
Vol.:(0123456789)

Distributed and Parallel Databases (2022) 40:5–25
https://doi.org/10.1007/s10619-021-07334-1

1 3

Self‑adapting data migration in the context of schema
evolution in NoSQL databases

Andrea Hillenbrand1  · Uta Störl1  · Shamil Nabiyev1 · Meike Klettke2 

Accepted: 15 March 2021 / Published online: 30 April 2021
© The Author(s) 2021

Abstract
When NoSQL database systems are used in an agile software development setting,
data model changes occur frequently and thus, data is routinely stored in different
versions. The management of versioned data leads to an overhead potentially imped-
ing the software development. Several data migration strategies exist that handle leg-
acy data differently during data accesses, each of which can be characterized by cer-
tain advantages and disadvantages. Depending on the requirements for the software
application, we evaluate and compare different migration strategies through metrics
like migration costs and latency as well as precision and recall. Ideally, exactly that
strategy should be selected whose characteristics fulfill service-level agreements
and match the migration scenario, which depends on the query workload and the
changes in the data model which imply an evolution of the database schema. In this
paper, we present a methodology of self-adapting data migration, which automati-
cally adjusts migration strategies and their parameters with respect to the migration
scenario and service-level agreements, thereby contributing to the self-management
of database systems and supporting agile development.

Keywords  Databases · NoSQL · Data migration · Schema evolution · Self-adapting ·
Self management

 *	 Andrea Hillenbrand
	 andrea.hillenbrand@h-da.de

	 Uta Störl
	 uta.stoerl@h-da.de

	 Shamil Nabiyev
	 bdcc.fbi@h-da.de

	 Meike Klettke
	 meike.klettke@uni-rostock.de

1	 Computer Science Division, Darmstadt University of Applied Sciences, Darmstadt, Germany
2	 Institute of Computer Science, University of Rostock, Rostock, Germany

http://orcid.org/0000-0002-1063-5734
http://orcid.org/0000-0003-2771-142X
http://orcid.org/0000-0003-0551-8389
http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-021-07334-1&domain=pdf

6	 Distributed and Parallel Databases (2022) 40:5–25

1 3

1  Introduction

Especially in agile software development requirements change rapidly. Thus,
schema-flexible databases have become popular among agile developers as it eases
the burden of adapting the database every time the application code changes. How-
ever, this flexibility comes at the price of a certain structural entropy, i.e., a disarray
of the database. If legacy entities are not migrated instantaneously in the event of a
data model change, the new application code assumes a different data model than
what is being stored in the production database. We refer to this circumstance as
schema evolution, as the evolution of the data model also implies a schema change
in the database.

Figure 1 illustrates the situation with a very simple example. In an online gaming
scenario, scores are saved for the players (cf. Fig. 1a). At a certain point in time, the
attribute score is renamed to points in the application code and new entities are
then saved accordingly (cf. Fig. 1b). Now, when a query is executed for all players
with points>50, the legacy entity in Fig. 1a is not retrieved, which is incorrect.

This could be resolved through query rewriting [3, 10], which rewrites the que-
ries to reach all legacy entities by keeping track of past schema changes. However,
over time the exclusive use of query rewriting leads to high latency for data accesses
because of the increasing structural entropy of the database. Therefore, software
developers and database administrators are well-advised to take care of a suitable
data migration management.

The central issue in data migration management involves a decision how and
when to migrate legacy entities according to the latest data model. With the choice
of a data migration strategy it can be determined what amount of incurred cost is
invested into the structural homogeneity of the database in order to lower latency
times. Ideally, just the intended data entities are migrated at an opportune point in
time. What that is exactly depends on management requirements, like service-level
agreements (SLAs), and characteristics of the migration scenario. The options in
this decision with regard to the choice of a migration strategy generally range from
an eager strategy to a lazy strategy in addition to other strategies that lie in between
these alternatives. The eager strategy is an approach with which data entities, that
are affected by a schema change, are migrated to the current schema such that no
overhead in latency exists when accessing these data entities. The lazy strategy,
on the other hand, minimizes the migration costs as only those legacy entities are

{
"id" : 1234,
"name" : "Lisa",
"score" : 120,
"ts" : 13

}

(a) New player entity at timestamp 13.

{
"id" : 1235,
"name" : "Bart",
"points" : 60,
"ts" : 42

}

(b) New player entity at timestamp 42.

Fig. 1   Different structure of data entities in the database

7

1 3

Distributed and Parallel Databases (2022) 40:5–25	

migrated that are being accessed, while all other entities remain in their respective
schema versions. The characteristics of the migration strategies are discussed in
detail in Sect. 2 by means of different metrics that are going to be introduced.

In other words, the decision on the data migration strategy is also a decision on a
tradeoff between short latency times, which is crucial for application performance,
and between saving costs of unnecessarily migrating legacy entities that are unlikely
to be accessed in the future. On a management level, this tradeoff can be utilized to
constitute heuristics of how legacy entities should be dealt with, and even better,
the different heuristics can be made automatic on a data migration level in the form
of adaptive migration strategies based on these heuristics. Deciding on the tradeoff
between the metrics latency and migration costs is not the only way data migration
can be managed. The decision-making can also be based on or complemented by
two other metrics that describe that very same tradeoff from a perspective common
in information retrieval, i.e., the tradeoff between the classification metrics precision
and recall [15]. Depending on how successful the selection of migrated data entities
has been in terms of them actually being accessed, it indicates how well migration
costs have been spent in order to improve on latency.

Now, since SLAs and other requirements of application performance or budget-
ary limits should be known at the time of the software development, at least in the
order of magnitude, an approach of a self-managing database, which adapts the data
migration strategy automatically based on the given constraints, has its advantages.
The most important advantages are the reduction of the complexity of the software
development and the direct control of the compliance with the SLAs as self-adapta-
tion does not rely on management intervention or the reaction time of the database
administrator.

