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We address the need for a large-scale database of children’s faces by using
generative adversarial networks (GANs) and face-age progression (FAP) models to
synthesize a realistic dataset referred to as “HDA-SynChildFaces”. Hence, we
proposed a processing pipeline that initially utilizes StyleGAN3 to sample adult
subjects, which is subsequently progressed to children of varying ages using
InterFaceGAN. Intra-subject variations, such as facial expression and pose, are
created by further manipulating the subjects in their latent space. Additionally, this
pipeline allows the even distribution of the races of subjects, allowing the generation
of a balanced and fair dataset with respect to race distribution. The resulting HDA-
SynChildFaces consists of 1,652 subjects and 188,328 images, each subject being
present at various ages and with many different intra-subject variations. We then
evaluated the performance of various facial recognition systems on the generated
database and compared the results of adults and children at different ages. The study
reveals that children consistently performworse than adults on all tested systems and
that the degradation in performance is proportional to age. Additionally, our study
uncovers some biases in the recognition systems, with Asian and black subjects and
females performing worse than white and Latino-Hispanic subjects and males.
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1 Introduction

The use of facial recognition systems in differing domains such as surveillance, airports, and
personal devices is well-established. These systems have proven to be highly effective and
accurate in verifying the identity of subjects (Razzaq et al., 2021; Wang and Deng, 2021).
However, as facial recognition becomes increasingly integrated into our daily lives, it is crucial to
consider the potential for biases and discrimination against certain demographic groups.
Previous research has investigated this issue (Drozdowski et al., 2020), but less attention has
been given to the effect of age on the recognition of children’s faces. This area is important, as
there are numerous potential applications for facial recognition systems for children. For
instance, police can use face recognition to find kidnapped or lost children. Another use is an
automated process for analyzing seized child sexual abusematerial (CSAM) to recognize victims.
In 2019, more than 70 million CSAM videos and images were obtained1. This issue is an
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increasing problem, with 17 million reports of CSAM in 2019 rising
dramatically to 29.3 million in 20212. Due to this immense amount
of data, it is necessary to have automated systems which can
identify the children in such material, necessitating effective
face recognition systems.

The recent emergence of deep learning has been shown to be
extremely useful in face recognition (Wang and Deng, 2021). A
caveat of these models is that they need a vast amount of training
data to achieve state-of-the-art performance. The quantity of data
needed has become a growing concern due to increased legal and
political scrutiny surrounding the privacy issues associated with
large datasets of individual faces (Harvey and LaPlace, 2021;
Luccioni et al., 2022; The Rise and Fall, 2022). The current
databases used for research in this area are often limited in size,
are constrained, and are focused on specific ages or races; they are
frequently retracted due to privacy concerns. This issue is further
exacerbated in the case of children due to a heightened focus on
protecting their rights.

To address these issues, this research makes the following
contributions:

• We present a novel pipeline for creating a synthetic face
database containing the same subjects both at adult age and
also different child ages (Figure 1). To achieve this, state-of-
the-art generative adversarial networks (GANs) and face age
progression (FAP) models were combined, enabling the
generation of the first large-scale synthetic child face image
database: HDA-SynChildFaces. To the best of our knowledge,
this database represents the first synthetic child face database
for face recognition.

• In a comprehensive experimental evaluation, two open-source
and one commercial face recognition system were evaluated
on this database using standardized metrics, showing that the

recognition performance of all tested systems decreases by age
groups. Evaluations of further demographic subgroups—gender
and race—additionally reveal certain biases in the face recognition
systems that were tested.

• To facilitate reproducible research, the HDA-SynChildFaces
dataset will be made available to researchers [see (Ibsen,
2023)]. This dataset can be further used to train face
recognition systems for children, although this is beyond
the scope of this study.

The novelty of this research lies in the proposed processing
pipeline, which enables a controlled unbiased generation of child
face images. While this pipeline is mainly based on existing
components, it enables the analysis of child face recognition at
scale as showcased in our experiments. Moreover, the publication of
the synthetically generated HDA-SynChildFaces database solves
privacy issues associated with the distribution of child face
imagery. For researchers in the field of child face recognition,
this database is expected to provide a good basis for algorithm
evaluation and training.

The rest of this work is organized as follows. Section 2 briefly
discusses related research on face recognition for children and face-
age progression. The database generation process is described in
detail in Section 3. Experiments are presented in Section 4 and
discussed in Section 5. Conclusions are drawn in Section 6.

2 Related work

2.1 Child face recognition

Multiple efforts have been made to create datasets of children at
different ages to evaluate or train facial recognition systems.
However, many datasets used in research are not publicly
available due to ethical and privacy concerns. Acquired datasets
can broadly be divided into two categories: controlled datasets
obtained through controlled settings (e.g., Best-Rowden et al.,
2016; Deb et al., 2018; Bahmani and Schuckers, 2022; Chandaliya

FIGURE 1
Examples of face images generated by StyleGAN3 (Karras et al., 2021) (leftmost) with progressed child faces of varying ages using InterFaceGAN
(Shen et al., 2022).

2 https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/738224/

EPRS_BRI(2022)738224_EN.pdf
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and Nain, 2022) or web-scraped datasets (e.g., Ricanek et al., 2015;
Medvedev et al., 2023). An overview of the relevant datasets and
their statistics is presented in Table 1.

