used to narrow down the area of viable hyperparameters 

for efficient training of the models. The results of the grid search method show that the values of the 

hyperparameters have a significant impact on the performance of the CNNs. Nevertheless, in order to 

find the actually best performing hyperparameter configuration for each model, way more iterations 

of grid search or random search must be performed. This task was impossible to execute due to 

hardware limitations and will, therefore, be left for future work. 

Another important measure for increasing the performance of a CNN is the augmentation of the 

training dataset. This includes, e.g., image flipping, image cropping, image rotation, or noise injection 

[72]. The augmentation of the ADNI dataset was not important for the comparison of the two models 

and will therefore be left for future work, that focuses on further optimization of the proposed I3D and 

MV CNN architecture.  

The split into training and test data, in this work, has two flaws: The first one is that no test data in 

addition to the training and validation data was separated from the complete ADNI dataset. This could 

lead to a biased hyperparameter optimization. The second flaw emerges due to the ADNI dataset 

containing multiple MRI head scans of some patients. The split into training and test dataset did not 

occur at the patient-level, but at the image-level, which can result in the appearance of data from the 

same subject in both sets. According to Wen et al. [73], this data leakage can lead to an increase in the 

accuracy of a model compared to the same model with no prevalent data leakage. Both flaws impair 

the comparison of the models’ statistical metrics to other state of the art CNNs. 

The results of transfer learning with a partially frozen convolutional base (Table 4) show that freezing 

no layers led to better accuracy of the MV CNN. This consistent with the results of Kruithof et al. and 

Yosinski et al. that were shown in section 3.4. Therefore, all layers in both architectures were set to be 

trainable (not frozen) during training and evaluation (Option B in Figure 10). 

When reflecting on the comparison of both models, it is noticeable that they were not trained with the 

same input size (50 x 150 x 150 for the I3D and 8 x 150 x 150 for the MV CNN). This was due to the 



 
 

Hochschule Landshut – Bachelorarbeit – Roland Stolz Seite 44 
 

limited hardware available. A MV CNN consisting of 50 2D Inception-V3 models constantly produced 

an OOM error during training on the Nvidia Geforce GTX 1080ti GPU. As a result, the number of input 

slices for the MV CNN was set to 8 instead of 50. Fewer input slices lead to less information of the MRI 

head scan for the MV CNN, which should result in lower statistical metrics of the model. Due to AD 

being a neurodegenerative disease that affects the whole brain tissue [74], it is possible that the 

decrease in accuracy is small-scale. Contrary, when analyzing MRI head scans from patients with a 

brain tumor, fewer input slices would result in a significant decrease of the MV CNN models’ accuracy 

because the likelihood of the tumor being visible in one of the slices would be lower. The input volume 

for the I3D was not lowered to also consist of eight slices, because a goal of this work was to achieve 

optimal performance of both architectures, with the available resources. 

6.1 The quality of the architecture 

The above-mentioned difference in the number of input slices is probably an important reason for the 

worse accuracy of the MV CNN architecture compared to the I3D architecture (Table 5). However, 

there is an additional reason that could explain the difference. In contrast to the 2D convolutional 

kernels of the MV CNN, the 3D kernels of the I3D architecture also move along the longitudinal axis of 

the head. This enables the I3D model to compensate for A), the varying slice thicknesses and B), 

different positions of the brain, across scans from the ADNI dataset.  

In contrast to the accuracy values, the sensitivity values of both models are the same (Table 5). The 

reason for the relatively high sensitivity of the MV CNN compared to its accuracy could be the structure 

of its feature extraction at the end. Each 2D model produces a classification result, which are then 

combined to produce the final output of the model.  As a result, a single input slice being classified as 

abnormal can lead to the final output being abnormal, as well. Thus the MRI head scan is more often 

classified as abnormal or AD, which leads to the high sensitivity of  the MV CNN. The high sensitivity 

shows promising potential for the use of the MV CNN as a second opinion for radiologists because it 

could assist them in reducing the number of false-negative diagnostics.  

6.2 The applicability of the architecture 

The MV CNN has a substantially larger size (1431.675 Mb) than the I3D model (96.025 Mb). A possible 

explanation for that difference could be the additional parameters of a convolutional layer in a CNN. 

Convolutional layers of a CNN consist of additional information alongside their weights, like activation 

function, bias, etc. (section 3.3.1), which also need to be stored in the models’ save-file. Therefore, it 

is more memory efficient to store one 3D 3x3x3 convolutional layer, than storing three 2D 3x3 

convolutional layers, although both variants are containing 3 ∙ 3 ∙ 3 = 27 values. As a result, it is also 

more memory efficient to store a single 3D CNN than multiple 2D CNNs combined in one model. In 

addition to that, the I3D architecture consists of only 12 252 690 parameters, compared to the 

182 823 218 parameters of the MV CNN. Even a single 2D Inception-V3 model contains 22 852 898 

parameters, which is more than the complete I3D model. A reason for the large number of parameters 

is that the MV CNN contains only 2D pooling layers in contrast to the 3D pooling layers of the I3D 

architecture (section 3.3.1). As a result, the MV CNN cannot reduce the dimensions of the input volume 

in the slice direction.  

The average time for training the MV CNN with 100 epochs (10 hours and 33 minutes) is noticeably 

higher than training the I3D (2 hours and 59 minutes), which is shown in Table 6. The reason for that 

difference is the architecture of the MV CNN. During forward propagation, the results of all eight 2D 
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CNNs is calculated serially instead of parallel. On the one hand, this leads to a lower GPU load, but on 

the other hand, this increases the training time. However, during a test, where the batch size was 

doubled to 16 (which also doubles the amount of data that is processed parallelly), the training time 

decreased to 5 hours and 47 minutes. This shows that the MV CNN could have been optimized further 

to achieve better temporal efficiency. The average time for classification of one input image is 542 

milliseconds for the MV CNN and 52 milliseconds for the I3D architecture. Although the MV CNN is 

slower than the I3D, the difference is not severe, because both times would not delay the workflow of 

a radiologist.  

