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A B S T R A C T

Biometric systems have experienced a large development in recent
years since they are accurate, secure, and in many cases, more user
convenient than traditional credential-based access control systems. In
spite of their benefits, biometric systems are still vulnerable to attack
presentations (APs), which can be easily launched by a fraudulent
subject without having a wide expert knowledge. This way, he/she
can gain access to several applications, such as bank accounts and
smartphone unlocking, where biometric systems are frequently de-
ployed. In order to mitigate such threats and increase the security of
biometric systems, the development of reliable Presentation Attack
Detection (PAD) algorithms is of utmost importance to the research
community.

In the context of PAD, we explore in this Thesis different strate-
gies and methods in order to improve the generalisation capability of
PAD schemes. To that end, we propose the definition of a semantic
common feature space which successfully discriminates bona fide
presentations (BPs)1 from APs. In essence, this process is seeking for
those significant features extracted from known PAI species samples
that are observed in unknown PAI species. In addition, we explore
several handcrafted techniques in order to build a reliable description
of features per biometric characteristic studied. The experimental eval-
uation shows that a common feature space can be computed through
the fusion between generative models and discriminative approaches.
Remarkable detection performances for high-security thresholds lead
to the construction of a convenient (i.e., low BP rejection rates or Bona
fide Presentation Classification Error Rate (BPCER)) and secure (i.e.,
low AP acceptance rates or Attack Presentation Classification Error
Rate (APCER)) PAD subsystem.
Keywords: Biometric systems, presentation attack detection, generalisable feature

spaces, semantic common feature spaces.

1 biometric presentation without the goal of interfering with the operation of the
biometric system [96]
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Z U S A M M E N FA S S U N G

Die Verwendung biometrischer Systeme hat sich in den letzten Jahren
stark verbreitet, da Genauigkeit, Sicherheit und Benutzerfreundlichkeit
im Gegensatz zu herkömmlichen Zugangskontrollsystemen deutlich
zunahm. Trotz ihrer Vorteile sind biometrische Systeme immer noch
anfällig für Angriffe, die von einer betrügerischen Person ohne großes
Fachwissen leicht ausgeführt werden können. Auf diese Weise kann
er/sie sich Zugang zu verschiedenen Anwendungen verschaffen, z.
B. zu Bankkonten und zur Entsperrung von Smartphones, wo biome-
trische Systeme häufig eingesetzt werden. Um solche Bedrohungen
zu entschärfen und die Sicherheit biometrischer Systeme zu erhöhen,
ist die Entwicklung zuverlässiger Algorithmen zur Erkennung von
Präsentationsangriffen (Presentation Attack Detection, PAD) für die
Forschungsgemeinschaft von größter Bedeutung.

Im Zusammenhang mit PAD untersucht diese Arbeit verschiede-
ne Strategien und Methoden, um die Generalisierungsfähigkeit von
PAD-Verfahren zu verbessern. Zu diesem Zweck wird ein gemein-
samer semantischen Merkmalsraums definiert, der eine erfolgreiche
Unterscheidung zwischen bona fiden Darstellungen und Angriffsdar-
stellungen ermöglicht. Im Wesentlichen geht es bei diesem Prozess
um die Suche nach signifikanten Merkmalen, die aus bekannten An-
griffsmustern extrahiert wurden und bei unbekannten Angriffen zu
beobachten sind. Darüber hinaus erforscht die Arbeit verschiedene
handwerkliche Techniken, um eine zuverlässige Beschreibung der
Merkmale für jedes untersuchte biometrische Merkmal zu erstellen.
Die experimentelle Auswertung zeigt, dass durch die Fusion zwischen
generativen Modellen und diskriminativen Ansätzen ein gemeinsamer
Merkmalsraum berechnet werden kann. Bemerkenswerte Erkennungs-
leistungen für hochsichere Schwellenwerte führen zur Konstruktion
eines benutzerfreundlichen (d.h. niedrige Ablehnungsquoten für bona
fide Präsentationen) und sicheren (d.h. niedrige Akzeptanzquoten für
Angriffspräsentationen) PAD-Subsystems.
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Science is what we understand well enough
to explain to a computer.

Art is everything else we do.

— knuth:1996 [knuth:1996]
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1
I N T R O D U C T I O N

Biometrics is the science of recognising a subject’s identity from physi-
cal or behavioural attributes. [98]. Whereas biometric characteristics
such as fingerprint, face, and iris are considered biological, gait, signa-
ture, and keystrokes are behavioural characteristics. The human voice,
in turn, combines both biological and behavioural properties, as the
ability to talk needs to be learnt.

Depending on the application context, biometric systems can oper-
ate in verification or identification mode [134]. Biometric verification
is the process where the input probe is compared to one reference
template (i..e, 1:1 comparison) to verify a claimed identity. In contrast,
biometric identification compares the input probe to all references
(i.e., 1:n comparison) in order to find the biometric identifier associ-
ated to the probe [134]. In recent years biometric systems have been
steadily evolving. Several studies [98] have shown that the extensive
development of biometric systems has increased security and accuracy
in many applications such as border controls, financial transaction
authentication, and mobile device unlocking. This is due to the fact
that biometric characteristics such as fingerprint, face, iris, or voice
offer a high discriminative capability (i.e., they are “unique”) and
cannot be forgotten or shared with other subjects [134].

In spite of their advantages, biometric systems are still vulnerable
to different external attacks [167], as shown in Fig. 1.1. In particu-
lar, we focus on attacks on the capture device, known as “Attack
presentations”, which can be easily launched by any subject with-
out having a vast expert knowledge. As a consequence of the wide
development experienced by several social networks (e.g., Facebook,
LinkedIn, Instagram, or YouTube) a non-authorised subject can learn
from a video tutorial and create an artificial copy of our biometric
characteristics, denoted as Presentation Attack Instrument (PAI). Thus,
she/he could gain access to those unattended applications (e.g., re-
mote authentication for automated payment - pay-by-face [57]) which
do not require direct monitoring. Fig. 1.2 shows examples of PAIs
which can be easily fabricated by any unauthorised subject to bypass
biometric systems. The fabrication of a face PAI can be for instance
carried out by downloading a target photo or video from any social
media and then replicating them over a printed papersheet. Videos
could be also replied directly over the biometric system capture de-
vice using an iPad. Furthermore, the free access to large-scale public
databases together with the recent advances in the creation of very
realistic fake contents or “Deep Fakes” also pose a serious threat to

1
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Figure 1.1: Attack points on biometric systems derived from [95]

Figure 1.2: Example of web-collected PAIs commonly launched over the
capture device of a face biometric system.

biometric systems [204]. Based on the intention of a malicious attacker,
APs can be broadly categorised:

• Impersonation attacks: non-authorised subjects that create an arti-
ficial copy of the biometric characteristics to look like someone
else and thus gain access through biometric systems.

• Concealing attacks: subjects that try to hide their own identity, e.g.
by using make-up, to avoid detection by a biometric system (e.g.
subjects in blacklists).

In our research, we focus on impersonation attacks, as they have
proven to be a real threat to the security of current academic and
commercial biometric systems. [184]).

1.1 motivation

The risk posed by PAIs is not only reduced to an academic issue. APs
were addressed for the first time in 1998 [220]. Willis and Lee showed
how four out of six evaluated biometric systems were vulnerable to
PAIs. In 2000, Zwiesele et al. [237] conducted a comparative study on
biometric identification systems which revealed the high vulnerability
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Figure 1.3: Score distributions for mated comparisons, non-mated compar-
isons, and attack presentations.

of these systems to PAIs. Two years later, Matsumoto et al. [137] anal-
ysed the weakness of eleven commercial fingerprint-based biometric
systems to gummy fingerprints. The experimental evaluation reported
that 68% to 100% of the PAIs created with cooperative methods were
falsely accepted as bona fide presentations (i.e., pristine). In 2009,
Japan reported the use of PAIs in one of its airports, and in 2013, a
Brazilian doctor used artificial silicone fingerprints to tamper a biomet-
ric attendance system at the Sao Paulo hospital [178]. One year later
in 2014, a German hacker going by the name “Starbug” demonstrated
how he was able to clone a fingerprint of the German defence minister,
Ursula von der Leyen, using only publicly available photographs in
which her hand was visible [58].

In order to confirm the above statements, we evaluate the risk of APs
stemming from the REPLAY-MOBILE [35] and CSMAD-Mobile [166]
databases to circumvent the ArcFace scheme [42]. This is one of the
best performing open-source biometric recognition algorithm used
for face recognition [42]. Fig. 1.3 reports the score distributions for
i) comparisons between samples from the same subject (i.e., mated
comparisons), ii) comparisons between samples from different subjects
(i.e., non-mated comparisons), and iii) comparisons between AP and
BP samples of the same subject (i.e., attack presentations). As it can be
observed, a high percentage of AP scores (green distribution) overlaps
with the score distribution of BP samples (blue distribution), thus
confirming the need to equip biometric systems with a Presentation
Attack Detection (PAD) module.

In order to prevent those security threats, several PAD techniques
have been proposed in the literature [135]. They aim at determining
whether a sample stems from a live subject (i. e., this is a BP) or from
an artificial replica (i. e., this is an AP). Depending on how those
PAD methods are integrated into a biometric system, they can be
categorised as hardware- and software-based algorithms [135]. The
former seek to spot PAIs by detecting the biological characteristics
of the captured subject using a special sensor: electric resistance [45],
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temperature [45, 189], and blood pressure [122], among others [46, 47,
62, 113].

In contrast to hardware-based approaches, software-based tech-
niques are more interoperable, as they are not dependent on sensing
devices and can therefore be deployed in many more applications
than the former. These algorithms assume that properties in BP must
be intrinsically opposed to the ones in APs mainly due to capturing
properties or the materials used in the fabrication of the artificial
replicas or PAIs. In this context, different strategies have emerged in
the last decades: textural handcrafted features such as Local Binary
Pattern (Local Binary Pattern (LBP)) [157, 221], Histogram of Oriented
Gradients (Histogram of Oriented Gradients (HOG)) [2], and Local
Phase Quantization (LPQ) [2, 165], frequency domain analysis [102,
126, 175], and Image Quality Assessment (IQA) [61, 62, 103]. More
recently, the success of deep learning techniques in several academic
and industrial fields has led to the development of more sophisti-
cated PAD approaches which considerably outperform earlier PAD
algorithms [33, 67, 175].

In spite of the aforementioned and other efforts, current PAD algo-
rithms struggle to generalise well beyond the PAI species (i.e., attack
types) on which they were trained. Specifically, the best performing
deep learning-based techniques have reported a high detection per-
formance for identifying PAIs when both PAI species and acquisition
conditions are known a priori. However, there are still some issues to
be resolved:

• Poor generalisation capabilities for unknown PAI species: Current
state-of-the-art techniques face difficulties to detect unknown PAI
species (i.e., APs created with a particular PAI species different
from those in the training set), thereby resulting in a degradation
of the detection accuracy.

• Poor generalisation capabilities across several datasets: Most state-of-
the-art PAD methods show a decreasing detection performance
when evaluated over a new database. Since capture devices
might age and will eventually be replaced, PAD methods must
be able to successfully classify samples acquired with a new
capture device. Therefore, generalisation across multiple datasets
is of utmost importance.

• Specialisation on a particular biometric characteristic: The most so-
phisticated PAD algorithms have been developed to detect PAIs
through a particular type of biometric characteristic (e.g., face,
fingerprint, or voice). Therefore, their application across different
modalities (i.e., types) is not straightforward and could lead to
wide performance deterioration.
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• Large number of hyperparameters: Deep learning-based approaches
are usually based on dense Convolutional Neural Networks
(CNNs) having a large number of learnable parameters (ex-
ceeding 2.7 million [40]). Such models are not viable in mobile
environments with limited resources.

1.2 research questions

In order to tackle the unresolved issues derived from the motivation,
the following research questions are defined for this Thesis:

RQ 1 Keeping in mind that fingerprints consist of ridges and valleys,
can the lack of ridge continuity be used to detect the artefacts
produced in the fabrication of PAIs?
Is there a close relationship between the lack of ridge continuity
and those artefacts?
Can these features aid in successfully detecting unknown PAI
species?

RQ 2 Can different colour spaces unveil discriminative features to be
capable of successfully detecting facial PAIs?
How can the facial artefacts, produced in the creation of PAIs,
be perceived in different colour spaces?

RQ 3 What is the most appropriate facial region to identify PAIs?
Taking into account that the face consists of several regions such
as the mouth, eyes, eyebrows, or chin, then how many facial
regions are required to correctly identify a PAI.
What is the minimum or the optimal number of facial regions
needed to detect PAIs?

RQ 4 Can the image resolution affect face PAD process?

1) Given that several lower, medium and high-resolution cap-
ture devices are employed for acquiring face images, how
can the facial artefacts be detected in different image reso-
lutions?

2) Keeping in mind that numerous lower, medium and higher
resolution capture devices are employed for replay attacks,
how can the image resolution of such devices affect or help
the detection capability of PAD approaches?

3) How does the combination between replay and capture
device resolutions affect the detection capability of PAD
approaches?

RQ 5 Can a general framework be built to successfully detect known
PAI species and unknown PAI species by generalising across
different biometric characteristics?
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1.3 thesis outline

An overview of the contents covered in this Thesis is organised as
follows:

• Chapter 1 introduces general concepts of biometrics and de-
scribes how risky attack presentations can be for the security
of access controls. As a result, research questions are defined
with the main focus on improving the generalisation capability
of PAD.

• Chapter 2 summarises state-of-the-art PAD approaches for the
three biometric characteristics investigated in this Thesis i. e.,
fingerprint, face, and voice. PAI species, metrics, evaluation
scenario employed through this Thesis are defined.

• Chapter 3 describes the theory on which our research is based.
In particular, several handcrafted approaches, as well as our
proposed semantic common feature space for improving the
PAD generalisation capability, are presented.

• Chapter 4 reports the evaluation of our common feature spaces
for fingerprint PAD. In addition, it makes an analysis over PAI
species used in the fabrication of PAIs and proposes different
generalisable approaches focused on the definition of semantic
common feature spaces. To answer the RQ 1, we summarise in
this Chapter the results in [75, 77, 78].

• Chapter 5 evaluates the the best performing common feature
space for facial PAD. The PAD performance of different facial re-
gions is also explored. A comprehensive study about the impact
of the image resolution variation for facial PAD is performed.
In this Chapter, RQ 2, 3, and 4 are answered with the results
in [70–73].