In general, the controlled datasets are obtained in environments
where the researchers control factors such as pose, facial expression,
illumination, and the age gap between sessions. This makes it easier
to isolate the dataset to only focus on age differences. However, one
limitation of these datasets is the potential for race and demographic
bias in the sample population. The web-scraped datasets are often
less constrained and have more variation in the images. This makes
it more difficult to distinguish between the effects of age and other
factors on the performance of facial recognition systems. Most of the
datasets are used for longitudinal studies of the performance of facial
recognition systems. The NITL (Best-Rowden et al., 2016) is a
longitudinal dataset that focuses on children aged 0–4. The data
were collected at a free pediatrics clinic in Dayalbagh, India. The
images were collected over four sessions between March 2015 and
March 2016. Their experiment compares the accuracy of facial
recognition systems on images from the same sessions with
images from different sessions. They found that the verification
accuracy for children aged 6 months decreased 50% compared to the
verification of images taken in the same session. The difference was
even more significant when only looking at children aged 1–2 in the
first session. Here, the accuracy decreased by 82%.

In the three longitudinal studies (Deb et al., 2018; Bahmani and
Schuckers, 2022; Chandaliya and Nain, 2022), the datasets were
collected in cooperation with schools. These datasets are not publicly
available due to privacy concerns regarding the subjects. In Deb et al.
(2018), the CLF dataset consists of facial images of children aged
2–18 with constrained images taken of the same subject over time
(avg. 4.2 years). The YFA (Bahmani and Schuckers, 2022) dataset
contains images captured over time at a local elementary and middle
school of voluntary children. In the dataset, the target was to
investigate how changes in age influence facial recognition
systems, and thus the images captured are limited regarding
change in pose, illumination, and expression. The images were
taken over multiple session with a maximum total age gap of
3 years. The ICD dataset, used in ChildGAN (Chandaliya and
Nain, 2022), contains subjects with multiple images taken over
time as well as subjects with only a single image. The facial
images are divided into five different sets based on the following
age groups: 2–5, 6–8, 9–11, 12–14, and 15–19. All images were

collected in India. The In-the-Wild Child Celebrity (ITWCC)
(Ricanek et al., 2015) dataset is a recent longitudinal children
database scraped from the internet. The dataset consists of
different celebrities. As the images are scraped from the internet,
they are unconstrained; this makes it difficult to isolate age as a
parameter when testing facial recognition systems. They present
results showing that facial recognition systems have issues verifying
the identities of non-adult aging subjects. Another, and very recent,
dataset scraped from the internet is the YLFW dataset (Medvedev
et al., 2023), which was compiled by scraping identities on the web
using a specific set of keywords. A set of images is downloaded for
each of these keyword sets and is then filtered using hierarchical
clustering. The dataset was then balanced regarding four races:
Caucasian, Asian, African, and Indian. A manual procedure
followed this process to verify the match pairs. In evaluating the
performance of facial recognition systems for children, they found
that the systems are significantly worse for children, as previous
studies also have shown. However, they also showed that training
facial recognition systems on their dataset can reduce this difference.

In Srinivas et al. (2019), subsets of the ITWCC (Ricanek et al.,
2015) and LFW (Huang et al., 2008) datasets were used to compare
the performance of facial recognition systems on adults and
children. The authors compared eight different facial recognition
systems and found that all eight were biased, performing
significantly worse on children.

In summary, we identify the following shortcomings with
existing real-child face datasets:

• Availability: the majority of collected datasets are not
available, particularly those captured under controlled
circumstances, allowing only an isolated analysis of the
impact of age on face recognition.

• Bias: the geographical locations for the controlled acquisition
of child face databases, such as in India in Best-Rowden et al.
(2016), introduces a bias that prevents a detailed evaluation of
demographic differentials in face recognition performance.

• Size: while the child datasets captured in controlled
environments contain only a small number of subjects,
which hampers an evaluation of child face recognition at
scale, the uncontrolled child datasets contain only a small
amount of samples per subject, thus limiting the number of
within-subject comparisons.

TABLE 1 Different child face datasets for facial recognition systems. The bias column indicates the presence of any potential biases within the respective
dataset.

Dataset Year # Identities # Images Age span Bias Acquisition method Availability

ITWCC (Ricanek et al., 2015) 2015 304 1,705 0.5–32 a Scraped Publicb

NITL (Best-Rowden et al., 2016) 2016 314 3,144 0–4 Race Controlled Private

CLF (Deb et al., 2018) 2017 919 3,682 2–8 Race Controlled Private

YFA (Bahmani and Schuckers, 2022) 2022 231 2,293 3–14 Race Controlled Publicb

ICD (Chandaliya and Nain, 2022) 2022 16,969 35,484 2–19 Race Controlled Private

YLFW (Medvedev et al., 2023) 2023 3,069 9,810 0- ~18 a Scraped Not released

HDA-SynChildFaces 2023 1,652 188,328 0–20+ None Synthetic Public

aAuthors do not describe the demographic distribution of the dataset.
bDatasets seem to not be publicly available anymore.
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In response to these issues, we introduce the HDA-
SynChildFaces dataset. In comparison to existing databases,
HDA-SynChildFaces contains only synthetic data and can thus
be shared publicly without any restrictions. It is balanced in
terms of race, gender, and age groups, which allows for an
unbiased evaluation or training of face recognition systems.
While other child face databases, such as ICD of YLFW, may
contain face images of a larger number of subjects (albeit of
rather lower quality), the HDA-SynChildFaces database proposed
in this work comprises a significantly larger number of images per
subject (by orders of magnitude), enabling more comprehensive
intra-subject analyses.

2.2 Face-age progression

GAN-based architectures have not only proven their worth in
generating synthetic images but also in performing face-age
progression (FAP). Grimmer et al. (2021) have recently provided
a comprehensive survey of deep face age progression, noting that
GANs indeed produce remarkable face ageing results (cf. Figure 1).
Many of the FAP models covered in this section are based in some
way on GANs.