Contributions. We contribute a methodology of self-adapting data migration
in NoSQL databases in order to facilitate an automatic compliance of application
requirements specified as service-level agreements (SLAs). As database systems
evolve frequently in agile development settings, self-adapting data migration can
significantly speed up the development process and realize a cost-efficient self-man-
agement of database systems. We explore and investigate the possibilities of adapta-
tion by adjusting migration strategies and their parameters with respect to the migra-
tion scenario. We take all important characteristics of possible migration scenarios
into account that affect application requirements with the goal of eventually realiz-
ing a fully automatic database with regard to data migration. We present a method-
ology of data migration that allows for different patterns and intensity of the query
workload that has to be handled, the number and kind of changes in the data model
implying schema evolution in the database. Based on this, we devise new migration
strategies that self-adapt by utilizing the tradeoffs between the most important met-
rics in this context, i.e., the metrics of latency and migration costs and the metrics
precision and recall, thereby clarifying the operative decisions that have to be made
to meet the application requirements. We have implemented one of the proposed
adaptive migration strategies into our data migration middleware and can show that
it performs better compared to the common strategies.

This present paper is an extended version of a conference paper carrying the
title Towards Self-Adapting Data Migration in the Context of Schema Evolution in

8	 Distributed and Parallel Databases (2022) 40:5–25

1 3

NoSQL Databases [5]. Beside an elaboration and restructuring of contents in gen-
eral, this present version discusses another dimension in which data migration can
be adapted, that is, how the classification metrics precision and recall can be uti-
lized in self-adaptive approaches.

Structure. This paper is structured as follows: In Sect. 2, we discuss the charac-
teristics of particular data migration strategies. In Sect. 3, we introduce the archi-
tecture of our schema management middleware Darwin featuring various migration
strategies, as well as the tool-based migration advisor MigCast, including exemplary
charts of the metrics, with which we can assess the performance of the migration
strategies. In Sect. 4, we discuss four approaches how migration strategies can be
advanced to exhibit self-adaptive capabilities. In Sect. 5, we discuss the realization
and simulation results of one such self-adaptation approach, an adaptive migration
strategy, which we have already implemented in our middleware Darwin. In Sect. 6,
we address related work, before we conclude with an outlook in Sect. 7.

2 � Data migration strategies

In Sect. 2.1, we define the used terms of this paper. In Sect. 2.2, we get into the
details of the data migration strategies and discuss their advantages and disadvan-
tages depending on the migration scenario. In Sect. 2.3, we sum these characteristics
up in the form of a compact table.

2.1 � Notions concerning data migration strategies

By the term data access latency we refer to the time that it takes to retrieve a
requested data entity, i.e., a read access. Latency’s antagonist in the competition for
optimal application performance are the data migration costs, by which we refer
to the charges occasioned by migrating the data. We differentiate between on-
release and on-read migration costs, which together add up to the cumulated migra-
tion costs. On-release migration costs are caused when entities are migrated in the
event of a schema change and depend on how many entities are affected and how
these legacy entities are handled. In contrast to on-release migration costs, on-read
migration costs are caused when entities are being accessed that exist in older ver-
sions than the current schema indicates. Furthermore, we refer to the charges, that
would have to be invested in order to migrate all legacy entities to a structurally
homogeneous database instance, as migration debt. We abbreviate these terms by
latency, migration costs when referring to the cumulated costs, and migration debt.
Figure 3 depicts the metrics for all migration strategies in a particular migration sce-
nario, which we discuss in Sect. 3. As regards the used classification metrics in this
paper, the notion of precision is defined as the fraction of correctly predicted entities
among the total predicted entities, and recall as the fraction of correctly predicted
entities among the accessed entities.

9

1 3

Distributed and Parallel Databases (2022) 40:5–25	

2.2 � Data migration strategies

2.2.1 � The eager migration strategy

With the eager strategy, all legacy entities are migrated instantaneously at the release
of data model changes. This being the case, the application code can directly access
a structurally homogeneous database instance at any point in time. Then data access
latency is minimal as there is no data structure entropy involved, which would need
to be accounted for, and no migration debt can be accumulated. However, this opti-
mal condition of the database is paid for accordingly in terms of migration costs,
as all data needs to be kept up-to-date, even that data which is likely to not ever be
accessed again in the future.

2.2.2 � The lazy migration strategy

Whereas eager migration resolves the above-mentioned tradeoff between migration
costs and latency in favor of optimal latency no matter the price, lazy migration can
be found at the opposite end of this tradeoff. As the name already implies, with lazy
migration the legacy data remains completely unchanged in the event of a release
of data model changes. However, in case that legacy entities are being accessed,
they are migrated on-the-fly in order to adhere to the new data model, which causes
a runtime overhead [4, 12]. This situation occurs rather often and may or may
not come at an opportune time with regard to application performance. With the
lazy migration strategy software developers can react flexibly to agile requirement
changes at no immediate migration costs, however, this entails carrying the full debt
of structural entropy.

A compromise between the two competing goals can be reached by migrating
data proactively, i.e., by acting in advance of situations when migrating legacy enti-
ties could cause latency overhead. Ideally, exactly those legacy entities should be
migrated that will be accessed in the near future. Although future data accesses can-
not be predicted reliably, data migration strategies can be thought of that proactively
migrate data reasonably. Here, we present incremental and predictive migration,
which we have implemented in our middleware tool Darwin (cf. Sect. 3). In Sect. 5,
we discuss another proactive strategy, the adaptive strategy, which we have imple-
mented as exemplary realization of a self-adaptive approach serving as a proof of
concept of Sect. 4.3.