• Chapter 6 extends the applicability of the best performing com-
mon feature space for voice PAD, thereby answering the RQ
5 [76, 79, 80]. In this Chapter, an analysis of several 1D-audio-
waveforms-to-spectrogram transformations is performed. In ad-
dition, we propose a framework which exploits the image repre-
sentations of spectrograms for voice PAD.

• Chapter 7 concludes the contributions of this Thesis by answer-
ing the research questions and highlighting open directions
which emerged from our research.
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R E L AT E D W O R K

This Chapter describes the state-of-the-art PAD techniques analysed
in our Thesis (see Sect 2.3). Most PAD approaches are focused on
improving the generalisation issues described in Chapter 1. In order
to enhance the reader understanding, some general PAD concepts are
defined below. In addition, metrics employed in the evaluation of PAD
mechanisms as well as PAI species used in the fabrication of PAIs are
summarised in this Chapter (see Sect. 2.1). Scenarios that are generally
employed in the PAD assessment are also described in Sect. 2.2

The main definitions used throughout the Thesis compliant with
the standard ISO/IEC 30107-1 [95] are introduced in the following:

• Bona fide presentation: “Interaction of the biometric capture
subject and the biometric data capture subsystem in the fashion
intended by the policy of the biometric system” [97]. A normal
or pristine presentation.

• Attack presentation: “Presentation to the biometric data capture
subsystem with the goal of interfering with the operation of the
biometric system” [97]. An attack to the capture device to either
conceal the own identity or impersonate someone else.

• PAI: “Biometric characteristic or object used in an AP” [95].
For instance, a replayed face photo, a gummy fingerprint, or a
replayed speech.

• PAI species: “Class of presentation attack instruments created
using a common production method and based on different
biometric characteristics” [97]. Tab. 2.1 describes the main PAI
species per biometric characteristic employed in the creation
of PAIs. A complete overview about the fabrication of these
PAI species per biometric characteristic and their impact on the
biometric performance can be found in i) fingerprint [135], ii)
face [62], and iii) voice [214].

7
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Table 2.1: PAI species used in the fabrication or generation of PAIs.

PAI species Description
Fi

ng
er

pr
in

t
Gelatin, Latex

Cooperative: the target subject cooperates
in the fabrication of the PAISilicone, PlayDoh

Wood Glue, EcoFlex

Silgum, Modasil Non-cooperative: a latent fingerprint is
digitalised, enhanced, and printed
over a transparent film

Liquid EcoFlex

RTV, Silicone Rubber

Fa
ce

Cut
The face of the attacker is placed behind
the hard copies of photos,
where eyes have been cut out

Printed
The attackers place their face behind
the hard copies of high-resolution
digital photographs

Video-replay
The attackers replay face videos
using tablets or smartphones

Digital-replay/
Photo-replay

The attackers replay a face image
using tablets or smartphones

Silicone, Transparent Masks
Half Mask, Papercraft

Mannequin

The attackers create a 3D mask
of the target face or use a Mannequin

Funny Eye
Paperglasses
Partial Paper

The attackers waer a
kind of glasses or the
eye region from the target face

Obfuscation
Impersonation

Cosmetic

The attackers apply makeup over
the face to impersonate someone else
or to hide the identity

Vo
ic

e

Physical Access
The attackers record the target voice
using a smartphone or other device.

Logical Access
PAIs are generated using either
a text-to-speech synthesis (TTS) or
Voice Conversion (VC) technologies
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2.1 standardised metrics for the evaluation of PAD
mechanisms

In order to establish a fair benchmark with the state-of-the-art PAD ap-
proaches, we follow the metrics defined in the international standard
ISO/IEC 30107-3 for biometric PAD [97]:

• APCER: “Proportion of attack presentations using the same PAI
species wrongly classified as bona fide presentations in a specific
scenario” [97].

• BPCER: “Proportion of bona fide presentations misclassified as
attack presentations in a specific scenario” [97].

• D-EER: “PAD operation point where APCER = BPCER”.

Together with the above metrics, we report the BPCERs for several
fixed operating thresholds:

• BPCER10: BPCER at a fixed operation point APCER = 10%,
i. e., 10/100 attack presentations are misclassified.

• BPCER20: BPCER at a fixed operation point APCER = 5%, i. e., 5/100

attack presentations are misclassified.

• BPCER100: BPCER at a fixed operation point APCER = 1%,
i. e., 1/100 attack presentations is misclassified.

2.2 evaluation scenarios

We focus on several scenarios commonly employed in the evaluation
of PAD algorithms:

• Known PAI species: “scenario where an analysis of all PAI
species is performed. In all cases, PAI species for testing are
also included in the training set”.

• Unknown PAI species: “scenario where PAI species used for
testing are not incorporated in the training set”. Depending
on the biometric characteristic at hand, different protocols are
followed in the experiments.

• Cross-database: “scenario where the capture device employed
for the acquisition of test samples is different from the one used
for capturing the training images. Both datasets contain the same
PAI species to ensure that the performance degradation is due
to the dataset change and not to the unknown PAI species”.

• Cross-session: “scenario where different data collection sessions
across different seasons or even years for the same capture device
are used for training and testing”.
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Table 2.2: Summary of relevant studies focused on PAD generalisation per
biometric characteristic. The results are reported in terms of D-
EER(%).

Method Known PAI species Unknown PAI species Cross-database

Fi
ng

er
pr

in
t

Rattani et al. [169] - 19.70% -

Ding and Ross [44] - 17.70% -

Nogueira et al. (VGG) [144] 3.87% 6.30% 30.70%

Pala and Bhanu (TripleNet) [151] 2.41% 5.86% 15.20%

Chugh and Jain (FSB-v1) [30] 1.70% 3.50% 18.90%

Chugh and Jain (FSB-v2) [31] 1.11% 2.93% 17.91%

Fa
ce

CSURF + FV [16] 1.70% - 25.80%

Textural fusion [17] 2.43% - 21.30%

DeepPixelBis [65] 0.42% 5.97% -

DTN [128] - 16.10% -

CDCN++ [30] 0.69% 11.95% 18.15%

DR-UDA [31] 3.63% - 17.93%

TTN-S [218] 0.89% 8.00 11.55%

Vo
ic

e

B01 [76] 9.78% 11.04% -

B02 [76] 11.96% 13.53% -

OneClassVoice [232] 0.20% 2.19% -

RW-Resnet [133] - 2.98% -

2.3 Presentation Attack Detection techniques

According to the international standard ISO/IEC-30107-3 [97], PAD
aims of determining whether a sample stems from a live subject (i.e., it
is a BP) or from an artificial replica (i.e., it is an AP). As mentioned in
Chapter 1, PAD techniques can be broadly classified in two categories:
Hardware- and Software-based. In the following, we describe PAD
algorithms on the basis of the approach on which they are based. In
Tab. 2.2 we also report some studies focused on PAD generalisation
per biometric characteristic.

2.3.1 Hardware-based Approaches

Hardware-based techniques integrate an extra sensor into the cap-
ture device to detect the biological characteristics of a human body.
Such living characteristics are, for instance, intrinsic properties (e.g.,
blood pressure [122], skin structure analysis through Optical Coher-
ence Tomography (OCT) [11, 34, 39, 186, 187], electric resistance [45],
reflectance [117, 215], or the combination of the two latter through
impedance [113]), involuntary signals (e.g., thermal radiation stem-
ming either from fingertips [45] or faces [189]), responses to external
stimuli (e.g., motion estimation [115]), or articulatory gestures and
oral airflow for speech [216, 230]). In general, those methods have
reported a high detection performance to spot particular PAI species.
However, the integration of an extra sensor can significantly increase
the production cost (e.g., a thermal sensor for an iPhone exceeds EUR
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250
1). Moreover, their accuracy considerably decreases for the detec-

tion of unknown PAI species, as the sensing technology employed is
designed for particular PAI species [62].

2.3.2 Software-based Approaches

Whereas hardware-based techniques are mostly expensive and not
user-friendly (e.g., subjects are asked to make pressure in some
fingerprint hardware-based mechanisms [135]), software-based ap-
proaches detect PAIs by analysing a single image or a set of frames
acquired with the same capture device used for recognition pur-
poses. They often provide high security, efficiency, and interoperability,
thereby leading to a wide development in the last decade [62, 135,
179]. In the following, we introduce the categories on which those
software-based PAD algorithms are based. These are handcrafted-
based (Sect. 2.3.2.1), deep learning-based (Sect. 2.3.2.2), anomaly
detection-based (Sect. 2.3.2.3), domain adaptation-based (Sect. 2.3.2.4),
and generative models-based techniques (Sect. 2.3.2.5).

2.3.2.1 Handcrafted-based Methods

Depending on the biometric characteristic, several properties have
been explored [135]. Skin distortions [6, 233] and perspiration pro-
duced by fingertip pores [43, 161] reported promising results one
decade ago. However, for contact-based capturing approaches they
depend on the pressure applied by subjects on the capture device
surface during the acquisition process.

For facial PAD, numerous properties at different timeslot have
been analysed: involuntary gestures such as eye-blinking [99, 114,
152, 156], face and head gestures (e.g., nodding, smiling, looking in
different directions) [5, 14, 199]. Despite those and other efforts, these
approaches fail to spot PAIs such as printed attacks whose eye region
is replaced by the attacker’s eyes. Furthermore, video-replay attacks
cannot be successfully detected.

To compensate for such weaknesses, several studies have analysed
texture properties. Handcrafted-based techniques commonly employ
processing tools such as: Fourier Spectrum to describe the global fre-
quency of images [102, 124, 126], Gaussian [235] or Gabor [196] filters
to extract a particular frequency information, wavelet multiresolution
analysis [1], statistical models to detect image noise [142], and tradi-
tional texture descriptors (e. g., LBP [28, 157, 221], HOG [48], BSIF [7],
and LPQ [165]).

A common approach for handcrafted speech features is to decom-
pose one-dimensional voice signals into many orthogonal or quasi-
orthogonal signals that convert them into a two-dimensional sig-

1 https://amz.run/44Mp

https://amz.run/44Mp
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nal [10]. These approaches include various techniques, of which the
most popular are the Short-Time Fourier Transform (STFT) and mel-
frequency cepstral coefficients (MFCC), which have great relevance in
many tasks in audio processing [93, 109].

Numerous handcrafted methods in the literature attempt to cap-
ture the artefacts that give away artificial/replayed speech [174]. The
Constant Q Cepstral Coefficients (CQCC) [202] is one of the most
successful techniques. CQCC are implemented on the basis of the
CQT [22], a perceptually-inspired alternative to Fourier-based ap-
proaches for time-frequency analysis. As reported in the literature,
CQCC generalise across different databases (i.e. ASVspoof 2015 [200],
ASVspoof [52], and RedDots replayed database [110]), resulting in
performances close to the state-of-the-art in each case.

Alternative methods include those generating high-dimensional
magnitude- and phase-based features, which have shown a good
ability to discriminate between BPs and APs [26, 188]. Features ex-
tracted using linear sub-band processing were also explored, such as
the Linear Frequency Cepstral Coefficients (LFCC) [194], which have
been shown to detect APs with high accuracy in the recent ASVspoof
2019 [214]. The basic motivation behind sub-band processing is that
artefacts of converted speech occur differently in different sub-bands.

2.3.2.2 Deep learning Methods

The great performance reported by CNNs on several pattern recogni-
tion applications has led to the development of several sophisticated
algorithms for PAD. These techniques have reported a high detec-
tion performance which outperforms most of the aforementioned
handcrafted-based methods. In 2014, Yang et al. [226] fine-tuned the
ImageNet pretrained CaffeNet [101] and VGG-face [154] models for
bi-class classification. Following this idea, Nogueira et al. [144] estab-
lished a benchmark between three CNNs, achieving the best results
in the LivDet 2015 competition with an overall accuracy of 95.5%.
Pala and Bhanu [151] trained a triple-stream CNN fed with randomly
patches extracted from images. Based on the fact that PAIs produces
spurious minutiae on a fingerprint image, Chugh et al. [30, 31] pro-
posed a framework for independently classifying minutiae-centred
local patches extracted from a fingerprint image.

In the context of facial PAD, Xu et al. [222] combined Long Short-
Term Memory (LSTM) units with CNNs to learn temporal features
from face videos. The authors showed that the spatio-temporal features
were helpful for facial PAD, thereby resulting in a reduction by half
of the error rates reported by handcrafted feature baselines (5.93%
vs. 10.00%). Keeping spatio-temporal features in mind, Gan et al. [63]
proposed a 3D CNN for facial PAD, which, unlike traditional 2D
CNNs, extracts the temporal and spatial dimension features from a
frame sequence. Atoum et al. [9] also combined two-stream CNNs
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for extracting local features and depth estimation maps from facial
images.

Deep residual learning [85], successfully used for image processing
tasks, was adopted for voice PAD. In particular, ResNet has been intro-
duced to avoid vanishing/exploding gradients earlier in deep CNN
architectures. This model is successfully used along with an image-like
speech spectrogram (e.g., Mel spectrogram) for the detection of voice
PAI [25, 205]. Recently, end-to-end approaches, which make use of the
raw voice waveform, have also employed residual networks [133]. In
this case, the weights of the first 1D convolution layer can be learn-
able [170] or fixed [195] and forced to have a sinc curve. In both cases,
performances are comparable with the state-of-the-art [214, 223].

In spite of the advances achieved for handcrafted- and deep learning-
based approaches, they still struggle to identify PAIs when, i) PAI
species employed in the fabrication remain unknown in training (i.e.,
unknown PAI species) and ii) samples in training and testing sets are
acquired with different capture devices under different acquisition
conditions (i.e., cross-database), thereby leading to a generalisation
ability decrease.