In InterFaceGAN, Shen et al. (2022) do not directly train a new
GAN to do FAP but instead investigate the latent space learned by
the original StyleGAN trained on the FFHQ dataset. The researchers
train a linear model in which a boundary is learned to, for example,
change the age or gender of a generated image directly in the latent
space. Alaluf et al. (2023) retrained InterFaceGAN on the
StyleGAN3 latent space, thus taking advantage of the improved
architecture for generating faces.

Or-El et al. (2020) handle FAP by proposing a new GAN
architecture trained with labeled age groups (e.g., 0–2 or 50–69),
enabling FAP by giving an input image and specifying the desired
age group. He et al. (2021) note that many of the GAN-based FAP
approaches end up with an entangled latent space in which they then
manipulate the age. They instead propose a model where they
disentangle key characteristics while modifying the age in
different age groups. Chandaliya and Nain (2022) also take a
GAN-based approach to FAP learned with different age groups.
AgeGAN, an architecture proposed in Song et al. (2022), uses a dual
condition GAN architecture where one generator converts input
faces to other ages based on an age group condition, and the dual
conditional GAN learns to invert the task.

Alaluf et al. (2021) propose an architecture where age is
approached as a regression task rather than as discrete age
groups. Their model learns a non-linear path to disentangle the
age progression from other attributes. Li et al. (2021) also focus on
continuous ageing and use an age estimator as part of a GAN-
generator in a novel architecture.

Authors from Disney Research in Zoss et al. (2022) propose a
FAP model that does not use a GAN but instead uses a U-Net,
translating in an image-to-image manner together with a specified
age. They observed promising results, although a caveat of their
model is that it is only possible to progress down to the age of 20 due
to the training data used.

Many of the models proposed in the scientific literature (e.g., Or-
El et al., 2020; Alaluf et al., 2021; He et al., 2021; Zoss et al., 2022) are

all end-to-end solutions, meaning that they take an image and a
specified age (or age-group) as input and then output an image. In
Shen et al. (2022) and Alaluf et al. (2023), an image is directly
manipulated in the latent space of the StyleGAN variant, which then
skips the part of inverting or translating an image into latent space,
which otherwise may come at a loss.

3 Materials and methods

The proposed pipeline for creating the desired biometric dataset
consists of the following steps that are described in detail in the
subsequent subsections:

Sampling: This step handles the generation of synthetic faces,
thus creating the initial database.
Filtering: This step handles the filtering of the initial database,
removing poor quality and unwanted images.
Race Balancing: As the generation of the initial faces is random,
the distribution of the subjects’ races may be skewed. This step
evenly distributes races in the database.
Age Transformation: Progressing an adult into a child is a key
concept in this paper. This step progresses an adult into a child in
different age groups.
Intra-Subject Transformation: To biometrically benchmark a
database, reference images need corresponding probe images
with realistic intra-subject variations, which this step creates.
Post-Processing: This step will perform some automatic
cleaning. It ensures that the same seeds are present in all
different age groups and tries to remove poorly
transformed images.

3.1 Sampling and filtering

In this study, StyleGAN3 is used to sample an initial set of face
images. A subset of these initially sampled images is then chosen by
filtering, first discarding images based on age and then based on
sample quality.

The age filtering step is implemented by using the C3AE age
estimator (Zhang et al., 2019). It simply works by estimating the age
of the generated subjects and, if they are below a pre-defined age,
they are rejected.

The quality filtering step is implemented by using the SER-FIQ
(Terhörst et al., 2020) quality score algorithm, which represents a state-
of-the-art algorithm. The quality score extracted is between 0 and 1,
where 1 is an image of perfect quality. Figure 2 shows examples of
accepted and rejected images based on the SER-FIQ score. Figure 3
shows the distribution of the quality scores for 10,000 generated subjects
without any previous age filtering. The distribution looks Gaussian-like
but with a heavy tail that may be caused by artifacts or very young-
looking subjects which usually get a low quality score.

3.2 Latent transformation

Hyperplane boundaries for certain attributes are estimated as
explained in the original InterFaceGAN paper (Shen et al., 2022) but

Frontiers in Signal Processing frontiersin.org04

Falkenberg et al. 10.3389/frsip.2024.1308505

https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1308505


by using the latent space of StyleGAN3 instead of StyleGAN. The
separation boundary between different categories of an attribute is
found by using a linear support vector machine (SVM) to identify a
hyperplane that separates the two categories. For example, in the
case of the gender attribute, the SVM could be trained to distinguish
between male and female (Figure 4).

This normal vector n can then be used to modify the latent code
of an image by adding it to the latent code. This can be described as:

wedit � w + α · n (1)
Here, wedit denotes the resulting latent code after the

manipulation, w is the original latent code of the image, and α is
a parameter choosing the degree of the edit. Figure 5 shows how this
boundary modifies a subject. In this example, the same subject is
manipulated with different α values.

The SVM are trained on a large number of images (500,000)
generated with StyleGAN3. Each image must be classified using a pre-
trained classifier for the specific attribute. To filter out bad classifications,
only the top 10% and bottom 10% were used for the training. This was
done for all of the attributes in Table 2 marked with This work.