2.2.3 � The incremental migration strategy

With incremental migration, releases of data model changes are usually treated like
with lazy migration, i.e., legacy data remains unchanged and the migration debt
increases accordingly. However, lazy periods of time are interrupted by regular bouts
of tidying up the database. Then, the structurally heterogeneous database instance
migrates all legacy entities and thus, gets rid of the runtime overhead that is caused
by updating legacy entities on-the-fly when being accessed. Incremental migration
usually does this tidying up in certain increments of time coinciding with particular

10	 Distributed and Parallel Databases (2022) 40:5–25

1 3

releases of data model changes at a regular cycle. Ideally, this regular database
update can be matched with known periods when data accesses are less frequent,
for example at night or weekends. This being the case for incremental migration
strategy, latency and migration costs vary between the opposite approaches of eager
and lazy migration. Thus, a compromise on the above-mentioned tradeoff is being
reached on a regularly alternating basis, with periods of no and periods of moderate
migration debt.

Similarly, it also appears beneficial to migrate all legacy entities incrementally
prior to periods of frequent and extensive data accesses in order to take particular
advantage of low latency times. In Sect. 4, we initiate the incremental migration
thereby choosing these points in time, based on certain events, in order to settle all
of the migration debt, so that latency is optimal again when it is required.

2.2.4 � The predictive migration strategy

Although correctly forecasting all future data entity accesses hardly seems possi-
ble, a predictive approach can be justified by the assumption that the oftener entities
were accessed in the past, the more likely it is that they be accessed again in the
future. The so-called hot data, i.e., frequently accessed data, should be kept up-to-
date, as otherwise the runtime overhead and on-read migration costs would have to
be taken into account just as often as their schema changes.

As a consequence, predictive migration is implemented in our middleware by
keeping track of past data accesses while ordering the accessed entities accordingly
via exponential smoothing. This established technique in time series data weighs the
entities by their actuality and access frequency: The more recent the entity accesses,
the higher the weight of the entity. However, past accesses are not weighed equally,
but weights decrease exponentially over time simulating an aging process of the
entities by accounting for actuality as well as for access frequency [8]. In Darwin,
the ordered, to-be-migrated entities are kept in the so-called prediction set. By this
approach, a subtler compromise is being reached on the tradeoff between latency
and migration costs in comparison with incremental migration. The basis for this is
the Pareto distribution of cold and hot data, which is very common in OLTP data-
base applications [8]. This phenomenon is utilized in the predictive approach to keep
a reasonable balance of spending on migration costs in order to improve latency.
The prediction set has a certain, fixed size, which is defined prior to the application
of the strategy. Data, that is not contained in the prediction set, is migrated when it is
accessed lazily. In Sect. 4, we adapt the predictive strategy by means of controlling
the prediction set size according to SLA requirements and the migration scenario.

2.3 � Summary

Table 1 summarizes and evaluates the characteristics of the presented data migration
strategies including two more references of comparison: the possibility of an adap-
tive migration strategy, which is motivated and defined in Sect. 4.3 and evaluated
in Sect. 5, and the no-migration scenario. In the latter scenario, it is not possible to

11

1 3

Distributed and Parallel Databases (2022) 40:5–25	

migrate any data at all, for example, for regulatory or other technical reasons. Then
all datasets are kept in these particular versions. In order to access datasets in previ-
ous or subsequent versions, backward and forward query rewriting has to be used,
respectively, which rewrites each query by distributing them onto all present schema
versions [3, 10]. This exclusive use of query rewriting, though, leads to a very high
latency overhead and migration debt.

The characteristics of the compared strategies are the metrics of (cumulated)
migration costs, latency overhead compared to eager migration, that is, compared to
reading data that is already migrated, migration debt, and in the last column, effort
for query rewriting. Regarding the semantics of the used symbols, the ratings do
not imply a high or low value, but describe whether the characteristic behavior is
favorable or unfavorable. For example, high migration costs are usually avoided and
are thus represented by as many signs of “–”, as opposed to potentially saved costs
of migration debt expressed through as many signs of “+”. A neutral “o” implies a
balanced compromise on a particular metric. Compare the table with Figs. 3 and 6,
which show MigCast-generated charts illustrating the evaluation of the metrics in
terms of each of the migration strategies.

3 � Architecture

In this section, we describe our tool-based advisor MigCast which is based on our
schema management middleware Darwin, both visualized in Fig. 2. Following a
discussion on the architecture, exemplary MigCast-generated charts are shown in
Fig. 3, by which we discuss the above defined metrics as an example of a migration
scenario.

Darwin supports the entire schema management life cycle [14]. Schema manage-
ment for NoSQL databases consists of two main tasks: The schema evolution man-
agement as such, and the data migration, which has to be embedded in a precise
schema evolution management in order to be a safe and sound process. For the task
of schema evolution management, we use Darwin to initially declare or extract sche-
mas, define schema evolution operations, or extract schema versions and schema

Table 1   Characteristics of the discussed data migration strategies with regard to certain metrics, includ-
ing the reference of the no-migration strategy

Migration strategy Migration costs Latency overhead Migration debt Effort
for query
rewriting

Eager – – – +++ +++ +++
Incremental – – o ++ o
Predictive + – o o
Lazy ++ – – – – o
Adaptive o + o o
None (versioning) +++ – – – – – – – – –

12	 Distributed and Parallel Databases (2022) 40:5–25

1 3

Fig. 2   Architecture of the migration advisor MigCast based on the middleware Darwin, their submod-
ules as well as input parameters and calculated metrics

Fig. 3   Impact on the metrics for different migration strategies in an exemplary migration scenario: High
workload of data entity accesses in a Pareto pattern, medium multi-type complexity, low cardinality of
1:1-relationships of the underlying data model, growth rate of entities 10% beginning with 1,000 simu-
lated entities and scaled up to 10M entities, and a cloud price USD 0.2 per 1M I/O requests

13

1 3

Distributed and Parallel Databases (2022) 40:5–25	

evolution operations from legacy data. We have presented these functionalities in
Klettke et al. [7] and Störl et al. [14]. In this present paper, we present a methodol-
ogy of self-adapting data migration which builds on our demo paper about Mig-
Cast [4], which focuses on data migration itself.