2.3.2.3 Anomaly Detection-based Methods

In order to overcome the above generalisation shortcomings, sev-
eral anomaly detection-based PAD methods have been proposed. In
2013, de Freitas Pereira et al. [59] already reported poor generalisa-
tion capabilities of state-of-the-art face PAD methods to unknown
PAI species. In fact, the error rates increased by at least 100% with
respect to the evaluation of known PAI species. Motivated by those
findings, Arashloo et al. [8] experimented over several unknown PAI
species scenarios and concluded that anomaly detection approaches
trained only on BP data can reach a detection performance compara-
ble to the results attained by binary classification-based techniques.
Those results were reported only in terms of the Area Under Curve
(AUC), thus lacking a proper quantitative analysis compliant with
the ISO/IEC 30107-3 standard on biometric PAD [97]. Following a
similar idea, Rattani et al. [169] proposed an automatic adaptation
of Weibull-calibrated SVMs and evaluated it over the LivDet 2011

database. The experimental assessment showed that D-EERs oscillated
between 20 and 30% in the presence of unknown PAI species. On the
other hand, Ding and Ross analysed an ensemble of one-class SVMs
trained only on BP samples in [44], which lowered the error rates to
10-22% over the same generalisation task.

More recently, Nikisins et al. [143] showed how a one-class Gaussian
Mixture Model (GMM) can outperform two-class classifiers depending
on the PAI species included in the test set. Following the same anom-
aly detection paradigm, Xiong and AbdAlmageed studied in [221] the
detection performance of one-class SVMs and Autoencoders (AEs) in
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combination with LBP descriptors. In most of the scenarios tested, the
detection rates increased with respect to common bi-class classifiers.
Liu et al. also analysed in [128] the performance of a Deep Tree Net-
work (DTN) by clustering the PAI species into semantic sub-groups.
The experimental evaluation focused on unknown PAI species over
the challenging SiW-M database [128], reported a mean D-EER of 16%
which is considerably higher than those for known PAI species. Chin-
govska and Dos Anjos [27] explored the feasibility of client-specific
information for facial PAD. Finally, George and Marcel [66] also com-
bined a one-class GMM with a Multi-Channel CNN (MCNN), which
fed with face samples acquired at different light spectra (i.e., RGB,
thermal, and infrared). Although the experimental evaluation over the
SiW-M dataset showed a performance improvement with respect to
the DTN technique, its generalisation capability to detect unknown
PAI species was still poor (i.e., a D-EER of 12.00%).

Anomaly detection for voice PAD was also explored in a one-class
classification framework by Zhang et al. [232]. To avoid overfitting
to known PAI species, the authors introduced two different margins
in the softmax loss function for better modelling the BP speech and
isolating the PAIs.

2.3.2.4 Domain Adaptation-based Methods

Generally, acquisition conditions such as appearance, illumination,
or capture devices vary between datasets. In order to overcome poor
cross-database generalisation issues, new PAD approaches have ex-
plored Domain Adaptation to transfer the knowledge learned from
a source domain to a target domain [64]. By assuming that the re-
lationship between BP and AP face samples on a given subject can
be modelled with a linear transformation, Yang et al. [227] proposed
a subject domain adaptation method to synthesise virtual features.
Following this idea, Li et al. [125] transformed knowledge learned
from a labelled source domain to an unlabelled target domain by
minimising the Maximum Mean Discrepancy [130] for facial PAD. De
Freitas Pereira [158] proposed a CNN-based method which builds a
common feature space from face images, captured on different visual
spectra domains, for improving face recognition. To transfer knowl-
edge to the unlabelled target domain, Wang et al. [210, 211] proposed
an unsupervised domain adaptation with disentangled representation,
which builds a feature space shared between the source and target
domains. Even if this common feature space appeared to be suitable to
overcome cross-database issues, experimental results showed a poor
detection performance over known PAI species scenarios (i.e., D-EERs
of 3.20%, 6.00%, and 7.20% for CASIA Face Anti-spoofing [236], MSU-
MFSD [219], and Rose-Youtu [125] databases, respectively). Other do-
main adaptation approaches for face PAD can be summarised in [118,
217].
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Regarding domain adaptation for fingerprint PAD, Gajawada et al.
tried to tackle the dependency on the PAIs contained in the training
set from a different perspective in [60]. They propose a so-called
deep learning-based “Universal Material Translator (UMT)”. Given a
reduced number (e.g., five) of known AP samples, the UMT generated
synthetic PAI samples by embedding the main appearance features
of those PAIs with known BP samples. Those synthetic samples were
reutilised for training its detector, thereby resulting in an improvement
up to 17% over the baseline. Despite these promising results, it should
be noted that this approach does require some PAI samples (i.e., five)
which should be carefully selected.

Domain adversarial training for voice PAD has been explored
in [212]. In this paper, the authors treated the cross-database scenario
as a domain-mismatch problem and addressed it using a domain
adversarial training framework. The same authors further proposed a
dual-adversarial domain adaptation [213] framework to enable fine-
grained alignment of APs and BPs separately by using two domain
discriminators.

2.3.2.5 Generative-based Methods

Nowadays, generative models are the vanguard of unsupervised learn-
ing. Techniques such as GMM [138], Boltzmann Machines (BM) [53],
Variational Autoencoder (VAE) [108], and Generative Adversarial
Network (GAN) [83] have been successfully applied in numerous
computer vision [119], speech recognition and generation [87], and
natural language [36, 112] tasks. Those algorithms try to capture the
inner data probabilistic distribution to generate new similar data [150].
However, to the best of our knowledge, a rather limited number of
works has been employed for PAD. Engelsma and Jain [51] fed several
GANs with BP samples acquired by a RaspiReader fingerprint cap-
ture device. The experimental results for high-security threshold over
unknown PAI species showed a detection performance very sensitive
to the training set.

In voice PAD, generative models have been purposely used to
augment the data in the training phase. Recently, Wang et al. [232]
have proposed a vocoder replay channel response estimation based
on MelGAN [116] and HifiGAN [121] on the ASVspoof 2021 [223], the
results of which showed a good generalisation ability.

2.4 summary

Recently, PAD has been an active research field. In spite of the efforts
achieved, current techniques still lack high generalisation capability
to detect challenging unknown PAI species under different scenarios.
They also decrease their detection performance when are deployed on
biometric systems with a capture device different to those employed
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for capturing their training samples (i.e., cross-database scenarios). The
performance degradation can be observed in Tab. 2.2. Based on this
fact, we focus our research on improving the generalisation capabilities
of the PAD module under these previous scenarios.



3
S E M A N T I C C O M M O N F E AT U R E S PA C E

Malicious attackers live with us and can launch frequent unknown PAI
species against the biometric system’s capture device under different
conditions to circumvent their security. Therefore, the development of
generalisable PAD approaches, which can be successfully employed
for several types of biometric characteristics, is of utmost importance
for the research community. In this Chapter, we summarise the main
theory on which our Thesis is based.

Based on the assumption that unknown PAI species share homo-
geneous properties with known PAI species and heterogeneous with
BPs, we define generalisable common feature spaces which can be
successfully combined with discriminative models for PAD through
different biometric characteristics, as shown in Fig. 3.1. The proposed
algorithms allow the definition of semantic sub-groups constructed
from the known PAI species which are observed on unknown PAI
species. Thus, the generalisation of the PAD module can be improved.
To demonstrate the feasibility of our generalisable approaches, they
are then evaluated over three types of biometric characteristics namely
fingerprint (see Chapter 4), face (see Chapter 5), and voice (see Chap-
ter 6), which are different to each other and can be captured with a
smartphone.

Our generalisable PAD techniques are based on four main steps:
i) features (Sect. 3.1) are extracted from a regular grid of points
(Sect. 3.1.1) along the whole input biometric sample (i.e., fingerprint,
face, and voice); ii) a generalisable common feature space is built
by the definition of semantic sub-groups from the aforementioned
features (Sect. 3.2); iii) the final descriptor, which represents the bio-
metric sample at hand and emphasises the AP related properties, is
subsequently transformed to a new feature space based on the learned
semantic common feature space; and iv) a BP or AP decision is finally
taken by a discriminative model (Sect. 3.3).

3.1 handcrafted descriptors

As mentioned in Chapter. 1, we focus on three biometric characteristics,
namely fingerprint, face, and voice, each of which has intrinsic prop-
erties that make them different from each other. Whereas fingerprint
comprises mainly ridges and valleys [98], facial images are composed
of facial aesthetic units [81]. In addition, voice data are generally de-
picted by time-domain, frequency-domain, or time-frequency-domain
representations known as spectrograms [76]. Therefore, the creation

17
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Figure 3.1: General overview of our generalisable common feature space-
based approaches.

of a single set of universal features to represent those characteristics
would lead to low biometric performance. In this context, we explore
in the Thesis several continuous and binary descriptors, which are
briefly described in this section. In particular, we have considered i)
gradient- (SIFT, Speed-Up Robust Features (SURF), HOG), ii) intensity
difference- (Binary Robust Independent Elementary Features (BRIEF),
Oriented FAST and Rotated BRIEF (ORB)), and iii) texture-based (LBP,
BSIF) features. The reason behind choosing not only continuous but
also binary descriptors lies in their higher efficiency at the cost of a
small performance loss for other tasks.

3.1.1 Dense Multi-scale Features

Since artefacts produced in the fabrication of PAIs might be located in
any area of the input image, we follow in our approaches the strategies
in [15] for the feature computation. Therefore, local descriptors are
densely extracted at fixed points on a regular grid with an uniform
spacing (e.g., 3 pixels). In addition, those artefacts might have different
sizes. Hence, descriptors are computed over four circular patches with
different pixel radii σ = {4, 6, 8, 10}. Thus, each point in the grid is
represented by four descriptors, as depicted in Fig. 3.2.

3.1.2 Scale Invariant Feature Transform

SIFT [131] is one of the most popular histogram-based descriptors due
to its robustness to changes in scale, translation, rotation, and other
imaging parameters. In addition, the SIFT descriptor has shown to pro-
vide robust recognition capabilities across different affine distortions,
changes in 3D viewpoints, addition of noise, and illumination changes.
This method involves four stages to generate the set of image features:
i) scale-space extrema detection, ii) keypoint localization, iii) orienta-
tion assignment, and iv) keypoint descriptor. In our investigation, we
utilise steps three and four in our implementation, as keypoints are
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Figure 3.2: Feature extraction over the biometric samples. Dense multi-scale
features are computed for face and voice data, as it is shown
exemplary for fingerprint.

fixed over a regular grid along with the whole biometric image (see
Sect. 3.1.1). To efficiently compute SIFT descriptors, we use the imple-
mentation provided in [207], which delivers a speed-up of up to 60x by
exploiting the uniform sampling and overlapping between descriptors
and using linear interpolation with integral image convolution.

3.1.3 Speed-Up Robust Features

SURF [12] is a keypoint-based descriptor, like SIFT, which employs
the Haar wavelet transform to approximate the image gradient. In
particular, SURF computes the first order Haar wavelet responses
in the x and y directions at the orientation assignment step. Simi-
larly to SIFT descriptors, the area around the interest keypoint is
subsequently divided into 4× 4 sub-regions, and the Haar wavelet
responses are computed and L2 normalised. The final feature vector
is the concatenation of the accumulated wavelet responses in each
direction and the summation of its absolute values, thus leading to a
64-dimensional vector per keypoint. In our methodology, we selected
the 128-dimensional variant, which also includes the first Haar wavelet
responses in diagonal directions.

3.1.4 Histogram of Oriented Gradients

HOG [38] is a local image descriptor capturing the intensity gradients
and edge directions to describe the shape and appearance of an object
within an image. As the previous descriptors, the HOG features are
computed over localised cells. Therefore, it is invariant to geometric
and photometric transformations. In this particular case, the cells
comprise usually 8× 8 pixels, and a histogram of edges orientation
within that cell is computed. Afterwards, cell blocks of 16× 16 pixels
are normalised, in order to provide better illumination invariance. In
our implementation, we used a multi-scale HOG extension named
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pyramid HOG (PHOG), which has reported good results in static
facial expression analysis [37] and fingerprint PAD [49]. In this case,
the gradient is joined at several pyramid levels, and a histogram is
computed for each grid.

3.1.5 Local Binary Pattern

LBP [145] is a texture descriptor originally developed for the analysis
of two-dimensional texture, which has obtained excellent results in
multiple tasks. It is invariant to rotation, illumination, and orientation
changes. More specifically, it represents an image with a histogram of
uniform patterns corresponding to micro-features in the image. These
histograms allow capturing both shape and textural features from an
image. In our methodology, a multi-resolution analysis is included,
by computing the aforementioned histograms on different window
sizes. In more detail, let X be a circular image patch with radii σ and
S pixels around the centre. Then, the LBP descriptor is defined as:

LBPS,σ =
S−1

∑
i=0

f (gi − gc)2i, (3.1)

where gi with i = 0 . . . S − 1 are gray intensity values around the
center gc in the image patch. f (gi − gcgi − gc) is defined as:

f (gi − gc) =

{
1, gi − gc ≥ 0

0, gi − gc < 0
(3.2)

In order to capture more information and thereby increase the
descriptor distinctiveness, we compute several LBP patterns by com-
bining various radii σ. The LBP histograms are subsequently built
from those patterns at different scales by varying the window size and
sliding over the whole image. Finally, the computationally efficient
implementation provided in [182] is used.

3.1.6 Multi-Scale Block LBP

Multi-Scale Block LBP (MB-LBP) [231] encodes the intensities of rectan-
gular regions with the LBP operator, which allows describing several
local structures of an image. Whereas the LBP descriptor is defined for
each pixel by thresholding the 3 × 3 neighbourhood pixel values with
the centre pixel value, the MB-LBP operator represents each pixel x by
comparing the central rectangle average intensity gx with those of its
neighbourhood rectangles. Therefore, it can detect numerous image
structures such as lines, edges, spots, flat areas, and corners [231], at
different scales and locations. Unlike LBP, the MB-LBP descriptor can
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Figure 3.3: BSIF descriptors computed from N = 9 filters of size l = 5. a)
fingerprint image, b) BSIF histograms, computed densely at fixed
points on a regular grid, with a fixed stride S for four local patches
with different window size, and c) a reduced BSIF histogram.

thus capture large scale structures that may be the dominant features
of images, with 256 binary patterns. In our work, we compute the
MB-LBP descriptor for several rectangle sizes Rx = {3, 5, 7, 9}.

3.1.7 Local Phase Quantization

LPQ [146] is a texture descriptor designed to deal with blurred images.
It represents an image patch of size l × l centred on a pixel x as
a 256-histogram by using the local phase information, extracted by
a STFT. Let Fui=1...4 be the outputs of the STFT for the pixel x using
four bi-dimensional spatial frequency u0, u1, u2 and u3, the LPQ
features for x are defined as a vector whose components are formed
by stacking the real and imaginary part of Fui=1...4 . Subsequently, the
vector elements are quantized using a previously defined function and
then represented as a integer value in the range [0 . . . 255]. In order to
make the LPQ coefficients statistically independent, a decorrelation
step based on whitening transform was performed.