As mentioned in Shen et al. (2022), the manipulation of a
specific attribute can result in unintended changes to other
attributes. This is due to the entanglement in the latent space
and the correlation of the attributes in the images used for
training the SVM. To minimize these unwanted side effects, a
new conditional boundary can be calculated by projecting the
boundary of the desired attribute onto the boundary of another
attribute. This process can be formalized mathematically as follows:

ncond � n1 − nT1 · n2( ) · n2, (2)

where n1 is the boundary of the desired attribute (e.g., smile), n2
is the boundary of the unintended attribute (e.g., glasses), and ncond
is the conditional boundary. This new conditional boundary can
then be used to edit the desired attribute. Furthermore, the pipeline
uses thew latent vector, which is a single dimension of thew + latent.

FIGURE 2
Example of accepted and rejected images using SER-FIQ (Terhörst et al., 2020) quality assessment with a 0.75 threshold.

FIGURE 3
Distribution of SER-FIQ (Terhörst et al., 2020) quality scores for
10,000 generated face images.

FIGURE 4
Hyperplane between two categories in a simplified 2D space. The
red line is the hyperplane as found by a linear SVM. The images with a
blue border are categorized as women and those with a green border
as men. n is the normal vector to the hyperplane.
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This is due to less entanglement than when using the z latent, as
mentioned in the original InterFaceGAN paper (Shen et al., 2022).

The need to neutralize images with respect to certain attributes,
such as a pose, arises during image sampling in order to ensure the
quality of the generated images. Here, we follow the process
proposed in Colbois et al. (2021). Neutralizing an image with
respect to yaw using a trained boundary denoted as nyaw can be
described mathematically as

wneutral � w − wTnyaw( ) · nyaw (3)

where w is the initial latent code for the image and wneutral is the
latent vector for the neutralized image. wneutral could then be used to
generate the neutralized image. This concept of neutralization is
used several times throughout the pipeline, and it can be done with
any of the boundaries seen in Table 2.

3.3 Balancing races

In contrast to real existing child face databases, we aim to create
a database that is equally distributed with respect to race. To do so,
the trained race boundaries seen in Table 2 can be used to change the

race of individual subjects. Figure 6 shows examples of using the
individual race boundaries on the same subject.

Firstly, a database of images and latent vectors is sampled, where
the race of each subject is initially classified. Subsequently, a random
subject of the most represented race is changed into the least
represented race. This step is repeated until the races are
uniformly distributed.

An example of the distribution of the races before and after their
balancing can be seen in Figure 7. Initially, 70% of the subjects
sampled are classified as white, while only 0.5% are classified as
black. It should be noted that a caveat of this approach is that it is
largely dependent on the race classifier. That is, human inspection of
the subjects’ races may not always agree with the classifier and
algorithm outputs.

3.4 Age transformation

The latent transformations previously described were also used
to transform the age of a subject. However, one problem with latent
transformations is that sometimes a subject is poorly transformed
because the subject is moved too far in a direction in the latent space.

FIGURE 5
Example of a subject manipulated with a gender boundary, moving the subject in both a positive and negative direction.

TABLE 2 Boundaries used in the implementation of the proposed pipeline.

Category Attribute Classifier From

Age Age C3AE (Zhang et al., 2019) This work

Age SAM age estimator (Alaluf et al., 2021) Alaluf et al. (2023)

Pose Yaw Hopenet (Ruiz et al., 2018) This work

Pitch Hopenet (Ruiz et al., 2018) This work

Expression Happy Anycost GAN (Lin et al., 2021) Alaluf et al. (2023)

Sad Deepface (Serengil and Ozpinar, 2021) This work

Race White Deepface (Serengil and Ozpinar, 2021) This work

Latino Hispanic Deepface (Serengil and Ozpinar, 2021) This work

Indian Deepface (Serengil and Ozpinar, 2021) This work

Middle Eastern Deepface (Serengil and Ozpinar, 2021) This work

Asian Deepface (Serengil and Ozpinar, 2021) This work

Black Deepface (Serengil and Ozpinar, 2021) This work

Illumination Illumination DPR (Zhou et al., 2019) This work

Gender Male Anycost GAN (Lin et al., 2021) Alaluf et al. (2023)
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This can happen, for instance, if the age classifier inaccurately
predicts a subject’s age. An example of a subject being moved
too far can be seen in Figure 8. The first three images,
surrounded by green boxes, look realistic and like the same
person in progressively younger versions. In the last three
images, surrounded by red boxes, it can be seen that, by moving

too far in the age direction, the subject begins to look less human and
more unrealistic—it has been poorly transformed.

A way to automatically detect such undesired effects is to
perform a principal component analysis (PCA) and use it for
outlier detection. We generated a large amount of latent vectors
(300,000) to fit the PCA and find the principle components. The idea

FIGURE 6
Example of moving a subject (leftmost) along each of the five race boundaries.

FIGURE 7
Effect of race balancing on a dataset of 3,510 subjects of non-uniformly distributed races. A: Asian, B: Black, I: Indians, LH: Latino-Hispanic, ME:
Middle Eastern, W:White.
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is that the two most important principal components form a
distribution and that a transformed image is anomalous if it is
too far from the center. If the image is categorized as an anomaly,
then it should be removed as it is likely to be a poor transformation.
A visualization of this concept can be seen in Figure 9.

This approach can automatically detect the majority of poorly
transformed subjects. Figure 10 shows more examples of removed
subjects from the database where the images are categorized
as anomalies.

3.5 Intra-subject transformations

The following subject- and environment-related properties are
further modified to simulate intra-class variations: pose, expression,
and illumination. These are implemented by manipulating the latent
vectors using the linear boundaries trained (Table 2). Figure 11

depicts a subset of all variations across different age groups for an
example subject.