All data migration strategies presented in Sects. 2 and 5 are supported by Dar-
win. The data migration is performed in Darwin by the Data Migration Manager
based on the schema evolution operations managed by the Schema Evolution Man-
ager. The Schema Evolution Manager implements different kinds of schema evolu-
tion operations that we have defined in Scherzinger et al. [13]: Single-type schema
evolution operations affect just one class, table, or entity type, respectively, of which
we implemented add, delete, and rename into our middleware, whereas multi-
type operations affect several entity types at once, of which we implemented copy
and move. All these schema evolution operations could theoretically also be per-
formed using the add and delete operations. Thus, all schema changes could be
executed using these schema evolution operations.

In Scherzinger et al. [13], we also discussed that the create-or-replace semantics
inherent in our NoSQL database programming language make for a well-defined
behavior of schema evolution operations. This facilitates safe and efficient migra-
tion processes. Without the use of such a schema management middleware, the data
migration would have to be performed within the application, or even less elegantly
in the context of NoSQL schema evolution, by migration scripts, both of which
would likely turn out quite costly and error-prone [12]. Furthermore, the migration
strategies and metrics discussed in Sect. 2 have been developed and tested for docu-
ment, wide-column, and multi-model data stores. Darwin interfaces with popular
NoSQL database management systems, among them MongoDB, Couchbase, Cas-
sandra, and the multi-model database ArangoDB.

Based on Darwin, we have implemented the tool-based advisor MigCast for
exploring data migration strategies [4] in order to examine the effects of the data
migration strategies with regard to the metrics of migration costs, latency, and
migration debt. As illustrated in Fig. 2, MigCast calculates these metrics based on
the characteristics of the database instance, the characteristics of the data access
pattern, the number and complexity of the data model changes, and the options of
several database management systems and of different cloud pricing models. Then,
MigCast visualizes the metrics for each of the migration strategies in different
graphs showing their development through 12 releases of schema changes.

Based on the above characteristics the metrics are calculated as follows: On a
sample set of data, the Workload Simulator of MigCast executes the workload of
served data entity accesses between releases of new software, which is parameter-
izable to simulate different distributions of data entity accesses. The accesses can
cause on-read migration costs with migration strategies that delay migrating legacy
entities. Then, Darwin performs the schema evolution operations implied by the
data model changes corresponding to the consecutive releases. After the schema
evolution operations are applied, affected legacy entities are migrated depending
on the migration strategy, which can cause on-release migration costs. The metrics
are determined by help of a Cost Calculator and a Latency Profiler of MigCast (cf.
Fig. 2). These modules deliver results based on a cloud provider pricing model per

14	 Distributed and Parallel Databases (2022) 40:5–25

1 3

served 1M of I/O-requests, i.e., read or write requests, and the time that it takes to
serve the requests.

In order to illustrate this, Fig. 3 depicts the on-read and on-release migration
costs during the releases of schema changes and their cumulation, as well as entity
access latency and migration debt of the discussed data migration strategies for a
specific and typical migration scenario. The charts are generated using a Pareto-dis-
tributed data access pattern, 50% of multi-type schema operations, 1:1-relationships
of the cardinality of the underlying data model (an online gaming scenario more
detailed as in Fig. 1), MongoDB and a cloud provider pricing model of USD 0.2 per
served 1M of I/O-requests. Other migration scenarios can be simulated by MigCast
as all characteristics are parameterizable. The x-axes represent consecutive software
releases, while the y-axes represent each of the discussed metrics.

As can be observed consistent with the discussion of the migration strategies in
Sect. 2, and in particular, consistent with the summary of the characteristics of the
data migration strategies in Table 1, the graph of the eager strategy represents an
upper bound of the cumulated migration costs and on-read costs, as well as a lower
bound of latency and migration debt. Analogously, the lazy strategy can be observed
to be the lower bound in terms of cumulated migration costs and on-release costs
and an upper bound with regard to latency, migration debt and on-read migration
costs. In this sense, the eager and lazy strategy can be viewed as baselines, by which
the other migration strategies can be assessed in terms of their performance with
regard to the different metrics. As we can see for instance, the overhead on latency
is oftentimes twice as high with the lazy strategy than with the eager strategy, yet
half of migration costs are accumulated illustrating the discussed tradeoff between
migration costs and latency. Consistently in between the eager and lazy strategies,
the other discussed strategies can be found, with the exception of the incremental
strategy in terms of on-release migration costs at releases 5 and 10 when eager
migration is initiated at preset increments. The predictive migration has advantages
in terms of lower latency compared to lazy, despite only marginally higher migra-
tion costs, though being caused by on-release costs beside on-read costs only in case
of lazy.

In different migration scenarios, the migration strategies show different charac-
teristics. For instance, at lower workload of data entity accesses those migration
strategies that utilize the Pareto distribution pattern, e.g., the lazy strategy, are meas-
ured at lower on-read and cumulated migration costs. If the workload, however, is
evenly distributed among the data entities, then the lazy approach produces more
migration costs. In case that the growth rate of the number of data entities is higher,
the slopes of the graphs are tend to become higher. These and other correlations
between migration scenario characteristics and metrics of migration strategies have
been the focus of our research, but go beyond the scope of this paper (rf. to Sect. 7
for an outlook).

Now, the question how and when data migration strategies can be adapted, or
self-adaptive, is going to be presented in the following section. The results calcu-
lated by MigCast are crucial in order to monitor, predict, and verify the effects of
the data migration strategies in terms of the metrics. In this sense MigCast serves

15

1 3

Distributed and Parallel Databases (2022) 40:5–25	

as a migration advisor at the same time facilitating an automatic adjustment of the
migration strategies.

4 � Self‑adapting data migration

In the following, we determine what options we have for data migration to be self-
adapting and when self-adaptation is advisable. Depending on these determined
options and criteria, we can describe how data migration can be self-adapting.
Addressing all of these dimensions of self-adaptation of data migration in unison
constitutes the most important task towards realizing a self-management of database
systems.