3.1.8 Binarized Statistical Image Features

BSIF [104] is a local image descriptor computed by binarising the
responses of a given image to a set of pre-learned filters to obtain a
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statistically meaningful representation of the data. In particular, let X
be an image patch of size l × l and W = {W1, . . . , WN} a set of linear
filters of the same size as X. Then, we compute binarised responses
bn:

bn =

{
1 ∑u,v Wn(u, v)X(u, v) > 0

0 otherwise
(3.3)

All the filter responses bn are subsequently stacked to form a bit
string b with size N for each pixel. Subsequently, b is transformed to
a decimal value, and then a 2N histogram for X is computed. In our
work, 60 filter sets with different sizes l = {3, 5, 7, 9, 11, 13, 15, 17} and
number of filters N = {5, 6, 7, 8, 9, 10, 11, 12} were obtained from [104].

Like the SIFT computation, the BSIF histograms are densely ex-
tracted over a regular grid with a fixed stride S of 3 pixels, and for
each point on the grid, histograms are computed over four circular
patches σ, as depicted in Fig. 3.3b). Therefore, each point in the grid
is represented by four BSIF histograms. In our implementation, we
followed the BSIF reduction strategy described in Sect. 5.1.1 which
represents each 2N BSIF histogram as a 128-component vector (see
Fig. 3.3-c).

3.1.9 Binary Robust Independent Elementary Features

BRIEF [24] is a binary noise-resistant local descriptor, whose computa-
tion time is two orders of magnitude faster than SIFT. This is achieved
by exploiting the fact that image patches can be efficiently classified on
the basis of a relative small number of pairwise intensity comparisons
τ. Thus, the BRIEF binary descriptor represents a smoothed patch
like a bit string constructed from a set of binary intensity tests. More
specifically, let X be a square smoothed image patch, then a binary
test τ can be defined as:

τ(X; x, y) =

{
1 if X(x) < X(y)

0 otherwise
(3.4)

where x and y are locations in X, and X(x) is the gray value of X at
x. Previous locations are randomly pre-fixed according to a Gaussian
distribution around the patch centre. Finally, by using a set of η binary
tests, we can obtain a η−bitstring as follows:

fηX =
η−1

∑
i=0

τ(X; xi, yi)2i. (3.5)

In our implementation, we select η = 256, since it has shown a
better trade-off between effectiveness and efficiency in many real
applications [136].



3.2 common feature space representations 23

3.1.10 Oriented FAST and Rotated BRIEF

ORB [173] is a binary descriptor built upon BRIEF [24] and Features
from Accelerated Segment Test (FAST) [172], which additionally pro-
vides rotation invariance. The algorithm starts by detecting FAST
points in the image, at different scale pyramid levels, and by adding
an effective measure of corner orientation, to conform the final FAST
keypoint orientation (oFAST) features. Then, a rotation aware BRIEF
(rBRIEF) descriptor is computed and combined with oFAST to obtain
the final ORB descriptor.

In more details, rBRIEF first steers the BRIEF descriptor according
to the orientation of the keypoints, θ. To that end, rBRIEF discretises
θ to increments of 2π/30 (12 degrees), and constructs a lookup table
of precomputed BRIEF patterns, thereby obtaining rotation-invariant
features in an efficient manner. However, steering BRIEF leads to a loss
of variance in the responses, and thus to less discriminative features.
In addition, both BRIEF and its steered version show some correlation
in the tests. To tackle these issues, ORB runs a greedy search among
all possible binary tests to find the ones that have both high variance
and means close to 0.5, as well as being uncorrelated.

3.2 common feature space representations

3.2.1 Bag of Words

This technique was first developed for text categorization tasks, in
which a text document is assigned to one or more categories based on
its content [129]. To that end, Bag of Words (BoW) represents a text
document by a sparse histogram of word occurrence based on a visual
vocabulary. Following this idea, Csurka et al. [37] adopted and applied
this method to represent local features from an image in terms of the
so-called “visual words”. Our common feature space is built upon this
approach.

As proposed in [74], the BoW representation first computes the
visual vocabulary as a codebook with K different centroids or visual
words by k-means clustering. Then, the BoW is defined as the his-
togram of the number of image local descriptors assigned to each
visual word. Its computation is summarised in Fig. 3.4. An m-level
pyramid of spatial histograms is used in order to incorporate spa-
tial relationships between patches. For that purpose, the fingerprint
image is partitioned into increasingly fine sub-regions, and the fea-
ture descriptors inside each sub-region are assigned to the closest
centroid among the K visual words, using a fast version of k-means
clustering [50]. Subsequently, the histograms inside each sub-region
are computed and transformed into a single and final feature vector
by a homogeneous kernel map [208].
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Figure 3.4: Example of pyramid of spatial histograms. a) Quantized features
using k-means. b) 3-level pyramid of spatial histograms built from
quantized features.

3.2.2 Fisher Vector

BoW approaches encode local features using a hard assignment, in
which a local descriptor is only assigned to one visual word based
on a similarity function. In contrast, the Fisher Vector (FV) method
derives a kernel from a generative model of the data (e.g., GMM [176]
or Bernoulli Mixture Model (BMM) [206]), and describes how the
distribution of a set of local descriptors, extracted from unknown PAI
species, differs from the known PAI species distribution previously
learned by the adopted generative model [176]. The aforementioned
generative model can be understood as a probabilistic visual vocabulary,
thereby allowing a soft assignment. Thus, the FV paradigm encodes not
only the number of descriptors assigned to each region but also their
position in terms of their deviation with respect to the predefined
model. Therefore, the final transformed features are more robust to
new samples, which may stem from unknown scenarios and thus
differ from the samples used for training.

As proposed in [159], we train a GMM model with diagonal covari-
ances from local continuous features (e.g., SIFT, LBP, BSIF, HOG,
SURF) extracted on one previous step. In particular, a GMM on
K-components, which is represented by their mixture weights (πk),
means (µk), and covariance matrices (σk), with k = 1, . . . , K, allows
discovering semantic sub-groups from known PAI speciess and BP
samples, which could successfully enhance the detection of unknown
PAI species. In order to build those semantic groups, the local de-
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scriptors are first decorrelated using Principal Component Analysis
(PCA) [100], hence reducing their size to d = 64 components while re-
taining 95% of the system variance. Then, the FV representation which
captures the average statistics first-order and second-order differences
between the local features and each semantic sub-groups previously
learnt by the GMM is computed [183].

Let X be a local descriptor of size d and SK = {(πk, µk, σk) : k =

1 . . . K} a set of K semantic sub-groups learnt by the GMM. The FV
representation for X is defined as the conditional probability:

FVX =P(X|SK) (3.6)

=P(X|µk, σk) (3.7)

By applying Bayesian properties, we can rewrite the previous equa-
tion as:

φ1
k =

1
N
√

πk

d

∑
i=1

αi(k)
(

Xi − µk

σk

)
, (3.8)

φ2
k =

1
N
√

2πk

d

∑
i=1

αi(k)

(
(Xi − µk)

2

σ2
k

− 1

)
, (3.9)

where αi(k) is the soft assignment weight or the posterior probability
of the i-th feature Xi to the k-th Gaussian [183]. Therefore, the FV
representation that defines a fingerprint image is finally obtained by
stacking the differences: φ =

[
φ1

1, φ2
1, . . . , φ1

K, φ2
K
]
, thereby resulting a

2 · d · K = 2 · 64 · K size vector.
On the other hand, for encoding binary features we train a BMM,

whose K-components are represented by the mixture weights (πk
B) and

means (µk
B), with k = 1 . . . K [206]. Therefore, a closed-form approxi-

mation of FV representation is computed as follows:

φµkd =

 1
T

T

∑
t=1

γk(xt)
(−1)1−xd

t

µ
xd

t
kd(1− µkd)1−xd

t

 F−
1
2

kd , (3.10)

where

γk(xt) =
πk pk(xt|θ|)

∑K
k=1 wπ pk(xt|θ|)

(3.11)

Fkd =Tπk

(
∑K

k=1 πkµkd

µ2
kd

+
∑K

k=1 πk(1− µkd)

(1− µkd)2

)
(3.12)

It is worth noting that the FV representation based on BMM ap-
proach only takes into account the gradients with respect to µkd. There-
fore, the KD-dimensional FV representation of a fingerprint sample is
defined as φB =

[
φµkd

]
, k = 1, . . . , K and d = 1, . . . , D
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Finally, the FV representation based on BMM yields a compact
vector, whose size Kd is the half of FV encoding built upon GMM
approach. In addition, BMM, unlike GMM, does not require data
decorrelation (i.e., PCA to the extracted local features is not applied).

3.2.3 Vector of Locally Aggregated Descriptors

In order to reduce the high-dimension image representation proposed
by the FV and BoW approaches, gaining in efficiency and memory
usage, we have finally studied the VLAD methodology [100]. This
is a simplified non-probabilistic version of FV, which models the
data distribution from the accumulative distances between a local
descriptor X and its closest visual word c in the visual vocabulary.
Therefore, as in the BoW approach, a visual vocabulary needs to be
computed in the first step with the k-means algorithm.

In particular, a d-dimensional local feature descriptor X can be
represented by a VLAD descriptor VX of size Kd as follows:

VX =
d

∑
j=1

(
∑

X:NN(X)=ci

Xj − ci,j

)
, (3.13)

where Xj and ci,j denote the j-th component of X, and its corre-
sponding closest visual word ci. In our method, VX is subsequently
L2-normalised in order to further improve the classification accuracy.
Similar to FV, VLAD also applies PCA over data for their decorrela-
tion.

3.3 discriminative models

For the final decision, separated linear SVMs are employed to clas-
sify the final features extracted with our approaches (see Sect. 3.2).
SVMs are popular since they perform well in high-dimensional spaces
provided by the above feature representations, avoid over-fitting, and
have good generalisation capabilities. According to [89], when the
feature’s dimensionality is so greater than the number of instances
employed for training, a non-linear mapping does not improve the
performance. Therefore, the use of a linear kernel would be good
enough to achieve a high classification accuracy.

In order to find the optimal hyperplane separating BPs from APs,
the optimisation algorithm bounds the loss from below. Therefore,
we have trained a linear SVM as follows: The SVM labels the BP
samples as +1 and the APs as -1, thereby yielding the corresponding
W′ (weights) and b′ (bias) classifier parameters.

Subsequently, given a feature descriptor x which was previously
yielded by a particular encoding approach, the final score sx, which es-
timates the class of the sample at hand, is computed as the confidence
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of such decision (i.e., the absolute value of the score is the distance to
the hyperplane):

sx = W′ · x + b′ (3.14)





4
F I N G E R P R I N T P R E S E N TAT I O N AT TA C K
D E T E C T I O N

Forensic investigators have used fingerprints for personal identifica-
tion for many decades, thus reporting a very high biometric perfor-
mance [98]. A fingerprint image comprises ridges and valleys [98],
as shown in Fig. 4.1. Ridges are represented as dark lines whereas
valleys are bright lines. Generally, different features may be analysed
in a fingerprint sample:

• Level 1 (Global features) which consists of dense singular points
and the main ridge orientation including the arch, tented arch,
left loop, right loop, and whorl.

• Level 2 (Local features) which comprise dense minutiae details
such as ridge ending and bifurcation.

• Level 3 (Fine features) which include concrete details of ridges
such as their width, shapes, contours, and strength of sweat
pores.

In order to address RQ 1, we explore in this Chapter the three
common feature spaces together with several handcrafted descriptors
described in Chapter 3. Those handcrafted techniques allow the de-
scription of fingerprint properties such as lack of ridge’s continuity,
texture changes, and grey intensity differences, which might differ
between a BP and an AP. In order to build a robust and generalisable
semantic common feature space, we combine the three approaches (i.e.,
FV, BoW, and VLAD) with the best performing descriptor (Sect. 4.1);
this is named Space Fusion. In addition, the best performing descrip-
tors are fused with the best performing common feature space for a
sturdy fingerprint representation (Sect. 4.2); this is named Descriptor
Fusion. In this Chapter, we summarise the results in [72, 75, 77].

4.1 score level fusion of common feature spaces

In a first approach, we explore the above common feature space (i.e.,
BoW, VLAD, and FV) in combination with SIFT. Fig. 4.2 shows an
overview of the proposed PAD approach. In the first common pro-
cessing step, SIFT are densely extracted from the whole input image,
as indicated in Sect. 3.1.1. Subsequently, the three image representa-
tions are applied to transform the local descriptors into a common
feature space: i) BoW (Sect. 3.2.1), ii) FV (Sect. 3.2.2), and iii) VLAD

29
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Ridges

Valleys

(a)

Core

Whorl

Loop

Delta

(b)

(c)

Figure 4.1: a) Ridges and Valleys in a fingerprint, b) singular regions over the
ridge orientation, and c) termination and bifurcation minutiae.
Images were taken from [98].

(Sect. 3.2.3). Finally, the BP vs. AP decision for a sample at hand is
taken by a linear SVM (see Sect. 3.3).

Given that the use of complementary information could improve
the detection capabilities of an approach, we also evaluate the fusion
between the three proposed representations using a weighted sum
method as follows:

s f = α · s1 + β · s2 + (1− α− β) · s3, (4.1)

where α + β ≤ 1, and s1, s2 and s3 represent the individual scores
produced by our three representations. Taking into account that LivDet
databases do not include a validation set, the α and β weighted values
are computed from each LivDet’s training set.

4.2 score level fusion of different descriptors

In a second approach, we explore the combination of descriptors de-
scribed in Sect. 3.1 with the best performing common feature space
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Figure 4.2: Overview of the Space Fusion-based approach. First, SIFT de-
scriptors are densely computed at different scales over the whole
input image. These features are subsequently encoded using a
previously learned common feature space by means of three dif-
ferent approaches: a) BoW, b) FV, and c) VLAD. The fingerprint
descriptor per representation is separately classified using a linear
SVM and then combined by a score-level fusion.
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Figure 4.3: Overview of the descriptor fusion-based scheme, which consists
of four steps. First, local features are densely computed at dif-
ferent scales. These features are subsequently encoded using a
previously learned common feature space. The fingerprint de-
scriptor is classified using a linear SVM. a) it refers to the par-
ticular pipeline used for continuous-based descriptors, and b) it
represents the PAD overview for binary-based descriptors. Finally,
the SVM outputs for the best performing descriptors are merged
by a score-level fusion.