For changing the pose of the subject, two boundaries were
trained for yaw and pitch using the Hopenet pose estimator
(Ruiz et al., 2018). By default, the pipeline will generate four
variations for each axis of the subjects. The amount of
illumination in an image is also a boundary trained by using the
light classifier from the DPR model of Zhou et al. (2019). Two
boundaries were used to change the facial expression of a subject:
one for making a subject smile and one for making them look sad.
To compress a facial image, lossy compressed versions of each
subject were generated by saving the image in JPEG format with
different qualities; the original reference image was saved in the
lossless PNG format.

3.6 HDA-SynChildFaces

The HDA-SynChildFaces database consists of 1,652 different
subjects which have been processed in the whole pipeline as
previously explained. A short overview of the parameters used
can be seen in Table 3.Here, the original 1,652 subjects
correspond to being age 20 and above. Each of these subjects has
been progressed down into the five different age groups seen above,
resulting in six datasets (one of adults and five of children). Each of
these images across the six datasets have 18 corresponding intra-
class variations. This sums up to a total of 1,652 × 6 × (18 + 1) =
188,328 images.

3.6.1 Gender subset
As a part of the pipeline, each synthetic subject has also been

classified as either being male (M) or female (F). This split tests the
performance of the face recognition systems between gender and, if
it varies, across different age groups. The number of images in each
group can be seen in Table 4. There, 40.3% of the subjects are women
and 59.7% are men, which is a bit skewed. This skewness occurs as
part of the filtering process where the quality filter is slightly biased
against women.

3.6.2 Race subset
The race of the different subjects is also saved after equally

distributing them. This allows for division of the dataset into race-
specific subsets to see if face recognition systems are biased against
some races and if changes appear across age groups. The number of
images and different subjects for each subset can be seen in Table 5.

FIGURE 8
Example of a subject moved too far in the age direction (green boxed images still look natural, while red boxed images look progressively
more unnatural).

FIGURE 9
300 k StyleGAN3 latent vectors projected onto their first and
second principal components, where each blue dot corresponds to a
subject. The red and green dots showcase the effect of transforming a
single subject along the age direction, corresponding to the
progression seen in Figure 8, where the red dots are leaving the
distribution.
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Although the races are equally distributed after the race distribution
step, this may become a bit unbalanced due to the post-processing
step. As can be seen, there are fewer Asians left at the end of the
pipeline than of other races.

4 Experiments

In experiments, the HDA-SynChildFaces database was used for
face recognition performance analysis. As mentioned earlier,
evaluations of other child face databases were not conducted
since existing datasets containing child face images of high
quality were not publicly available. In addition, due to the
previously mentioned shortcomings of available real child face
datasets, a comparison with them is not meaningful and is,
therefore, not considered in this work. We evaluated multiple
state-of-the-art facial recognition systems, both open-source and
commercial. First, the performance of facial recognition systems
across different age groups was determined (children vs. adults). The
impact of race and gender was also evaluated (demographic
differentials) in order to investigate whether age may also impact
these factors. In the next subsection, the face recognition models
employed are listed along with a detailed description of applied
evaluation metrics. The results obtained are then presented.

4.1 Experimental setup

The facial recognition systems under investigation are ArcFace
(Deng et al., 2019)3, MagFace (Meng et al., 2021)4, and a commercial
off-the-shelf (COTS) solution. Before facial recognition with both
state-of-the-art open-source systems, face detection and alignment
was done with RetinaFace (Deng et al., 2020), a state-of-the-art face
detection system.

To evaluate the different recognition systems, biometric
measures and metrics from the ISO/IEC 19795-1 (ISO, 2021)
standard were used. For the open-source systems, the mated
(genuine) scores and non-mated (impostor) scores were

calculated for each of the datasets by using the cosine similarity
measure seen in Eq. 4:

cosine similarity � ∑n
i�1AiBi������∑n

i�1A
2
i

√ ������∑n
i�1B

2
i

√ (4)

Here, Ai and Bi refers to specific feature vectors extracted by a face
recognition system. TheCOTS system uses its own proprietary similarity
score. The mated comparisons are made by calculating the similarity
score between each of the images with each of its corresponding
variations. The non-mated comparisons are made by calculating the
similarity score between an image and a random image from all other
individuals. The results were evaluated by using the following metrics:

FMR/FNMR: Following ISO/IEC 19795-1 (ISO, 2021), false
match rate (FMR) and false non-match rate (FNMR) are
technical terms used to describe the performance of biometric
systems. FMR represents the percentage of non-mated
comparisons that are incorrectly confirmed as matches at a
specific threshold, while FNMR represents the percentage of
mated comparisons that are incorrectly rejected as non-mated.
In this experiment, the focus will be on evaluating the FNMR
values under three distinct conditions, corresponding to FMR
values of 0.01%, 0.1%, and 1%.
DET-curves: The detection error trade-off (DET) curve is a plot
for visualizing the trade-off between the FNMR and the FMR.
EER: The equal error rate (EER) is the rate where the value of
FMR and FNMR are equal.
Distribution statistics: The following common distribution
statistics were calculated to characterize the distribution of the
mated and non-mated comparisons: mean μ and standard
deviation σ.
Decidability index: Denoted as d′, the decidability index can be
interpreted as a value that describes the amount of separation
between two distributions. It will be calculated for the
distributions of the mated and non-mated comparisons, where
a larger value indicates a better separation between the two. It is
calculated using the following formula (Daugman, 2000):

d′ � |μm − μnm|����������
1
2 σ2m + σ2nm( )√ (5)

where μm and σm are the mean and standard deviation for the mated
comparisons and μnm and σnm are the mean and standard deviation
for the non-mated comparisons.