4.1 � The “what” of self‑adapting data migration

If adaptation is advisable, then there are two options of self-adaptation that can be
distinguished:

–	 Step 1: Initiation of a migration strategy that satisfies all constraints.
–	 Step 2: Adjusting the parameters of the selected migration strategy.

Ideally, the choice of a migration strategy and its parameters are adapted to suit the
migration scenario and fulfill all required constraints.

4.2 � The “when” of self‑adapting data migration

Let us gather criteria for adaptation in order to be able to determine how data migra-
tion can be self-adapting. Criteria that make data migration advisable in order to
approximate an optimal decision on the tradeoff between latency and migration
costs, and/or the tradeoff between precision and recall, respectively, can be taken
from stipulated service-level agreements (SLAs). They can also be inquired of soft-
ware project stakeholders or deduced from non-functional requirements such as usa-
bility, performance, and availability.

We investigate the following criteria:

–	 Compliance with an average or maximum latency when accessing data, or a
change in latency within a certain period, as a quantitative descriptor.

–	 Compliance with a maximum limit for migration costs within a certain period as
a quantitative descriptor accounting for budgetary liabilities.

–	 Compliance with a maximum migration debt at a certain point in time as a quan-
titative descriptor accounting for necessary budgetary provisions.

–	 Compliance with an average or minimum precision when accessing data, or a
change in the precision within a certain period, as a qualitative descriptor for the
relevance of past migrations.

16	 Distributed and Parallel Databases (2022) 40:5–25

1 3

–	 Compliance with an average or minimum recall within a certain period as a qual-
itative descriptor for the relevance of past migrations.

–	 Compliance with a maximum database entropy as a qualitative descriptor
accounting for the fact that data migration for multi-type operations is consider-
ably more expensive than for single-type operations.

In a self-adapting database, the question when to adapt data migration can be
answered in respect of the above: If a threshold value of stipulated requirements of
the SLAs is exceeded, then actions are taken accordingly and automatically, so that
it does not require a repeated inquiry of or intervention by stakeholders. Notwith-
standing the above, it is conceivable that adaptations can also be implemented by
software developers proactively without formally stipulated SLAs, yet the discussed
options and criteria should be assessed carefully in order to comply with the best
practices of database management.

4.3 � The “how” of self‑adapting data migration

In the following, we describe how adjustments to migration strategies can be made
automatic based on the previously determined options and criteria. Depending on
the distribution of data entity accesses that have to be served, what we call the work-
load pattern, several use cases can be distinguished. The remainder of this section
is thus structured as follows: We distinguish by the kind of query workload pattern,
i.e., whether the data accesses of the workload can be assumed to be localized or
whether this information is not available. We discuss for both cases how adjustments
can be put into effect automatically based on the previously determined options and
criteria in order to approximate an optimal decision on the tradeoffs between latency
and migration costs and/or between precision and recall.

4.3.1 � Random distribution of data accesses

The first and basic use case assumes that the distribution of data accesses does not
contain adaptation-relevant information, i.e., the distribution is either highly vari-
able, random, unpredictable, or unknown at the time. In this case, where we cannot
utilize any information to our advantage, we suggest an self-adaptively incremental
approach in which incremental migration is initiated at a varying frequency depend-
ing on the above discussed requirements, as depicted in Fig. 4a. Precisely, during
new software releases implying schema changes (horizontal axes), the incremental
migration is initiated at a frequency so that the average latency in a certain period
of time � complies with the requirement of a maximal latency ���� , while the average
migration costs in a given period of time � do not exceed the maximum migration
costs ����:

 (Il∕c) if � > ���� ∧ � < ���� then execute an incremental migration;
We use ���� as threshold to illustrate the principle. Of course, ���� should be spec-

ified slightly below the value agreed in the SLA, so that this threshold is certain
to not be exceeded (safety margins for thresholds can be applied analogously with

17

1 3

Distributed and Parallel Databases (2022) 40:5–25	

all other metrics, but are left out for brevity). In case that an initiated incremen-
tal migration would exceed the migration costs ���� , the requirements can be prior-
itized by stakeholders in advance. If ���� must be complied with at any cost, then �
is disregarded:

 (Il) if � > ���� then execute an incremental migration;
In addition or as an alternative to the above, the average recall in a given period

of time � is required to comply with the minimal recall ���� , while the average
migration costs in a given period of time � do not exceed the maximum migra-
tion costs ���� . We formulate the conditional expression by substituting recall for
latency, since the fraction of correctly predicted entities among the accessed entities
is correlated (inversely proportional) to latency as with the investment of migration
costs recall becomes higher and this translates to a lower latency, and vice versa.

 (Ir∕c) if � < ���� ∧ � < ���� then execute an incremental migration;
Accordingly, imagine that latency would have to be minimal, i.e., there must not

exist any legacy entities that are accessed causing latency overhead no matter the
migration costs, and this would be better controlled by a measure like the recall
which technically guarantees an optimal latency. In this admittedly technical case,
an eager migration strategy is emulated by means of the incremental strategy, where
� frequently reaches ���� = 1:

 (Ir) if � < ���� then execute an incremental migration;
If we assumed that there are no parallel migration routines, as is ordinarily the

case, then r < 1 would be tantamount to the situation that schema evolution opera-
tions have taken place and incremental migration is about to be initiated.

Fig. 4   Self-adaptation of data migration strategies with random (left) or localized (right) read accesses
controlled through different metrics

18	 Distributed and Parallel Databases (2022) 40:5–25

1 3

4.3.2 � Localized distribution of data accesses

In many database applications a certain bias can be detected where accesses con-
centrate more on some data entities than on others [8]. In case that data accesses are
localized, we can utilize this additional information to our advantage for the pur-
pose of self-adapting data migration. We have explained in Sect. 2 that the predic-
tive approach is superior compared to approaches that do not take the distribution of
data accesses into account. Here, latency can be kept lower despite a growing migra-
tion debt that is caused through different versions of data. We discuss for this use
case how adjustments to the predictive approach can be put into effect automatically
based on the previously determined criteria in order to approximate an optimal deci-
sion on the tradeoff between latency and migration costs. We distinguish:

–	 a complexity-adaptive approach avoiding a backlog of complex schema evolu-
tion;

–	 a requirement-adaptive approach as a feedback control system based on require-
ments with respect to latency and migration costs or recall and migration costs;

–	 a relevance-adaptive approach as a feedback control system based on require-
ments with respect to the ratio of precision and recall;

–	 an efficiency-adaptive approach, measured by the ratio of latency improvement
by invested migration costs.