(i.e., FV). Fig. 4.3 shows an overview of the proposed PAD approach,
which consists on three main steps: i) local features are extracted from
a fingerprint sample, both real- and binary-valued (see Sect. 3.1); ii)
an unsupervised GMM or BMM learns the distribution of the afore-
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mentioned decorrelated features, which are subsequently encoded by
computing the gradient of the sample log-likelihood with respect to
the learned model parameters (i.e., using FV); and iii) a BP vs. AP
decision is finally performed by a linear SVM (see Sect. 3.3).

In essence, we analyse to which extent different descriptors comple-
ment each other to improve the final PAD performance. To that end,
the individual descriptor based PAD scores are fused with a weighted
sum as follows:

s f = α · s1 + β · s2 + (1− α− β) · s3, (4.2)

where α + β < 1, and s1, s2 and s3 represent the individual scores
produced by the best three performing descriptors described above.
Similar to the approach described in Sect. 4.1, the α and β weighted
values are computed from each LivDet’s training set.

4.3 experimental setup

In order to perform a fair evaluation of the detection performance of
the proposed PAD approaches for different scenarios, we define three
main goals:

• Analyse the impact of the key parameter: the visual vocabulary
size K (see its definition in Sect. 3.2) on the detection performance
of the three common feature spaces (i.e., BoW, VLAD, and FV)
and different local descriptors (i.e., SIFT, SURF, LBP, BSIF, and
HOG).

• Study the impact of ridge pattern quality on the detection per-
formance of the algorithms.

• Benchmark the detection performance of our approaches with
the top state-of-the-art approaches.

• Explore the impact of different materials used in the fabrication
of PAIs on the detection performance of our techniques.

• Evaluate realistic and challenging scenarios with unknown PAI
species, cross-database, and cross-session settings.

4.3.1 Databases

The experiments were conducted on the well-known benchmarks
provided by LivDet 2011 [225], LivDet 2013 [68], LivDet 2015 [140], and
LivDet 2017 [141]. The Fingerprint Liveness Detection Competition
(LivDet) is a biannual challenge aimed at evaluating recent academic
and industry research in the field of PAD. A summary of their main
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Table 4.1: Databases summary, including the list of PAI species available. The
unknown PAI species at testing for LivDet 2015 and LivDet 2017

are highlighted in bold.

DB # Samples Capture device PAI species

LivDet 2011 16,000

Digital 4000B Gelatin, Latex, PlayDoh,
Silicone, Wood GlueSagem MSO300

Biometrika FX2000 EcoFlex (platinum-catalysed silicone), Gelatine,
Latex, Silgum, Wood GlueItaldata ET10

LivDet 2013 8,000

Biometrika FX2000 EcoFlex (platinum-catalysed silicone), Gelatine,
Latex, Modasil, Wood GlueItaldata ET10

LivDet 2015 19,431

GreenBit DactyScan26 EcoFlex (platinum-catalysed silicone), Gelatin,
Latex, Wood Glue,
Liquid EcoFlex, RTV

Biometrika HiScan-PRO

Digital Persona U.are.U 5160

Crossmatch L Scan Guardian
Body Double, OOMOO (silicone rubber),
PlayDoh, EcoFlex, novel form of gelatine

LivDet 2017 18,984

Digital Persona U.are.U 5160

EcoFlex, Body Double, Wood Glue,
Gelatin, Latex, Liquid EcoFlexGreenBit DactyScan84C

Orcanthus Certis2 Image

features is presented in Tab. 4.1. It should be noted that, unlike the
previous databases, LivDet 2015 and LivDet 2017 contain unknown
PAI species in the test set, which are not included in the training set.
Therefore, both LivDet databases are used to evaluate the proposed
PAD subsystems on unknown PAI species scenarios. In our research,
the LivDet 2019 and LivDet 2021 databases are not used, as they have
not been made public to the research community.

4.4 results and discussion

4.4.1 Known PAI species

4.4.1.1 Effect of the Semantic Sub-groups

In the first set of experiments, we optimise the algorithms’ detection
performance in terms of the main key parameter: the visual vocabulary
size K. To that end, we focus on the known PAI species scenario, in
order to avoid a bias due to other variables. We test the following
range of values: K = {256, 512, 1024}, since K > 1024 would yield too
long feature vectors, not usable for real-time applications. Tab. 4.2
reports the D-EER values for the adopted K configurations over the
space fusion-based scheme (see Fig. 4.2). As it can be observed, the
best K values on average are K = 512 for FV and K = 1024 for
VLAD and BoW. In particular, the FV representation reports an D-EER
of 2.23%, which is approximately two and three times lower than
the ones attained by the remaining encodings (4.88% for VLAD and
6.34% for BoW). This observation, in turn, indicates that FV is able
to successfully separate a BP from an AP given a reduced number
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Table 4.2: Detection performance, in terms of D-EER(%), of our proposed
representations combined with the SIFT descriptor for different
K values. The best results per encoding and capture device are
highlighted in bold.

DB Dataset
FV VLAD BoW

256 512 1024 256 512 1024 256 512 1024

2
0

1
1

Biometrika 2.80 4.10 5.70 8.40 8.30 8.30 8.10 7.10 6.40

Digital P. 0.70 0.30 0.30 2.00 1.30 0.95 2.20 1.40 1.30

Italdata 3.20 2.40 4.50 9.70 16.10 13.3 16.20 7.50 12.70

Sagem 1.72 1.60 1.42 3.00 2.65 2.65 6.48 6.53 5.26

2
0

1
3 Biometrika 0.30 0.50 0.50 2.50 3.10 1.80 3.10 2.50 1.80

Italdata 0.30 0.30 0.30 1.00 0.80 0.80 4.40 3.90 3.70

2
0

1
5

GreenBit 1.60 1.30 1.40 4.80 3.60 3.80 4.20 4.00 4.40

Digital P. 7.30 6.50 6.50 9.70 9.40 8.90 16.00 14.70 13.40

Hi_Scan 4.60 4.30 4.50 6.50 6.80 5.80 11.40 10.50 9.00

Crossmatch 1.06 1.03 1.03 3.62 3.62 2.50 7.03 6.21 5.40

Avg. 2.36 2.23 2.62 5.12 5.57 4.88 7.91 6.43 6.34

of semantic sub-groups built by GMM, in contrast to the VLAD and
BoW.

In a second set of experiments, we also optimise the detection per-
formance of the best performing common feature space (i.e., FV) in
combination with those local descriptors defined in Sect. 3.1 (see
Fig. 4.3). Tab. 4.3 reports the D-EER for several descriptors over differ-
ent number of semantic sub-groups (i.e., K). As it should be observed,
most descriptors report their best D-EER for a small number of se-
mantic sub-groups with the exception of BSIF and HOG, which obtain
their optimum performance for K = 1024. Consequently with the
results reported in Tab. 4.2, the SIFT descriptor yields an D-EER of
2.23% for K = 512 which is up to three times lower than the D-EER
attained for K = 1024.
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Table 4.3: Detection performance, in terms of D-EER (%), of the descriptors in combination with FV for different K values. The best results per descriptor
are highlighted in bold, and the best D-EER per dataset is underline.

DB Dataset
SIFT BSIF SURF HOG LBP ORB BRIEF

256 512 1024 256 512 1024 256 512 1024 256 512 1024 256 512 1024 256 512 1024 256 512 1024

2
0

1
1

Biometrika 2.80 4.10 5.70 2.40 2.80 2.60 4.00 5.30 4.90 15.40 15.50 12.80 7.80 6.90 7.70 7.50 6.20 6.20 11.60 10.70 11.70

Digital P. 0.70 0.30 0.30 0.60 0.50 0.40 1.50 1.20 1.10 2.30 1.00 0.30 1.10 1.10 1.60 4.20 3.40 3.70 1.30 1.30 1.20

Italdata 3.20 2.40 4.50 6.50 6.90 6.10 16.40 13.10 13.40 19.70 20.50 20.00 15.60 19.30 20.90 8.30 9.90 11.60 16.10 15.60 15.60

Sagem 1.72 1.60 1.42 1.42 1.23 1.08 0.59 0.69 0.89 9.92 7.71 7.91 7.81 8.50 10.80 3.09 3.00 2.70 6.29 6.19 5.11

2
0

1
3 Biometrika 0.30 0.50 0.50 0.40 0.40 0.30 0.90 0.80 1.00 1.90 2.00 1.90 2.50 2.50 2.70 3.40 2.80 2.60 4.40 3.20 3.60

Italdata 0.30 0.30 0.30 0.40 0.30 0.30 0.70 0.70 0.60 2.30 2.20 2.00 6.00 5.20 6.40 1.90 1.20 1.10 5.30 4.00 2.90

2
0

1
5

GreenBit 1.60 1.30 1.40 1.50 2.50 2.20 3.60 3.50 3.90 5.40 5.30 5.40 4.80 4.10 4.90 2.80 2.70 3.10 5.30 6.00 6.40

Digital P. 7.30 6.50 6.50 4.10 4.40 4.30 7.90 7.00 7.40 11.70 11.20 11.30 12.90 12.50 13.00 16.50 16.90 17.10 18.20 16.60 17.40

Hi-Scan 4.60 4.30 4.50 4.90 4.60 4.50 8.50 8.70 8.60 8.30 7.10 6.90 13.50 13.60 13.10 14.80 14.50 15.70 9.90 9.60 9.60

Crossmatch 1.06 1.03 1.03 2.47 2.12 2.22 8.34 7.53 7.62 2.59 1.88 2.09 6.34 6.21 6.59 9.40 9.40 10.46 5.41 5.06 5.03

Avg. 2.36 2.23 2.62 2.47 2.58 2.40 5.24 4.85 4.94 7.95 7.44 7.06 7.84 7.99 8.77 7.19 7.00 7.43 8.38 7.83 7.85
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Figure 4.4: Several artefacts over the fingerprint ridge pattern which are
frequently found on the AP samples: a) higher black saturation, b)
high white saturation, c) lack of continuity on the ridge pattern, d)
unwanted noises and ridge distortions, and e) spurious minutiae
produced by earlier artefacts.

4.4.1.2 Gradient vs. Texture vs. Intensity Differences

Taking a close look at Tab. 4.3 we observe that the gradient-based
descriptors report on average the best detection performance for all
databases (i.e., D-EER = 4.17%), followed by texture-based features
(i.e., D-EER = 5.12%), and finally, intensity difference-based descriptors
(i.e., D-EER = 7.42). By carefully analysing several PAI species from
the LivDet databases, we noted that there exist at least five common
artefacts which are fully represented by gradient- and texture-based
descriptors and hence they could be employed for fingerprint PAD
(see Fig. 4.4). Specifically, the gradient computed over fingerprints
allows representing their orientation field, hence capturing some ridge
pattern characteristics such as black and white saturation on the ridges,
lack of continuity, ridge distortions or unwanted noises, non-ridge
uniformity, and spurious minutiae, among others which produce a
high number of low coherence areas. Consequently, those ridge prop-
erties could be also captured by convolving a fingerprint image with
a suitable kernel, as shown in Fig. 4.4 third row. As mentioned in
Sect. 3.1.8, we employed sixty filter kernels for the BSIF computation.
The best performing filter configurations per LivDet dataset are re-
ported in Tab. 4.4. As it should be noted, a texture-based descriptor
as BSIF achieves its best detection performance for small-size filter
kernels in most cases (i.e., N ≤ 9): large-size filter kernels can lead
to a deterioration of the fingerprint ridge pattern structure, thus re-
moving the aforementioned artefacts. Finally, we can see in Tab. 4.3
that intensity difference-based features analysed by ORB and BRIEF
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Table 4.4: Best performing BSIF filter configurations per dataset and K value.
The best results per dataset are highlighted in bold.

DB Dataset
BSIF parameters

256 512 1024

2
0
1
1

Biometrika N = 5, l = 5 N = 5, l = 5 N = 5, l = 5

Digital P. N = 11, l = 7 N = 11, l = 7 N = 11, l = 7

Italdata N = 7, l = 11 N = 11, l = 5 N = 8, l = 3

Sagem N = 8, l = 7 N = 8, l = 7 N = 8, l = 7

2
0
1
3 Biometrika N = 6, l = 3 N = 6, l = 3 N = 6, l = 5

Italdata N = 10, l = 5 N = 6, l = 9 N = 9, l = 7

2
0
1
5

GreenBit N = 7, l = 5 N = 7, l = 3 N = 7, l = 3

Digital P. N = 6, l = 3 N = 6, l = 3 N = 6, l = 3

Hi-Scan N = 7, l = 3 N = 7, l = 3 N = 7, l = 3

Crossmatch N = 8, l = 9 N = 12, l = 9 N = 12, l = 9

2
0
1
7

Digital P. N = 12, l = 7 N = 12, l = 7 N = 12, l = 7

GreenBit N = 7, l = 3 N = 7, l = 3 N = 7, l = 3

Orcanthus N = 6, l = 3 N = 6, l = 3 N = 7, l = 5

are not suitable to detect an AP attempt, thereby resulting in a poor
detection performance.

4.4.1.3 Effect of the Fingerprint Quality

We also perceive in Tab. 4.3 that the best performing descriptor (i.e.,
SIFT) attains a poor detection performance for two out of four datasets
in LivDet 2015. In particular, it attains an D-EER of 4.30% and 6.20%
for Hi_Scan and Digital Persona, which are respectively three and
five times worse than the ones reported by GreenBit and Crossmatch.
According to [69], most PAD techniques submitted to LivDet 2015

did not perform well due to the small image size. However, by care-
fully analysing the fingerprint quality provided by the NFIQ2.0 ap-
proach [191] for the entire LivDet 2015 datasets in Fig. 4.5, we found
that most BP images in the Digital Persona and Hi_Scan datasets yield
a poor NFIQ2.0 quality, in contrast to the ones in GreenBit and Cross-
match. Whereas 8% and 30% of the fingerprints in Digital Persona
and Hi_Scan present a good NFIQ2.0 quality greater than 50% (good
quality), most BP samples in GreenBit (i.e., 63%) and Crossmatch
(i.e., 72%) pose a good NFIQ2.0 quality score. Therefore, both capture
devices include some sensor technology which produces a high noise
degree on the fingerprint samples, and hence also affects the detection
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Figure 4.5: NFIQ2.0 quality distribution for the LivDet 20115 datasets.

performance of most state-of-the-art PAD methods [69, 144], even our
approach.