FIGURE 10
Examples of rejected images in the automatic post-processing step of the pipeline.

3 https://github.com/deepinsight/insightface

4 https://github.com/IrvingMeng/MagFace

Frontiers in Signal Processing frontiersin.org09

Falkenberg et al. 10.3389/frsip.2024.1308505

https://github.com/deepinsight/insightface
https://github.com/IrvingMeng/MagFace
https://www.frontiersin.org/journals/signal-processing
https://www.frontiersin.org
https://doi.org/10.3389/frsip.2024.1308505


4.2 Results

4.2.1 Children vs. adults
Experimental results across all age groups for the tested face

recognition systems are summarized in Table 6. The corresponding
DET curves are plotted in Figure 12. When focusing on one system
at a time, it can be seen how the mated part of the statistics is very
similar across the age groups. The mean and standard deviation are
all extremely close. It can be noted how the mated mean and
standard deviation are quite similar for MagFace and ArcFace
while COTS has a significantly larger mean and smaller standard
deviation. When looking at the non-mated part, it can be seen how
the mean of the distributions grows steadily for the younger the age
group, which happens for all three face recognition systems. The
same is true for the standard deviation where there is a considerable
increase when comparing the age groups 20+ and 16-13. For
ArcFace and MagFace, a significant increase between the groups
7–4 and 4–1 can also be noticed, but not for COTS. Another
interesting statistic can be seen when looking at d′, where a
higher d′ means that the system can better distinguish between
the mated and non-mated distributions. An evident tendency across
all systems is that the d′ scores decrease for the younger age groups.

4.2.2 Demographic differentials
For the analysis of demographics—gender and race—only

results for MagFace are shown. This is because all three different
systems show similar patterns, albeit that the actual numbers may
differ slightly.

In Table 7, the results obtained for the gender subset are
summarized. It is apparent that the d′ values are larger for men
than women when looking at the age groups 20+, 16–13 and 13–10;
the systems are thus better at distinguishing mated and non-mated
samples. The value of the younger age groups is slightly larger for
women. The non-mated mean values are generally larger for men
across all age groups, but for mated values, the values are very similar
for bothmales and females. The DET-curves for the three age groups

FIGURE 11
Example of a subject in the different age groups. Ages from left to
right: 1–4, 7–10, 13–16, and 20+. Variations from top and downward,
where the reference is the red boxed ones: left yaw, right yaw, pitch
down, pitch up, smile, high illumination, low illumination, and
compression.

TABLE 3 Age groups, races, and intra-subject variations provided as input to
the pipeline to produce the dataset.

Age groups 20+, 16–13, 13–10, 10–7, 7–4, and 4–1

Races Asian, Black, Latino Hispanic, Middle Eastern, Indian, and White

Variations Yaw, Pitch, Smile, Sad, Illumination, and Compress

TABLE 4 Female (F) and male (M) subjects and total images in the database.

Gender Subjects Total images

Female 667 76,038

Male 985 112,290

TABLE 5 Number of subjects of different races in database.

Race Subjects Total images

Asian (A) 248 28,272

Black (B) 283 32,262

Indian (I) 276 31,464

Latino Hispanic (LH) 281 32,034

Middle Eastern (ME) 278 31,692

White (W) 286 32,604
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20+, 10–13, and 1–4 divided into gender are depicted in Figure 13.
For the first five age groups, the EER is lower for males than females,
but for the last age group, ages 4–1, the opposite can be observed.
This is the same phenomenon observed from the DET curves in

Figure 13, where the male subset performed better than the female
subset in all but the youngest age group.

The results for race are summarized in Table 8. It should be
noted that only the non-mated distribution statistics are shown here,

TABLE 6 Different biometric performance metrics with ArcFace, MagFace, and COTS as face recognition systems from the full dataset.

Age groups Mated Non-mated EER (%) d’ FNMR at FMR (%)

μ σ μ σ 0.01 0.1 1

ArcFace

20+ 0.88 0.10 0.06 0.09 0.07 8.93 0.50 0.06 0.00

16–13 0.88 0.10 0.10 0.12 0.29 7.46 2.85 0.75 0.06

13–10 0.88 0.10 0.10 0.12 0.34 7.26 3.40 1.01 0.09

10–7 0.88 0.10 0.10 0.12 0.40 7.03 4.23 1.39 0.14

7–4 0.89 0.10 0.11 0.13 0.51 6.72 5.63 1.88 0.21

4–1 0.89 0.10 0.15 0.15 0.75 6.01 7.64 3.45 0.55

MagFace

20+ 0.90 0.09 0.08 0.09 0.07 9.10 0.53 0.04 0.00

16–13 0.90 0.09 0.12 0.12 0.28 7.57 2.49 0.71 0.07

13–10 0.90 0.09 0.13 0.12 0.33 7.37 2.70 0.90 0.09

10–7 0.90 0.09 0.14 0.12 0.37 7.16 3.12 1.00 0.14

7–4 0.90 0.09 0.15 0.13 0.42 6.83 3.76 1.30 0.21

4–1 0.91 0.08 0.20 0.15 0.60 6.02 6.43 2.49 0.35

COTS

20+ 0.98 0.02 0.10 0.12 0.09 10.51 0.91 0.08 0.00

16–13 0.99 0.02 0.21 0.19 0.26 5.74 2.54 0.65 0.05

13–10 0.99 0.02 0.23 0.20 0.31 5.41 2.99 0.83 0.06

10–7 0.99 0.02 0.24 0.20 0.35 5.11 3.46 1.04 0.09

7–4 0.99 0.02 0.26 0.21 0.41 4.87 4.32 1.40 0.17

4–1 0.98 0.02 0.27 0.22 0.48 4.59 5.03 1.78 0.23

FIGURE 12
DET-curves of full dataset when using ArcFace, MagFace, and COTS.
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as the mated statistics are very similar. There are several interesting
observations, such as the d′ score being largest for subjects of white
race in all age groups except for adults, where Latino-Hispanic is
slightly larger. Black race subjects always have the smallest d′ score,
closely followed by Indians. Changes to mean, standard deviation,
and median significantly depend on race and age. It can be observed
that those of Asian race have the most significant standard deviation
for all but the oldest age group. The corresponding DET-curves can
be seen in Figure 14. Performance worsens for all races in the
youngest age groups but still with a hierarchy similar to the worst to
best performing races.