4.3.2.1  The complexity‑adaptive approach  In predictive migration, the prediction
set has a certain, fixed size. Data that is not contained in the prediction set is migrated
when it is accessed lazily. If expensive operations have occurred in the course of the
schema evolution history, then a latency peak can occur if data entities are accessed
that are affected by such schema operations. For example, this usually happens dur-
ing major schema changes in agile development settings. In detail, these expensive
schema operations are copy, move, split, or merge, i.e., operations that affect
several entity types at once [1, 13].

Now, this situation of a backlog of complex data model changes can be prevented
by adjusting the prediction set size at certain points in time. In Darwin, we have
implemented this increase of the prediction set size in case that a certain number of
multi-type operations have accrued. This number, which represents a measure for
the backlog of multi-type operations with respect to an entity type, can be speci-
fied in Darwin as a parameter, thereby allowing the possibility to control the degree
of structural entropy in a database as it pertains to dependencies between different
entity types.

This self-adaptation approach can be implemented by software developers as a
proactive measure in order to avoid exceptionally long latency times. This proactive
decision can be inquired of the stakeholders or lies solely in the hands of developers
that are experienced with that particular kind of database-backed application. With
the complexity-adaptive approach, the prediction set size ������ of the predictive
migration is increased if a certain number of multi-type operations ���� since the

19

1 3

Distributed and Parallel Databases (2022) 40:5–25	

last increase of the prediction set size is exceeded and causes substantial database
entropy.

We have implemented this first approach in MigCast as an adaptive strategy and
compare it in Sect. 5 with the other migration strategies outlined in Sect. 2. An ini-
tial value of ������ (equivalent to the prediction set size of the predictive strategy)
should be chosen commensurate with the expected proportion of multi-type opera-
tions in the set of evolution operations. Without loss of generality, we specified the
initial value in MigCast at 10% of the number of entities per type. An example of the
advantage of this complexity-adaptive migration is demonstrated in Fig. 6 of Sect. 5.

4.3.2.2  The Requirement‑Adaptive Approach  In this approach, we suggest a feed-
back control system based on stipulated requirements regarding latency and migra-
tion costs. Let us assume that since that last release of data model changes the current
latency exceeds the stipulated maximal latency ���� . Then, the prediction set size is
stepwise increased with each release, and data is migrated in the order of the predic-
tion set until the stipulated maximal migration costs ���� are exhausted:

It follows that if � ≤ ���� ∧ � < ���� holds, then the prediction set is not changed.
In this case, the system fulfills all requirements of the application and guarantees
the SLA concerning latency and migration costs. If � > ���� ∧ � ≥ ���� holds, then
the SLA targets cannot be fulfilled simultaneously at this specific time. In this case,
different strategies can be applied, e.g., a notification of stakeholders to include a
prioritization of either not exceeding migration costs or latency into the SLA targets.

Figure 4b shows an example of the behavior of the system. By using this algo-
rithm, a sufficient latency is reached, maybe keeping some reserves for migration
expenditures in future releases. Note that with a prediction set size of 100% the
requirement-adaptive approach coincides with eager migration, and a prediction set
size of 0% is synonymous with lazy migration.

Certain constellations can lead to repeated increases and decreases of the predic-
tion set of alternating releases. If continuous switching is not desired, a delay can
be built in which prohibits an increase if a decrease was executed in the previous
release, and vice versa. In this particular case, the system behaves like a hysteresis
control well-established in dynamic systems [9].

Note that, as with the self-adaptively incremental approach, the migration cost-
latency tradeoff can be complemented by requirements for minimal recall thresh-
olds. For instance, the requirement-adaptive adaptation (Pl∕c) can be reformulated
as:

(Pm) �� #(multi-type operations) > ����

���� increase ������;

...∕∕subsequent migration

decrease ������;

(Pl∕c) �� � > ���� ∧ � < ���� ���� increase ������;

���� �� � ≤ ���� ∧ � ≥ ���� ���� decrease ������;

20	 Distributed and Parallel Databases (2022) 40:5–25

1 3

4.3.2.3  The relevance‑adaptive approach  Furthermore, we suggest a feedback con-
trol system based on requirements regarding the ratio of the classification metrics
precision and recall, which could be stipulated in the SLA as well (cf. Sect. 2.1 for a
definition of precision and recall). The measures of precision and recall can be con-
sidered as qualitative descriptors for the relevance of past migrations: If all predicted
entities have been accessed, then precision is 100% , and if all accessed entities have
been predicted, then the recall is 100% . In this case, all predictions were relevant.
Analogously, if one entity was not accessed, yet predicted, it would not have been
relevant to predict it to be accessed—the precision is < 100% . If one entity was not
predicted but accessed, thus being a legacy entity, then it would have been relevant
to predict it to be accessed—recall is < 100% . Since the accesses cannot generally
be predicted exactly, a tradeoff stipulated in the SLA is tantamount to a certain ratio
between precision and recall of � , i.e., the ratio of the accessed entities and the pre-
dicted entities.

E.g., if � = 1 , then precision and recall are equal, which means that there are just as
many falsely predicted as falsely not predicted entities. By means of � , the relative
importance of the metrics can be controlled, for instance, when migration costs are
relatively cheap and high latency is should be avoided as high opportunity costs,
then � should be set lower in order to emphasize the importance of a higher recall.
Depending on the scenario, a classification metric could be used that also considers
correctly not predicted entities among the not accessed entities, like selectivity, or
combinations of metrics, like the traditional F-measure [15].