The above observation is also confirmed in Fig. 4.6, which reports
the detection performance of our best common feature space (i.e.,
FV) for different fingerprint image quality ranges over the LivDet
2015. As it can be noted, all descriptor categories achieve a detection
performance improvement with the BP ridge pattern quality. In par-
ticular, gradient-based descriptors yield a mean D-EER of 2.36% for
BP images with a NFIQ2.0 quality greater than 40, which outperforms
the texture- and intensity difference-based features by a relative 20%
and 73%, respectively. These findings in turn confirm the soundness
of the gradient-based descriptors to capture the aforementioned ridge
pattern artefacts and hence detecting the AP attempts. Consequently
with these results, we show in Fig. 4.7 an example of a misclassified
BP with a poor NFIQ2.0 quality. As a conclusion, we do confirm that
the orientation field, representing the fingerprint ridge pattern, can
be successfully employed as a discriminative feature to detect AP
attempts whose capture devices do not include a high noise degree
over the BP ridge pattern.

4.4.2 Impact of Different Fabrication Materials

Now, we study the impact of several PAI species used in the fabrica-
tion of PAIs on the PAD performance. In 2019, Chugh and Jain [32]
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Figure 4.6: D-EER benchmark in terms of NFIQ2.0 quality per descriptor
category.

(a) BP with NFIQ2.0 = 29. (b) AP with NFIQ2.0 = 29.

Figure 4.7: BP and AP samples which report the same NFIQ2.0 quality. a) a
misclassified BP sample whose ridges include a high noise degree,
and b) an AP image with a high noise degree.

analysed 12 different PAI species over a database acquired with a
single CrossMatch capture device. The authors grouped the features
extracted by the Fingerprint Spoof Buster PAD method [31] to derive
a training set, comprising only six PAI species. Thus, they achieved a
similar detection performance to the algorithm trained with the entire
set of PAI species. In our Thesis, we address some main questions
remaining unanswered: i) to which extent are some PAI species harder
to detect? and ii) how does this difficulty vary for different feature
extractors and for different sensors?

To address the above questions, we evaluate the impact of different
PAI species included in the LivDet databases on the proposed de-
scriptors in combination with the FV. In the experimental evaluation,
all testing and training images are acquired using the same capture
device. In order not to bias the results, the same set of PAI species is
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(a) Local feature descriptor. (b) PAI species.

Figure 4.8: Evaluation of different PAI species on the PAD performance.

used in the fabrication of training and test samples. The results per
descriptor and PAI species are reported as boxplots in Fig. 4.8.

Taking a look at Fig. 4.8-a), we observe that SIFT yields the lowest
error rates across different PAI species (i.e., a mean D-EER of 1.88%).
Its Standard Deviation (STD) (i.e., size of the corresponding box) is
also the lowest (0.96%), thereby indicating its higher robustness to
different PAI species with respect to the other descriptors considered.
Following SIFT, the BSIF-based representation achieves a D-EER of
4.07%, which is slightly higher than the one attained by the SURF (i.e..,
D-EER = 3.59%). However, the STD reported by SURF (STD = 2.13%)
is higher than the one yielded by BSIF (STD = 1.84). Therefore, we may
conclude that the latter is more robust to PAI species variability than
the former. In addition, we note that there is no direct relationship
between the overall performance of a particular PAD method and its
robustness to different PAI species, even if these are known during
the training.

Regarding Fig. 4.8-b), it should be seen that the highest variability is
yielded by the PAIs fabricated with Silgium (D-EER = 11.57% ± 9.30%),
thereby reflecting its high resemblance with the BP samples. In con-
trast to Silgum, the PAIs created using Modasil show a very distinct
appearance, with no noise in the ridges as in the BP samples. Those
are easier to detect by all descriptors, thereby resulting in the lowest
error rates (i.e., D-EER = 2.54% ± 2.80%). To sum up, we can conclude
that, as could be expected, some PAI species (e.g., Silgium) are harder
to detect than others (e.g., Modasil).

4.4.2.1 Benchmark with the State Of The Art

Finally, we establish a benchmark in Tab. 4.5 of the space (i.e., the
combination of the three common feature spaces with SIFT, as shown
in Fig. 4.2) and the descriptor (i.e., the combination of the three best
performing descriptors, SIFT, SURF, and BSIF, with the FV, as de-
picted in Fig. 4.3) fusions with the current top state-of-the-art. It is
worth noting that, in our investigation, we also experimented with
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the fusion between the best descriptors per category (i.e., SIFT, BSIF,
and ORB). However, the low discriminative power of the Intensity
differences-based descriptors led to a clear performance deteriora-
tion for unknown PAI species. As it may be observed, both proposed
fusions achieve the state-of-the-art approaches for most datasets. In
particular, the descriptor fusion reports, on average, remarkable D-
EERs of 0.95%, 0.30%, and 1.46% for the three LivDet databases. In
contrast to most Deep learning approaches, our descriptor fusion is
also able to yield a good detection performance for Digital Persona in
LivDet 2015 (i.e., D-EER of 0.10%). As was mentioned, most algorithms
submitted to LivDet 2015 did not perform well on Digital Persona due
to the small image size [69]. Moreover, most state-of-the-art algorithms
decrease their detection performance for those samples acquired by
capture devices (e.g., Digital Persona U.are.U 5160 and Biometrika Hi-
Scan-PRO) whose acquisition technology produces a high unwanted
noise degree on the fingerprint ridge pattern.
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Table 4.5: Benchmark in terms of the D-EER(%) with the top state-of-the-art. The best results are highlighted in bold.

DB Dataset VGG [144] TripleNet [151] FSB-v1 [30] TinyFCN [153] FSB-v2 [31] FLDNet [234] Space Fusion Descriptor Fusion

2
0

1
1

Biometrika 5.20 5.15 2.60 1.10 1.24 - 2.40 (α = 0.7, β = 0.0) 1.50 (α = 0.6, β = 0.4)

Digital P. 3.20 1.85 2.70 1.10 1.61 - 0.10 (α = 0.8, β = 0.0) 0.10 (α = 0.2, β = 0.8)

Italdata 8.00 5.10 3.25 4.75 2.45 - 2.20 (α = 0.8, β = 0.0) 1.90 (α = 0.3, β = 0.7)

Sagem 1.70 1.23 1.80 1.56 1.39 - 1.13 (α = 0.8, β = 0.2) 0.29 (α = 0.5, β = 0.0)

Avg. 4.52 3.33 2.59 3.12 1.67 - 1.46 0.95

2
0

1
3

Biometrika 1.80 0.65 0.60 0.35 0.20 0.36 0.30 (α = 0.9, β = 0.0) 0.30 (α = 0.0, β = 0.6)

Italdata 0.40 0.50 0.40 0.40 0.30 1.35 0.30 (α = 0.1, β = 0.0) 0.30 (α = 0.0, β = 0.8)

Avg. 1.10 0.58 0.50 0.38 0.25 0.86 0.30 0.30

2
0

1
5

GreenBit 4.60 - 2.00 0.20 0.68 0.53 1.30 (α = 1.0, β = 0.0) 1.00 (α = 0.3, β = 0.5)

Digital P. 5.64 - 1.76 3.40 1.12 3.61 6.20 (α = 1.0, β = 0.0) 0.10 (α = 0.6, β = 0.1)

Hi_Scan 6.28 - 1.08 0.35 1.48 2.95 4.30 (α = 1.0, β = 0.0) 3.80 (α = 0.5, β = 0.3)

Crossmatch 1.90 - 0.81 1.09 0.64 1.78 1.03 (α = 1.0, β = 0.0) 0.94 (α = 0.1, β = 0.8)

Avg. 4.61 - 1.39 1.26 0.97 2.22 3.20 1.46
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Biometrika11
Digital11

Italdata11
Sagem11

Biometrika13
Italdata13

Crossmatch15
GreenBit15
Hi-Scan15
Digital15

BPCER10(%) BPCER20(%) BPCER100(%)
0.10 0.50 2.10
0.00 0.00 0.10
0.30 0.90 3.50
0.00 0.00 0.20
0.10 0.10 0.10
0.00 0.00 0.00
0.07 0.40 0.90
0.00 0.00 1.00
0.60 2.30 10.60
0.00 0.00 0.00

Avg. 0.12 0.42 1.85
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Figure 4.9: Presentation attack detection error trade-off between BPCER over
APCER over the known PAI species scenario for the descriptor-
fusion-based approach.

4.4.2.2 In-depth Detection Performance Analysis

In order to analyse the feasibility of our best fusion approach (i.e.,
descriptor fusion) for an operational real application, we evaluate in
Fig. 4.9 its detection performance in compliance with the ISO/IEC
30107-3 [97]. As it may be observed, the performance varies consid-
erably from the best (i.e., Digital Persona subset from LivDet 2015,
with a BPCER = 0.00% for APCER ≥ 0.50% or APCER = 0.00% for
BPCER ≥ 0.05%) to the worst case (i.e., Hi_Scan subset from LivDet
2015, with a BPCER100 = 10.60%). Specifically, our algorithm reports
on average a BPCER100 of 1.48% and 0.05% for LivDet 2011 and LivDet
2013, respectively, which are up to seven times lower than the ones
attained by the current state-of-the-art techniques (i.e., a BPCER100 of
9.68% for FSB-v1 [30] and 4.05% for FSB-v2 [31] on the LivDet 2011,
and a BPCER100 of 0.20% for FSB-v1 [30] and 0.05% for FSB-v2 [31] on
the LivDet 2013).

Consequently, the proposed fusion is able to achieve a top detection
performance for most datasets in LivDet 2015: a mean BPCER100 of
0.63% for the Crossmatch, GreenBit, and Digital Persona datasets (i.e.,
state-of-the-art: 1.61% in FSB-v1 [30] and 0.92% in FSB-v2 [31]). In
addition, it should be noted that our method yields its worst detection
performance for the Hi_Scan capture device, thereby resulting in a
BPCER100 of 10.60%. The Hi_Scan dataset includes high-resolution
fingerprints with sizes of 1000 × 1000 pixels where the ROI for most
PAIs only covers a 40% of a whole image. In contrast, the ROI for BP
samples covers up to 70% of pixels in the images. Since our proposed
approach extracts the descriptors from the whole image, we think
that a ROI segmentation or a reduction of the points on the regular
grid to particular landmarks such minutiae, for the feature extraction,
could lead to a detection performance improvement for this type of
high-resolution capture device.
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Finally, it should be noted that, in general, a good balance between
high user convenience or usability (i.e., low BPCER) and high security
(i.e., low APCER) can be achieved with the proposed method. In
particular, the BPCER ranges between 0.12% and 1.85% for higher
security thresholds (i.e., 1.00% ≤ APCER ≤ 10.00%) confirms the
remarkable detection performance of the fusion between gradient and
texture-based descriptors for this baseline scenario.

4.4.3 Unknown PAI species

One of the main objectives of this Thesis is to deal with scenarios
with unknown factors. Therefore, we analyse in detail the detection
performance of both fusion representations for unknown PAI species.
Two sets of experiments are then performed following three different
protocols. In both experiments, all training and test images were
acquired by the same capture device.

To evaluate the generalisation capability of our PAD algorithms,
we select the LivDet 2015 database in which unknown PAI species
were used for the fabrication of PAIs in the test set (see Tab. 4.1). In
addition, we follow the experimental protocol described in [144] where
the LivDet 2011 and 2013 databases are involved. Following this idea,
an unknown PAI species evaluation is also carried out over the LivDet
2017. Tab. 4.6 shows the corresponding D-EER values for all subsets.

Focusing first on the LivDet 2011 and LivDet 2013 databases for
the challenging scenario, a similar trend to the baseline scenario can
be observed for the three selected local descriptors: the gradient-
based descriptors achieve on average the best performance for most
datasets (average D-EER = 2.08% for SURF), followed by the texture-
based descriptor (D-EER = 2.36% for BSIF). In addition, it should be
noted that both the three descriptors as well as two fusion algorithms
outperform the top state-of-the-art. In particular, the descriptor fusion
yields a mean D-EER of 1.00%, which is approximately three and
ten times better than the ones attained by the best methods. These
results can be also observed for the LivDet 2017 database, reporting
on average an D-EER of 3.97% which is better than the one attained
by the LivDet 2017 winner [141]. Finally, it is important to highlight
that most techniques report a performance deterioration for those test
datasets including PAIs fabricated with the PAI species Silgum (see
Tab. 4.6, Bio11 and Ita11 rows).
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Table 4.6: Detection performance of our fusion representations, in terms of D-EER (%), for several unknown PAI species scenarios.

PAI species
SIFT BSIF SURF Descriptor Fusion Space Fusion FSB-v2 [31] FLDNet [234]

LivDet 2017

Protocol Dataset Train Test Winner [141]†

Proposed by
Bio11 EcoFlex, Gelatine, Latex Silgum, Woodglue 6.33 3.72 4.61 1.73 4.78 4.60 - -

[144]
Bio13 Modasil, Woodglue EcoFlex, Gelatine, Latex 1.00 0.87 1.31 1.04 1.50 1.30 0.87 -

Ita11 EcoFlex, Gelatine, Latex Silgum, Woodglue, Other 3.78 4.61 2.00 1.11 3.60 5.20 - -

Ita13 Modasil, Woodglue EcoFlex, Gelatine, Latex 0.30 0.23 0.41 0.13 0.50 0.60 0.94 -

Avg. 2.85 2.36 2.08 1.00 2.60 2.93 - -

LivDet 2015

Crossmatch Body Double, EcoFlex,PlayDoh Gelatine, OOMOO 1.37 2.56 6.87 2.01 1.34 - 2.66 -

Digital P.
EcoFlex_00-50,Latex,
Gelatine, Woodglue Liquid EcoFlex, RTV

9.40 5.80 10.00 8.45 8.85 - 3.06 -

GreenBit 4.20 5.45 7.80 4.65 4.20 - 0.46 -

Hi-Scan 6.65 8.65 11.60 6.00 6.65 - 3.38 -

Avg. 5.41 5.61 9.07 5.28 5.26 - 2.39 -

LivDet 2017
*

Digital P.
Woodglue, EcoFlex,

Body Double
Gelatine, Latex,
Liquid EcoFlex

5.11 5.97 5.03 4.22 (α = 0.3, β = 0.4) 4.84 (α = 0.9, β = 0.1) - - 4.41

GreenBit 5.64 5.35 5.88 4.06 (α = 0.3, β = 0.4) 5.35 (α = 0.9, β = 0.1) - - 3.56

Orcanthus 6.16 4.04 7.00 3.63 (α = 0.6, β = 0.2) 5.62 (α = 1.0, β = 0.0) - - 6.29

Avg. 5.64 5.12 5.97 3.97 5.15 - - 4.75

† The overall classification errors reported by LivDet 2017 winner in this work are the complement of the overall accuracy achieved in [141]
* The D-EER results were achieved at K = 512 for SIFT, and K = 256 for BSIF and SURF.
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Figure 4.10: DET curves on the unknown PAI species scenario for the best
performing fusion algorithm (i.e., Descriptor Fusion).