5 Discussion

From the results observed for the full dataset, the mated scores
are stable across the different age groups and generally have quite a

high mean. The progression has a big impact on the non-mated
scores across age groups, which causes a decrease in performance
as the subjects get younger when verification metrics are measured.
This drop in performance was a common pattern across all three
face recognition systems tested. Performance significantly
decreased as the subjects got younger, with a notable increase
in EER. A common threshold in biometric verification is having a
FMR of 0.1% (Research and Development Unit, 2015) and looking
at MagFace in Table 6, which results in a practical FNMR of 0.04%
for adults. However, by progressing these same adults down to an
age group of the youngest children of age 1–4, it rose to 2.49%. This
change in score demonstrates how large a performance decrease
can be observed when the same identities are younger. For the
youngest children, the COTS system showed the best performance,
according to EER values, although, when looking at the adults,
COTS performed the worst. It is unknown what kind of data is
used in training this system, but it could indicate that the system

TABLE 7 Different biometric performance metrics with MagFace from the gender-divided dataset.

Age groups Gender Mated Non-mated EER (%) d’ FNMR at FMR (%)

μ σ μ σ 0.01 0.1 1

20+ F 0.90 0.09 0.09 0.11 0.16 8.30 1.54 0.31 0.01

M 0.90 0.09 0.09 0.10 0.06 8.92 0.36 0.03 0.00

16–13 F 0.90 0.09 0.12 0.12 0.44 7.24 4.14 1.56 0.19

M 0.90 0.08 0.15 0.12 0.25 7.33 2.02 0.61 0.06

13–10 F 0.90 0.09 0.13 0.13 0.50 7.09 4.24 1.73 0.24

M 0.90 0.08 0.16 0.12 0.30 7.14 2.52 0.75 0.07

10–7 F 0.90 0.09 0.13 0.13 0.52 6.96 4.80 1.87 0.30

M 0.90 0.08 0.16 0.13 0.35 6.92 3.08 0.89 0.13

7–4 F 0.90 0.09 0.14 0.13 0.56 6.78 5.19 2.07 0.33

M 0.90 0.08 0.18 0.13 0.44 6.52 4.00 1.27 0.19

4–1 F 0.91 0.09 0.17 0.14 0.59 6.41 6.78 2.39 0.35

M 0.91 0.08 0.24 0.15 0.71 5.59 7.48 3.22 0.45

FIGURE 13
DET-curves for Gender datasets for 1–4, 10–13, and 20+ age groups using MagFace.
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TABLE 8 Different biometric measures from using MagFace on the race-divided dataset.

Age groups Race Non-mated EER (%) d’ FNMR at FMR of (%)