As discussed above with requirement-adaptive adaptation, if continuous switch-
ing is not desired, a delay can be built in which prohibits an increase if a decrease
was executed in the previous release, and vice versa. Alternatively, the ratio of preci-
sion and recall can be compared against an interval around � , x < 𝛼 < y , such that
the prediction set size is increased if �∕� > x and decreased if �∕� < y.

4.3.2.4  The efficiency‑adaptive approach  Last but not least, we suggest an adapta-
tion with respect to the differentials of latency or recall. In order to illustrate this, we
draw up correlations between latency and migration costs, and between recall and
migration costs, respectively, in a coordinate system of Fig. 5. The correlations may
be assumed negatively logarithmic and logarithmic, respectively, as data accesses are
usually localized, i.e., Pareto distributed. As dependent variables, latency L and recall
R are now plotted against the migration costs as discrete-valued steps of the predic-
tion set size as the independent variable ������ . The derivatives of the latency and
recall functions L′ and R′ indicate how they change with respect to changes of the
prediction set size. In other words, the derivatives dL

d������
 and dR

d������
 can be viewed as

(Pr∕c) �� � < ���� ∧ � < ���� ���� increase ������;

���� �� � ≥ ���� ∧ � ≥ ���� ���� decrease ������;

(Pp∕r) �� �∕� > 𝛼 ���� increase ������;

���� �� �∕� < 𝛼 ���� decrease ������;

21

1 3

Distributed and Parallel Databases (2022) 40:5–25	

the efficiency of latency/recall change per migration investment. In order to remain
consistent with the intuitive notion of efficiency, we draw up the negative derivative
of latency.

As regards latency, we can use this notion in order to formulate a requirement by
which migration, while improving on latency until ���� , is intended to remain cost-
efficient up to a stipulated minimal efficiency ����:

Here, ���� can be thought of as specified as an SLA in order to put a require-
ment into effect regarding efficiency of migration costs, which correlates to a cer-
tain latency L(����) ∶= ���� where |L�(����)| = ���� and L(����) ∶= ���� where
|L�(����)| = ���� . This way stakeholders can exercise their influence to avoid spend-
ing on unnecessary migration costs for improving a latency that is already accept-
able for the intended application.

As regards recall, the efficiency-adaptive adaptation can be reformulated analo-
gously: While improving on recall until ���� , migration is intended to remain cost-
efficient up to a stipulated minimal efficiency �′

���
:

(Pl∕e) �� L(������) > ���� ���� increase������;

���� �� |L�(������)| < |����| ���� decrease������;

(Pr∕e) �� R(������) < ���� ���� increase ������;

���� �� |R�(������)| < |��
���

| ���� decrease������;

Fig. 5   Applying a efficiency-adaptive approach by means of derivatives of latency or recall as efficiency
measures per invested migration cost

22	 Distributed and Parallel Databases (2022) 40:5–25

1 3

Here, a requirement can be stipulated in terms of efficiency with respect to
recall R(����) ∶= ���� where R

�(����) = ��
���

 and R(����) ∶= ���� where
R

�(����) = ��
���

.
We described in detail how adjustments to data migration strategies can be auto-

matically adapted in order to fulfill all required constraints while suiting the migra-
tion scenario.

5 � Evaluation of a self‑adaptive strategy

In the preceding section, we discussed four approaches how migration strategies can
be advanced to have self-adaptive capabilities. As a result, the complexity of soft-
ware development can be reduced, because requirements are complied with automat-
ically and do not rely on human intervention or reaction time. As a first step towards
realizing all presented approaches of self-adaptation into our middleware Darwin,

Fig. 6   Impact on the metrics for different migration strategies including the complexity-adaptive strategy
(same migration scenario as in Fig. 3)

23

1 3

Distributed and Parallel Databases (2022) 40:5–25	

we have implemented the complexity-adaptive approach. We can show already that
this self-adaptive migration strategy has advantages and is favorable in respect of the
characteristics summarized in Table 1, because it is a good compromise.

In Fig. 6, the MigCast simulation now also includes an adaptive migration strat-
egy in the sense of the complexity-adaptive approach of Sect. 4.3. The investment
of proactive migration costs through the increase in the prediction set size reduces
the migration debt compared to the predictive approach. This can be observed, for
instance, at release 11 of the charts, when on-release costs are invested with the
adaptive strategy and the latency subsequently remains constant (release 12) avoid-
ing a peak in latency happening with the predictive strategy, which is the a result
of a backlog of complex schema evolution. In general, it can be observed, certainly
from release 4 onwards, that the adaptive strategy is advantageous in this migra-
tion scenario compared to predictive migration with regard to on-read performance
and latency. Peaks of long latency times are avoided systematically contributing to a
more stable application performance.

This advantage of a mostly lower and relatively constant latency comes at a very
fair price: Comparing the migration costs of all migration strategies, it can be con-
cluded that the adaptive strategy distributes the incurring costs better between the
releases but also between on-release and on-read costs at slightly more but reason-
able cumulated costs (cp. with Table 1).

6 � Related work

While there is a certain amount of related work that focuses on offline eager migra-
tion, for instance, Curino et al. [2] and Velegrakis et al. [16], there is very limited lit-
erature on other data migration strategies. Some approaches suggest lazy data migra-
tion for very large NoSQL databases, for instance, in Scherzinger et al. [13], and in
Saur et al. [12], the overhead of lazy migration is discussed in terms of NoSQL data-
bases. The foundations of different data migration strategies like incremental and
predictive migration have been introduced in [6] and investigated in Klettke et al.
[4]. Although workload monitoring can be applied for different tasks like automated
database tuning [11], we are not aware of any approaches for automated selection
and adaptation of these data migration approaches as has been presented in this
paper.