6.3 The visual comparison 

The figures from section 5.5.1 and section 5.5.2 demonstrate the difficulty of visually interpreting the 

convolutional kernels and activation maps of a CNN. However, the calculated differences between the 

kernels of the respective base model and the finetuned model in Figure 23 show the expected results. 

The difference increases throughout the layers of both architectures, which is to be expected due to 

the backpropagation algorithm (section 3.2). The mean and maximum difference is higher for the I3D 

architecture, which shows that the adaption of its weights with transfer learning is higher than the 

adaption of the MV CNN. This is also expected due to the weights of larger CNNs, with more 

parameters being less affected by backpropagation. 

The convolutional kernels of the base model in Figure 24 show a similar structure to convolutional 

operators used in hand-crafted digital image processing algorithms. For example, kernel_3 resembles 

the structure of the Prewitt operator, and kernel_0 resembles the structure of a Laplacian filter [75]. 

The fact that those convolutional kernels hardly are changed during finetuning shows that the chosen 

pretrained CNNs are applicable to medical tasks with transfer learning. However, there are no actual 

qualitative changes to the structure of the convolutional kernels in both architectures. This indicates 

that transfer learning does not result in the models adapting their kernels to extract new, important 

features of the brain in the ADNI dataset. Instead, the models still extract features that are important 

for objects of the ImageNet dataset but learn to combine these features in order to classify MRI head 

scans. Raghu, Zhang et al. have shown similar results when analyzing the effects of transfer learning 

for medical imaging on CNNs with different sizes. Their explanation for the minor changes in the 

convolutional kernels was also based on the overparameterization of the large CNNs that were 

developed for classification of the ImageNet dataset [76]. 

Figure 29 shows that the activation maps of the last two convolutional layers of the finetuned I3D 

model, have high values concentrated in the center. This structure is not visible in the activation maps 

of the base I3D model in Figure 28. Due to the high values being at similar respective positions as the 

brain of the MRI head scans, the structure could be a result of the minor adaption to the ADNI dataset.  

6.4 Recommendation on an architecture 

In summary, the I3D architecture is better than the MV CNN architecture in every criterion of the 

comparison, besides the sensitivity. Accordingly, the result of the Value Benefit Analysis in Table 10 

also shows the I3D architecture as a winner for the comparison with 2.788 points to 1.726 points. 

Although the MV CNN shows potentially good results in terms of its’ quality, the poor applicability of 

the architecture makes it difficult to embed it into mobile CAD software. Therefore, the I3D 

architecture is recommended over the MV CNN architecture for the task of classifying MRI head scans 

and the usage in CAD software. 
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6.5 Comparison to other state of the art CNNs 

Due to the earlier mentioned data leakage, a fair comparison of the proposed I3D models’ accuracy 

with other state of the art CNNs is hardly possible. However, Wen et al. have published an extensive 

overview of CNNs that were constructed for the classification of Alzheimer’s Disease. In their work, the 

authors also compared studies with clear and unclear occurrences of data leakage [73]. A list of those 

models can be seen in Table 11. 

Table 11. The accuracy of different CNNs performing classification of Alzheimer’s disease. Studies with clear and unclear 
occurrence of data leakage are marked in red and orange, respectively. The accuracies for the binary classification of AD 
and CN are listed in the second to left column. MCI, sMCI and pMCI stand for different stages of Alzheimer’s disease. [73]  

 

Comparing the accuracy of the proposed architecture to the studies in Table 11, the I3D architecture 

ranks somewhere in the middle with 92.99%. When comparing the accuracy to studies in Table 12, 

with no detected data leakage, the model would have achieved better than state of the art accuracy, 

which is highly unlikely. This further demonstrates the falsification of accuracy due to the flaws of the 

data split in this work (data leakage). 
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Table 12. The accuracy of different CNNs performing classification of Alzheimer’s disease, with no occurring data leakage, 
detected. The accuracies for the binary classification of AD and CN are listed in the second to left column. MCI, sMCI and 

pMCI stand for different stages of Alzheimer’s disease. [73] 

 

The performance of the I3D model was additionally tested on a smaller dataset with 335 MRI head 

scans, that consisted of more pathologies in addition to AD. For the classification into normal (healthy) 

and abnormal (pathological), the model achieved an accuracy of 83.9%. This indicates good 

applicability of the I3D architecture for different classification tasks of medical imaging scans. 
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7 Conclusion 
In summary, the proposed I3D architecture is better in comparison to the MV CNN architecture, in the 

classification of MRI head scans, under given circumstances. The performance of the I3D model can be 

further enhanced with data augmentation and additional hyperparameter optimization, which will be 

left as a task for future work. The flaws of the data split in this work (data leakage) make the 

comparison to state of the art CNNs difficult. However, the achieved accuracy of 92.99%, shows 

promising potential of the architecture, in comparison to other CNNs with data leakage. Therefore, the 

I3D architecture of this work is recommended for the application of classifying MRI head scans and the 

usage in CAD software. 
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10 Appendix 

10.1 Appendix A 

 

Figure 32. The average time expended by a radiologist for the complete diagnosis of MRI scans by body part [6] 
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10.2 Appendix B 

 

Figure 33. The percentage of normal findings per body part of the Radiologie Mühleninsel in 2009. [77] 
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