μ σ 0.01 0.1 1

20+ A 0.11 0.11 0.16 8.15 2.94 0.47 0.02

B 0.19 0.13 0.36 6.45 2.59 0.86 0.04

I 0.22 0.12 0.12 7.25 0.37 0.14 0.00

LH 0.11 0.09 0.02 8.46 0.08 0.02 0.00

ME 0.12 0.11 0.11 7.83 0.46 0.14 0.00

W 0.11 0.09 0.02 8.39 0.14 0.02 0.00

16–13 A 0.15 0.13 0.39 6.72 5.30 2.00 0.07

B 0.30 0.13 0.56 5.57 3.53 1.33 0.36

I 0.36 0.12 0.28 5.70 1.48 0.47 0.08

LH 0.18 0.11 0.20 7.16 0.81 0.24 0.02

ME 0.20 0.12 0.40 6.43 1.94 0.82 0.24

W 0.14 0.11 0.14 7.26 0.76 0.21 0.02

13–10 A 0.16 0.14 0.48 6.49 5.61 2.11 0.13

B 0.31 0.13 0.64 5.43 3.26 1.63 0.44

I 0.38 0.12 0.34 5.60 2.09 0.61 0.08

LH 0.19 0.11 0.20 7.02 0.77 0.24 0.02

ME 0.20 0.13 0.46 6.28 2.22 1.04 0.32

W 0.15 0.11 0.20 7.11 0.99 0.29 0.02

10–7 A 0.17 0.14 0.61 6.23 7.84 2.40 0.25

B 0.32 0.13 0.61 5.33 3.57 1.82 0.54

I 0.39 0.12 0.41 5.50 2.27 0.83 0.08

LH 0.20 0.12 0.22 6.84 0.59 0.26 0.04

ME 0.21 0.13 0.54 6.14 2.80 1.14 0.38

W 0.16 0.11 0.24 6.95 1.23 0.39 0.04

7–4 A 0.19 0.15 0.85 5.78 8.78 3.77 0.67

B 0.33 0.13 0.77 5.17 4.73 2.25 0.67

I 0.40 0.12 0.40 5.41 2.57 1.05 0.20

LH 0.21 0.12 0.24 6.57 1.29 0.40 0.08

ME 0.23 0.13 0.62 5.91 4.02 1.52 0.46

W 0.17 0.12 0.32 6.63 2.38 0.64 0.14

4–1 A 0.25 0.17 1.37 4.91 10.67 6.31 1.93

B 0.36 0.14 1.05 4.80 6.79 3.32 1.07

I 0.40 0.13 0.68 5.03 5.65 3.02 0.59

LH 0.25 0.14 0.57 5.69 5.41 2.16 0.32

ME 0.27 0.14 0.72 5.36 5.59 2.69 0.68

W 0.22 0.14 0.68 5.78 6.89 2.47 0.55
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has seen images of young children before. As this analysis of the
performance across ages is based on synthetic data, the question
arises as to whether these same observed results would occur if it
was tested on facial images of persons at different ages. As
mentioned in Section 2, several studies on child face
recognition were described in which a performance drop was
also observed in the real data of children compared to the
performance of adults. Notably, Medvedev et al. (2023) saw a
performance decrease in younger children compared to adults.
They also noted that children are harder to discriminate for the
different facial recognition systems that they test. They do see a

performance increase by fine-tuning a system on their child
database. These results are comparable with the results observed
in this work, but this dataset has the benefit of being synthetic.

It was also observed how black and Asian race subjects generally
performed worse than white and Latino-Hispanic subjects.
Furthermore, all races had a performance decrease as they got
younger. Grother et al. (2019) performed a vendor test with a
specific focus on the performance and bias of commercial face
recognition systems concerning demographics. They noted
several of the same observations regarding race and age. Similar
findings were made by Wang et al. (2019). Overall, the results

FIGURE 14
DET-curves for Race datasets for 1–4, 10–13, and 20+ age groups using MagFace.

FIGURE 15
Example pairs of synthetic child subjects (ages 7–10) with high non-mated score according to MagFace.

FIGURE 16
Example pairs of synthetic child subjects (ages 1–4) with high non-mated score according to MagFace.
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indicate that facial recognition systems are not robust for younger
subjects and that racial and gender bias is a general problem across
age groups.

Figure 15 shows pairs of subjects aged 7–10 with a high non-
mated score. There, the pairs of subjects have the same gender and
race. Similarly, pairs of subjects from the youngest age group (ages

FIGURE 17
Example of two subjects with high non-mated score throughout all age groups, according to MagFace.

FIGURE 18
Pairwise scatter plots between different age groups showing the relationship of the non-mated comparison score with MagFace.
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1–4) with a high non-mated score can be seen in Figure 16. In this
particular age group, false matches across gender and race have also
been observed.

An example where the same two subjects have a high non-mated
score in all the different age groups can be seen in Figure 17. Here,
the top-left image is from the adult age group while the bottom-right
is from the youngest child group. To investigate this phenomenon
further, the scatter matrix in Figure 18 was constructed.

Each of the non-mated scores of one age group was plotted
against the same non-mated comparison of all other age groups.
Thus, if Subject s1 is compared with Subject s2 in age group 20+ and
produces some score, then these two subjects have comparison
scores in all the other age groups. All scores can then be plotted
pairwise to see if there is a correlation between scores of the same
subjects across age groups. An example can be seen by looking at the
x-axis at ages 20+ and the y-axis at ages 16–13, where there is a
positive correlation. An even stronger correlation can be observed at
x-axis 16–13 and y-axis 13–10 which may be because the age groups
are much closer in age than those of 20+ and 16–13. This positive
correlation continues down the whole diagonal, which indeed tells
us that there is a tendency for the same pairs of non-mated
comparison scores being correlated across age groups.

A limitation of thiswork is that any bias in theGAN-based generation
method is likely to affect the variance of the generated face images. In
particular, unbalanced training data of aGANwith respect to age and race
is expected to limit the variance with specific demographic groups, such as
young Asians (Figure 17). Even though demographic attributes can be
controlled in the proposed approach, low inter-class variations of certain
demographic groups arise due to their under-representation in the
training data. Such biases may lead to incorrect conclusions and
represent a major challenge that is outside the scope of this work.

Another limitation of this work is the realism of the intra-class
variations. In order to obtain more realistic variations, approaches
beyond GANs would be necessary, such as based on a combination
of GANs and diffusion models (Melzi et al., 2023a). Thereby, more
realistic intra-class variation could be achieved which, in turn, would
make the synthetically generated face images more suitable for
training face recognition systems. For instance, fine-tuning of
neural network-based face recognition models could be
performed to improve the recognition accuracy for specific
demographic groups (Melzi et al., 2023b) such as children.

6 Conclusion

This study introduced the HDA-SynChildFaces database, a
synthetic database of demographically balanced face images of
children across various age groups, including common intra-class
variations.

From experiments conducted on HDA-SynChildFaces, the
following key findings were obtained:

• The mated scores are, on average, not much impacted by face
age progression in all tested face recognition systems.

• The non-mated scores, on average, become significantly
higher proportional to the age in all tested systems.

• The EER and different FNMR rates at relevant FMR rates
increase proportional to the age in all tested systems.

• Subjects classified as female have higher EER as well as FNMR
rates than males at all age groups, with some exceptions in the
youngest group (ages 1–4).

• The race of the subjects has an impact on the systems, and
performance across all races worsens as the age of the subjects
decreases. Black and Asian subjects have especially high EER
and FNMR rates compared to White and Latino-Hispanic
subjects and children.

Future research will focus on improving child face recognition
performance and reducing its demographic differentials by utilizing
the proposed HDA-SynChildFaces database for algorithm training.
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