7 � Conclusion and outlook

In this paper, we have presented a methodology of self-adapting data migration,
which automatically adjusts migration strategies and their parameters with respect
to the migration scenario and SLAs. Our methodology takes various characteristics
into account like the query workload to be handled, the number and kind of changes
in the data model caused by schema evolution, and the requirements for the applica-
tion specified in service-level agreements in terms of a reasonable compromise on

24	 Distributed and Parallel Databases (2022) 40:5–25

1 3

the tradeoffs between the cost metrics latency and migration costs and between the
classification metrics precision and recall.

The resulting advantages of the concrete implementation of the complexity-adap-
tive strategy are so promising that we are currently working on the implementation
of all other approaches into our middleware. Then, the methodology of self-adap-
tation can be compared in form of different configurations of adaptive migration
strategies in order to eventually support a fully automatic database in respect of all
possible migration scenarios. Complementing this, we have also been working on
the investigation of the correlation between migration costs and latency and the vari-
ation of migration scenario characteristics in order to shed light on each of their
impacts. Based on these quantitative results, the methodology of self-adaptation can
be evaluated in terms of concrete performance effects in different migration scenar-
ios. Based on these investigations, a heuristics can be distilled in order to support
migration decisions by software project stakeholders, ultimately validating the heu-
ristics and making the transition to a fully automatic database.

Funding  Open Access funding enabled and organized by Projekt DEAL. This work has been funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 385808805.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Curino, C., Moon, H.J., Tanca, L., Zaniolo, C.: Schema Evolution in Wikipedia—toward a web informa-
tion system benchmark. In: Proc. ICEIS’08, pp 323–332 (2008)

	 2.	 Curino, C., Moon, H.J., Deutsch, A., Zaniolo, C.: Automating the database schema evolution process.
VLDB J. 22(1), 73–98 (2013)

	 3.	 Herrmann, K., Voigt, H., Behrend, A., Rausch, J., Lehner, W.: Living in parallel realities: co-existing
schema versions with a bidirectional database evolution language. In: Proc. SIGMOD’17, ACM, pp
1101–1116 (2017)

	 4.	 Hillenbrand, A., Levchenko, M., Störl, U., Scherzinger, S., Klettke, M.: MigCast: Putting a price tag on
data model evolution in NoSQL data stores. In: Proc. SIGMOD’19, ACM, pp 1925–1928 (2019)

	 5.	 Hillenbrand, A., Störl, U., Levchenko, M., Nabiyev, S., Klettke, M.: Towards self-adapting data migration
in the context of schema evolution in NoSQL databases. In: 2020 IEEE 36th International Conference
on Data Engineering Workshops (ICDEW), pp 133–138 (2020)

	 6.	 Klettke, M., Störl, U., Shenavai, M., Scherzinger, S.: NoSQL schema evolution and big data migration at
scale. In: Proc. SCDM’16, IEEE, pp 2764–2774 (2016)

	 7.	 Klettke, M., Awolin, H., Störl, U., Müller, D., Scherzinger, S.: Uncovering the evolution history of data
lakes. In: Proc. SCDM’17, IEEE, pp 2462–2471 (2017)

	 8.	 Levandoski, J.J., Larson, P., Stoica, R.: Identifying hot and cold data in main-memory databases. In: Proc.
ICDE’13, IEEE, pp 26–37 (2013)

	 9.	 Mellodge, P.: A Practical Approach to Dynamical Systems for Engineers. Elsevier, Amsterdam (2016)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

25

1 3

Distributed and Parallel Databases (2022) 40:5–25	

	10.	 Möller, M.L., Klettke, M., Hillenbrand, A., Störl, U.: Query rewriting for continuously evolving NoSQL
databases. In: Proc. ER’19, Springer, LNCS, vol 11788, pp 213–221 (2019)

	11.	 Mozaffari, M., Nazemi, E., Eftekhari-Moghadam, A.: Feedback control loop design for workload
change detection in self-tuning NoSQL wide column stores. Expert Syst. Appl. 142 (2020)

	12.	 Saur, K., Dumitras, T., Hicks, M.W.: Evolving NoSQL databases without downtime. In: Proc.
ICSME’16, IEEE, pp 166–176 (2016)

	13.	 Scherzinger, S., Klettke, M., Störl, U.: Managing schema evolution in NoSQL data stores. In: Proc.
DBPL’13 (2013)

	14.	 Störl, U., Müller, D., Tekleab, A., Tolale, S., Stenzel, J., Klettke, M., Scherzinger, S.: Curating vari-
ational data in application development. In: Proc. ICDE’18, pp 1605–1608 (2018)

	15.	 Ting, K.M.: Precision and Recall. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learn-
ing, pp. 781–781. Springer, Boston (2010). https://​doi.​org/​10.​1007/​978-0-​387-​30164-8_​652

	16.	 Velegrakis, Y., Miller, R.J., Popa, L.: Mapping adaptation under evolving schemas. In: Proc. VLDB’03,
Morgan Kaufmann, pp 584–595 (2003)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/978-0-387-30164-8_652

	Self-adapting data migration in the context of schema evolution in NoSQL databases
	Abstract
	1 Introduction
	2 Data migration strategies
	2.1 Notions concerning data migration strategies
	2.2 Data migration strategies
	2.2.1 The eager migration strategy
	2.2.2 The lazy migration strategy
	2.2.3 The incremental migration strategy
	2.2.4 The predictive migration strategy

	2.3 Summary

	3 Architecture
	4 Self-adapting data migration
	4.1 The “what” of self-adapting data migration
	4.2 The “when” of self-adapting data migration
	4.3 The “how” of self-adapting data migration
	4.3.1 Random distribution of data accesses
	4.3.2 Localized distribution of data accesses
	4.3.2.1 The complexity-adaptive approach
	4.3.2.2 The Requirement-Adaptive Approach
	4.3.2.3 The relevance-adaptive approach
	4.3.2.4 The efficiency-adaptive approach

	5 Evaluation of a self-adaptive strategy
	6 Related work
	7 Conclusion and outlook
	References