Regarding the experiments run on LivDet 2015 (see Tab. 4.6, mid
row), the trend observed for LivDet 2011 and LivDet 2013 is confirmed:
gradient-based descriptors show the best performance, followed by
the texture-based one (i.e., 5.41% vs. 5.61%). On the other hand, it
may be noted that our fusion method suffers a high-performance
deterioration for Digital Persona and Hi_Scan due to their fingerprint
quality: 90% and 70% of fingerprint images in those datasets report a
NFIQ2.0 quality below 50%, thereby producing an accuracy decrease
for most PAD techniques [144, 153, 234]. Therefore, those images are
unsuitable to the PAD task and hence for a real fingerprint recognition
system.

To conclude the analysis of this scenario, the ISO/IEC-compliant
evaluation of the fusion approach over all datasets is presented in
Fig. 4.10. As was expected, the performance is worse than that over
the known PAI species scenario (see Fig. 4.9). Nevertheless, an average
BPCER100 of 8.30%, BPCER20 of 3.47%, and BPCER10 of 1.93% can be
achieved, thus still granting a secure and usable system. In addition, it
should be noted that the gap in performance at the D-EER for Digital
Persona and Hi_Scan in the LivDet 2015 database is here confirmed
for all operating points (i.e., a BPCER100 of 19.60% for Hi_Scan and a
BPCER100 of 29.30% for Digital Persona).

4.4.4 Cross-database and Cross-session Evaluations

We now evaluate the cross-database scenario, where different capture
devices might be used for training and testing at some point in time.
This scenario is likely to happen during a long-time deployment,
where the fingerprint capture device might age and eventually stop
working. Therefore, the fabrication and acquisition of the entire set
of earlier known PAI species with the new capture device at hand
might not be possible or at least require some time, thereby being not
available for high-security applications.
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Table 4.7: Performance evaluation in terms of D-EER for cross-session and
cross-database scenarios.

(a) Cross-database protocol.

SIFT BSIF SURF Descriptor Fusion Space Fusion FSB-v2 [31] FLDNet [234]
Train - Test

Bio11 - Ital11 11.30 11.65 11.40 9.65 11.45 25.35 -

Bio13 - Ital13 1.80 2.95 0.95 1.55 1.80 4.30 2.10

Ital11 - Bio11 2.40 10.05 7.95 3.70 7.40 25.21 -

Ital13 - Bio13 0.80 3.30 1.35 0.90 0.75 3.50 2.90

Avg. 4.08 6.99 5.41 3.95 5.35 14.59 -

(b) Cross-session protocol.

SIFT BSIF SURF Descriptor Fusion Space Fusion FSB-v2 [31] TripleNet [151]
Train - Test

Bio11 - Bio13 6.80 3.95 3.90 5.90 4.00 7.60 14.00

Bio13 - Bio11 12.70 16.95 18.55 14.75 13.60 31.16 34.05

Ital11 - Ital13 5.60 2.95 9.40 6.95 5.60 6.70 8.30

Ital13 - Ital11 11.50 21.95 20.10 24.10 17.50 26.16 44.65

Avg. 9.15 11.45 12.99 12.92 10.18 17.91 25.25

a) Biometrika 2011 b) Italdata 2011 c) Biometrika 2013 d) Italdata 2013

Figure 4.11: Appearance behaviour across capture devices for two finger-
prints: a) fingerprint sample in Biometrika 2011, b) fingerprint
sample in Italdata 2011, c) fingerprint sample in Biometrika 2013,
and d) fingerprint sample in Italdata 2013.

In order to study the generalisability of our proposed methods for
cross-database, we adopt four training set - test set configurations
proposed by [144]. Tab. 4.7-a) reports the corresponding D-EER values.
As it may be observed, a gradient-based descriptor (i.e., SIFT) still
provides the lowest error rates (D-EER = 4.08%). However, it should be
noted that BSIF deploys a similar detection performance for the same
pairwise configurations. Even if Italadata 2011 and Biometrika 2011

visually show different texture patterns (see Fig. 4.11), SIFT is able to
yield similar D-EER values when these datasets are used for testing
(i.e., D-EER of 11.65% for Bio11-Ital11 vs. 10.05% for Ital11-Bio11).
Consequently, similar behaviour can be perceived for Biometrika 2013

and Italdata 2013: these look visually more similar, thereby resulting
in a low D-EER for all descriptors. Therefore, in order to successfully
achieve the interoperability requirement between capture devices, the
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Figure 4.12: DET curves on the cross-database and cross-session scenarios
for the best performing fusion representation.

selection of a new sensor must be carefully performed taking into
account the five fingerprint ridge pattern properties mentioned in
Sect. 4.4.1.2. This could in turn avoid a gap in the detection perfor-
mance of state-of-the-art techniques.

Regarding the fused representations, we note that they considerably
outperform the state-of-the-art by a relative 73% (i.e., D-EER = 3.95%
for the descriptor fusion vs. 14.59% for FSB-v2 [31]), thereby showing
its generalisation capability for this challenging scenario.

In Fig. 4.12-a), the ISO/IEC-compliant evaluation of the descriptor
fusion scheme is depicted. We can first observe the increased detec-
tion performance gap between LivDet 2011 and LivDet 2013 for all
operating points. In particular, our approach yields a mean BPCER100

of 2.40% for datasets in LivDet 2013, which is approximately nine
times lower than the one reported for datasets in LivDet 2011 (i.e.,
BPCER100 = 18.18%). Despite this detection performance gap, our
fused method is able to achieve a mean BPCER100 of 10.14%, thus
providing both user convenience and security.

Finally, we evaluate the scenario where different data collection
sessions for the same capture device are used for training and testing.
To that end, we select two datasets (i.e., Biometrika and Italdata),
whose sensors were respectively used for fingerprint acquisition in
the LivDet 2011 and LivDet 2013 competitions. Tab. 4.7-b) shows the
corresponding D-EER values.

As in most scenarios analysed, a gradient-based descriptor (i.e.,
SIFT) provides the best detection performance. In particular, SIFT
reports a mean D-EER below 10%, which outperforms the remaining
descriptors, their fusion (i.e., the descriptor fusion), and the top state-
of-the-art techniques. It should be noted that our descriptors and their
fusion suffer a detection performance deterioration when the LivDet
2011 dataset is employed for testing. Whereas datasets acquired at
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a) Misclassified APs b) Misclassified BPs

c) Correctly classified APs d) Correctly classified BPs

AP

BP

𝛿

Figure 4.13: Heatmaps with the predicted scores for misclassified and cor-
rectly classified samples.

different years with the same capture device look visually similar (see
Fig. 4.11), they report a different detection performance. Specifically,
the evaluation of LivDet 2011 attains a mean D-EER of 16.95%, in
contrast to 5.43% reported by testing LivDet 2013. Similar to the
unknown PAI species results, the inclusion of an unknown PAI species
as Silgum in LivDet 2011 is one of the issues leading to a detection
accuracy decrease of our approach. Finally, the Fig. 4.12-b) confirms the
detection performance gap over the LivDet 2011 and 2013 databases
(i.e., blue and grey vs. yellow and red): a higher BPCER100 over 60%
for LivDet 2011 yields a non-usable fingerprint system.

4.4.5 Visualisation of the FV Representation

We show in Fig. 4.13 the visualisation of the scores predicted by our
best approach (i.e., descriptor fusion-based pipeline) for misclassified
and correctly classified samples taken from the LivDet 2015. It should
be noted that both the heatmaps for misclassified BPs and correctly
classified APs contain a high number of low coherence areas or un-
wanted noise, in contrast to the ones yielded for wrongly classified
APs and correctly classified BPs. Those areas of low coherence are
produced by the capture devices in the sample acquisition. In addition,
we may observe that our proposed method fails for those PAIs having
a perfectly defined ridge pattern, as depicted in Fig 4.13-a). As it
was mentioned above, local analysis for particular landmarks such as
minutiae could lead to an improvement for these challenging cases.

Finally, a t-SNE visualisation in Fig. 4.14 for the cross-database and
cross-session scenarios shows the capability of the FV representation
to separate an AP from a BP. We can observe that feature spaces
for AP samples appear to be, at most cases, closer with each other
than with those BP attempts. Even for those testing capture devices
such as Biometrika 2011 (see Fig. 4.14-b)), which contains PAI species
unknown in the Biometrika 2013 training set, we can note that our
approach was able to find a set of semantic sub-groups from known
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Figure 4.14: t-SNE visualisation of the FV common feature space for the
cross-database and cross-session scenarios.

samples to successfully fit those unknown PAI species. This, in turn,
confirms the aforementioned hypothesis in Sect. 4.

4.4.6 Summary

To summarise the findings on the fingerprint PAD, we can highlight
the following takeaway messages:

• Among the three common feature space (i.e., BoW, FV, and
VLAD), the best detection performance is obtained for FV, and
the worst for BoW.

• Gradient-based descriptors (i.e., SIFT and SURF) successfully
represent low coherence areas produced by several fingerprint
ridge pattern artefacts such as black saturation, white saturation,
lack of continuity, unwanted noises and ridge distortions, thereby
resulting in the best detection performance in most scenarios.

• A NFIQ2.0 evaluation over the LivDet 2015 database showed that
different analysed descriptors improved their detection perfor-
mance as the ridge pattern of BP fingerprints enhanced. There-
fore, the NFIQ2.0 can be employed as an secure indicator to
obtain a reliable PAD module: an D-EER < 2.58% is reported
when the BP fingerprint quality is greater than 60 (i.e., NFIQ2.0
> 60).

• The proposed PAD methods, based on local image descriptors
and common features spaces, are able to outperform the state-
of-the-art techniques not only in the baseline scenario (i.e., both
the PAIs and the acquisition devices are known a priori) but
also in more realistic and challenging scenarios (i.e., unknown
PAI species, cross-session, and cross-database). In particular, the
D-EER is reduced by up to four times for the cross-database (i.e.,
D-EER = 3.95% vs. 14.59%).

• Further, a fusion at score’s level between three common feature
spaces deployed a performance improvement in most cases,
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thereby resulting in a BPCER100 in the range of 1.98% - 17% in the
presence of unknown PAI species. This, in turn, confirmed that
the hard quantisation computed by VLAD and BoW can be used
as additional information to enhance the soft quantisation built
by the FV approach. We think that for those non-improvement
cases, proper tuning of the fusion parameters could enhance its
detection performance.

• In addition, the ISO/IEC compliant evaluation revealed that the
best performing fusion approach provides an usable system (i.e.,
low BPCER) even for a high security (APCER = 1%) operating
point: it achieves an average BPCER100 = 1.85% for the baseline
scenario; BPCER100 < 1.20% for LivDet 2013, BPCER100 < 16%
LivDet 2015 and BPCER100 < 9% LivDet 2017 for the unknown
PAI species scenario; and BPCER100 < 11% for the cross-database
evaluation.

• Texture-based features also yield the best detection performance
right after gradient-based descriptors. In particular, BSIF achieves
its best performance for small filter sizes (i.e., N < 9), which
capture most of aforementioned artefacts. Given that BSIF de-
pends on a set of filters previously learnt from thirteen natural
images, we think that the use of filters trained for the particular
fingerprint PAD task or extracted from intermediate CNN layers
could unveil other ridge artefacts, hence improving the BSIF
performance.

• Even if the Intensity differences- or binary-based descriptors (i.e.,
ORB and BRIEF) offer a lower computational load, their perfor-
mance is not competitive against their continuous counterparts
for fingerprint PAD purposes (i.e., SIFT, SURF, BSIF, HOG, and
LBP).

• The fusion of gradient- and texture-based information consider-
ably improves the detection performance of the single descrip-
tors, even in the scenarios where textural features alone achieve
considerably higher error rates (e.g., cross-database).

• The semantic sub-groups learned by the GMM allow modelling
most aforementioned artefacts produced in the creation of PAIs.
A better artefact description by the semantic sub-groups depends
on that the input features follow a Gaussian distribution. In
order to remove this GMM constrain and hence improve the FV
representation, new deep generative models, which have shown
to be more powerful for learning data distribution, could be
evaluated.

• Whereas deep learning-based fingerprint PAD approaches re-
quire large databases for optimising thousands of parameters,
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our proposal attained a high detection performance by tuning a
small number of them (K, α, and β) from a small dataset.

• Further, most state-of-the-art techniques yield a poor detection
performance over Digital Persona in LivDet 2015 due to its small
image size, our fusion method reports a remarkable D-EER of
0.10%.

• Since Hi_Scan contains images with a high size of 1000 × 1000

pixels where the ROI area for PAIs only covers a 40% of the
whole image, our best fusion-based representations is unable to
report a reliable detection performance, thereby resulting in a
BPCER100 of 10.60%. A reduction of the points on the regular
grid to specific landmarks such as minutiae, for the feature
extraction, or a ROI segmentation could improve its error rates.



5
FA C E P R E S E N TAT I O N AT TA C K D E T E C T I O N

In this Chapter, we evaluate the feasibility of using FV for face PAD
(Sect. 5.1). Whereas gradient-based descriptors such as SIFT and SURF
showed to be an appropriate choice for fingerprint samples (see Chap-
ter 4), in which minutiae can be regarded as landmarks within the
image, we anticipate that for facial images the textural information is
more relevant than the geometric information related to facial land-
marks. Therefore, we combine the FV representation with a com-
pact version of BSIF, extracted from local patches of the facial image
(Sect. 5.1.1). We also extend the assumption that unknown PAI species
share more texture, shape and appearance features with known PAI
species than with those BP samples. Hence, the FV representation
would allow tackling the aforementioned issues on PAD generalisa-
tion to unknown PAI species. Furthermore, we analyse in this Chapter
the PAD performance of several facial regions such as the mouth, nose,
and eyes (Sect. 5.2) and study the sensitivity of PAD algorithms to
images of varying resolutions (Sect. 5.3). In general, we summarise
the results in [71–73] and answer the RQ 2, RQ 3, and RQ 4.

5.1 application of FV for face PAD

5.1.1 Improved Local BSIF

Usually, PAIs include details (e.g. acute edges around the eyes in
CASIA cut attacks [236]) which can be successfully detected by the
quantization of filtered features (see Fig. 5.2). Therefore, we directly
explore the combination of the BSIF features with the best general-
isable common feature space (i.e., FV). As mentioned in Sect. 3.1.8,
BSIF [104] is a local image descriptor computed by binarising the
responses of a given image to a set of pre-learned filters to obtain
a statistically meaningful representation of the data. However, the
BSIF features are transformed into a high-dimensional vector as the
number of filters N increases, not suitable for a combination with
the FV representation. The histograms also become sparse vectors as
the number of linear filters N increases as they are densely extracted
following the strategy described in Sect. 3.1.1. Hence, we computed
the number of zero and non-zero components per number of filters
over the CASIA Face Anti-Spoofing database [236] in Fig. 5.3-a) and
noted that the number of non-zero components remains under 223

in all cases, having an average value of 128. We will thus represent
each 2N BSIF histogram as a 128-component vector by summing the

53
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Figure 5.1: Face PAD approach overview which comprises three steps: a)
local BSIF features are densely extracted per RGB channel, b) the
feature distribution (i.e., semantic sub-groups) is subsequently
learned by training an unsupervised GMM, c) the loglikelihood
among the BSIF components and the parameters of the semantic
sub-groups from the facial feature vector are computed; and d)
the face representation is classified using a linear SVM.

a) Cut photo attack b) Video replay attack c) Warped photo attack

Figure 5.2: Visualisation of the artefacts on three PAI species after convolving
the face image with a particular BSIF filter.

elements for each sequential 2N/128 sub-set in the original histogram
(see an example in Fig 5.3-b). This representation reduces the storage
requirements down to 12.5% for N = 10 or 3.1% for N = 12 while
leading to a high PAD performance (see Sect. 5.5).

5.2 facial region analysis for PAD

A peculiarity of most PAD approaches in Face Recognition (FR) sys-
tems is that they detect AP attempts through the analysis of the full
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Figure 5.3: a) Average number of zero and non-zero components of dense
BSIF histograms for different numbers of filters N, and b) a
reduction example where a local BSIF histogram of size 2N = 512

is represented as a 128-component vector.

face region, thus ignoring facial occlusions by different accessories, as
shown in Fig. 5.4. In particular, the use of accessories such as masks
to prevent respiratory infection, glasses, or traditional clothes have
resulted in a detection performance deterioration of most PAD algo-
rithms. In fact, those PAD methods [23, 105, 181, 228], which have
demonstrated the advantage of local face patches in defending against
a variety of PAI species, might drop their performance in detecting BPs
when pristine local patches contain some of the aforementioned acces-
sories. Thus, these approaches might also fail to correctly separate an
occlusion from an intentional AP attempt. Up to now, few approaches
have evaluated the impact of some aforementioned occlusions for
PAD. Fang et al. [55] evaluated the effect of masked attacks on the
detection performance of seven state-of-the-art PAD schemes, show-
ing that real masks pose a serious threat for operational FR systems:
PAD methods assessed wrongly classified up to 48.25% masked BP
samples as APs. Subsequently, Fang et al. defined in [54] partial attack
labels and use them for training two state-of-the-art architectures (i.e.,
DeepPixelBis [65] and MixFaceNets [20]). The experimental results
demonstrated a detection performance improvement for masked at-
tacks with respect to [55]: relative BPCER enhancements of 5.16% and
85.28% are achieved by DeepPixelBis and MixFaceNets, respectively.
Despite the detection performance improvements attained, there ex-
ist still an uncountable number of accessories which might drop the
accuracy of the PAD subsystems.

To fill this gap in the literature, we abstract from the fact that the
input facial samples could contain some of the mentioned occlusions
and present a comprehensive analysis of the feasibility of several facial
regions for PAD. These facial regions could, in turn, be used in the
presence of these occlusions without scarifying the final detection
performance.
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Figure 5.4: Examples of web-collected facial images occluded by different
accessories such as masks, glasses, hands, paper, and tattoos.

Input
sample

Facial Region
extraction

BP/APLandmark
detection

PAD
algorithm

Figure 5.5: Proposed framework to conduct the facial region study and eval-
uate PAD approaches.

5.2.1 Proposed Framework

In our study, we explore the feasibility of using 14 facial regions for
PAD purposes: both eyes, both eyebrows, central face, chin, jaw, left
eye, right eye, left eyebrow, right eyebrow, mouth, nose, left face, right
face regions. Fig. 5.5 shows the framework proposed to conduct our
analysis, which is based on two main steps: i) the facial region is
detected and extracted (see Sect. 5.2.2), and ii) the face region is the
input to a PAD approach (see Sect. 5.2.3) for BP vs. AP decision.
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Table 5.1: Definition of facial regions by landmarks.

Region Enclosing landmarks

1 Full Face The entire face region

2 Left Face [8, 16, 24, 27]

3 Right Face [0, 8, 19, 27]

4 Central Face [0, 16, 19, 24, 30]

5 Jaw [1, 8, 15, 28]

6 Both Eyebrows [17, 19, 24, 26]

7 Both Eyes [0, 16, 17, 26, 28]

8 Left Eyebrow [22, 24, 26]

9 Right Eyebrow [17, 19, 21]

10 Left Eye [16, 26, 27, 28]

11 Right Eye [0, 17, 27, 28]

12 Mouth [48, 50, 52, 54, 57]

13 Nose [27, 31, 33, 35]

14 Chin [5, 8, 11, 57]

5.2.2 Facial Regions Extraction

For facial region detection and extraction, we consider the open-source
toolbox dlib [106] which extracts 68 landmarks per face. Based on such
landmarks, we define 14 different facial regions in Tab. 5.1. For a
comprehensive analysis, we divide these regions into two groups:
single (i.e., mouth, nose, chin, left eye, right eye, left eyebrow, and
right eyebrow) and composite (i.e., both eyes, both eyebrows, central
face, jaw, left face, and right face, full face). Fig. 5.6 shows an example
of those landmarks together with some facial regions.

5.2.3 PAD Methods

Five state-of-the-art CNN approaches are independently evaluated: i)
AlexNet [120] which outperformed all traditional machine learning
and computer vision approaches in the ImageNet challenge [120], ii)
DenseNet [91] comprising 121 layers, iii) ResNet [86] version with 101

layers, iv) MobileNetV2 [177] proposed mainly for mobile applications,
and v) a recent lightweight CNN named MNasNet [198].

In our implementation, the last Fully Connected Layer (FCL) for
all deep learning architectures studied is modified to a single neuron
with a sigmoid activation for the BP vs. AP binary decision. We train
the algorithms using the Adam optimiser [107] and use the ImageNet
pre-trained weights to initialise the networks. A learning rate of 10−4
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Figure 5.6: Examples of some facial regions (i.e., mouth, nose, left and right
eyes, left and right eyebrows, chin, jaw, and full face).

with a weight decay parameter of 10−6 was used. The framework
was implemented in PyTorch [155] and the CNNs are trained on the
Nvidia GPU Tesla M10 with 16 GB DRAM.

5.2.4 Facial Region Utility

We define a new metric named Facial Region Utility which combines
the correlation between facial regions and the detection performance
of algorithms when they are trained using a particular facial region
and evaluated on another one. This metric reports a value in the
range [0, . . . , 1] which indicates the usefulness of a particular region
for training to spot an AP based on the other region in a probe image.
Formally, the Facial Region Utility for a probe facial region RP with
respect to a trained region RT is defined as follows:

U(RT, RP) =
|C(RT, RP)|+ (1− P(RT, RP))

2
, (5.1)

where C(RT, RP) is the Pearson correlation coefficient between RT

and RP. C(RT, RP) reports a value in the range [−1, 1] indicating
how correlated the features of RP are with those of RT. Since the
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Table 5.2: Benchmark of state-of-the-art approaches in terms of classification
accuracy (%) under the Quality Test and Overall Test protocol in
[236].

method low normal high overall

LBP+SVM [162] 83 78 90 80

Network A [171] 84 91 79 80

Network B [171] 86 93 80 81

Network C [171] 94 94 82 87

ShallowCNN [163] 93 92 84 88

direction of the Pearson correlation between RT and RP does not lead
to any improvement, we apply the absolute value over the coefficient.
P(RT, RP) represents the normalised D-EER when RP is evaluated
using an algorithm trained over the region RT. Utility values close
to 1 state that RT can be employed for training whilst RP can be
successfully used for detecting an AP in the probe image. To normalise
the D-EER values to the range [0, 1], we employ the traditional Min-
Max normalisation [180]:

normalisedD-EER =
D-EER−minD-EER

maxD-EER −minD-EER
, (5.2)

where minD-EER and maxD-EER are, respectively, the minimum and
maximum values of the set of D-EERs computed by the evaluated
PAD methods (see Sect. 5.2.3) on different training and testing config-
urations of the facial regions.

To make the equation 5.1 clear to readers, we show the boundary
cases. Let A be a PAD algorithm, for the best case, we assume that
the performance of A on two face regions (i.e., PA(RT, RP)) would
result in a D-EER = 0.0, and RT and RP are highly correlated (i.e.,
C(RT, RP) = 1). Therefore, the Facial Region Utility between RT and
RP would achieve the highest value (i.e., U(RT, RP) = 1). On the
contrary, for the worst case, PA(RT, RP) = 1, 0 and C(RT, RP) = 0,
leading to a U(RT, RP) = 0.

5.3 sensitivity to images of varying resolutions

In a third approach, we study the sensitivity of facial PAD techniques
to images of varying resolutions. Nowadays, most PAD algorithms
have reported a performance degradation when they are trained with
face images of varying resolutions, as shown in Tab. 5.2. Up to now,
very few works have addressed these issues. In 2013, Galbally et al. [61]
evaluated the potential of general IQA as a protection tool against
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Figure 5.7: Proposed framework to analyze the effect of images with varying
resolutions.
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PAIs and showed that a face sample acquired in an attack attempt has
different quality than a BP image. Following that idea, Bhogal et al. [13]
also explored six non-reference IQA metrics to detect APs on iris,
fingerprint, and facial characteristics. As a result, the authors found
that the best quality measure and classification setting highly depends
on the target database, thereby recommending its optimisation for
each particular application. More recently, Agarwal et al. [3] showed
how several image transformations such as gamma correction, log
transform, and brightness control can help a non-authorised subject to
circumvent a PAD algorithm. In addition, the authors demonstrated
that such image transformations decrease the detection performance
of handcrafted- and deep learning-based approaches.

In spite of those valuable efforts, one main question remains unan-
swered: could the utilisation of images with varying resolutions affect
the detection performance of any PAD method? In other words, to
which extent are PAD approaches sensitive to training sets containing
images of varying quality? And how could this difficulty affect the
PAD generalisation capabilities?

5.3.1 Proposed Framework

In order to address the above questions, we analyse different PAD
algorithms following the three-step overview depicted in Fig. 5.7: i)
to remove non-useful information, faces are first detected with the
Tensorflow1 Face Detection method, ii) a global texture descriptor is
then extracted per image, and iii) a BP or AP decision is finally taken
by a linear SVM. To extract global features from images, we select
three well-known texture descriptors: LBP, LPQ, and BSIF, and five
deep learning approaches (i.e., MobileNet [88], MobileNetV2 [177],
InceptionV3 [190], Xception [29], and DenseNet121 [91]). All of these
descriptors have been widely employed for face PAD [8, 31, 143] and
are summarised in Tab. 5.3. In our implementation, we use the Ima-
geNet [41] pre-trained deep learning models, and the final descriptor
is computed from the last layer after removing the FCLs.

1 https://github.com/yeephycho/tensorflow-face-detection

https://github.com/yeephycho/tensorflow-face-detection
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Table 5.3: Summary of the descriptors used in the image resolution analysis.

Handcrafted descriptors Deep learning descriptors

descriptor parameters length architecture length

LBP [145]
R = {1, 2, 3}

59

MobileNet [88] 7× 7× 1024 = 50176

P = {8, 16, 24} MobileNetV2 [177] 7× 7× 1280 = 62720

LPQ [146]
R = {3, 5}

256

InceptionV3 [190] 5× 5× 2048 = 51200

α = 1 Xception [29] 7× 7× 2048 = 100352

BSIF [104]
N = {5, 6, 7, 8, 9, 10, 11, 12}

2N DenseNet121 [91] 7× 7× 1024 = 50176
L = {3, 5, 7, 9, 11, 13, 15, 17}

5.4 experimental setup

The experimental evaluation aims to address the following goals:

• Analyse the impact of different BSIF filter configurations on the
PAD performance of our common feature space FV.

• Study the detection performance for different colour spaces (i.e.,
RGB, HSV, and YCbCr).

• Analyse the feasibility of using different facial regions for PAD.

• Study the effect of using image with varying resolutions in the
detection performance of PAD subsystems.

• Evaluate the correlation and detection performance of facial
regions as well as their utility for being used on real applications
where some face parts might be occluded

• Benchmark the detection performance of the FV approach with
the top state-of-the-art for known PAI species, unknown PAI
species, and cross-database.

• Establish a benchmark of state-of-the-art using our proposed
facial region analysis for a real application where subjects wore
masks to prevent respiratory infections.

5.4.1 Databases

In order to reach our goals, the experimental evaluation was conducted
over five well-established databases, which are summarised in Tab. 5.4:

• CASIA-FASD [236] contains 600 short videos of BPs and APs
stemming from 50 different subjects, and acquired under dif-
ferent conditions. The dataset comprises three PAI species: i)
warped photo attacks or printed attacks, cut photo attacks, and
video-replay attacks.
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• REPLAY-ATTACK (RA) [28] consists of 1200 short videos (around
10 seconds in mov format) of both BPs and APs of 50 different
subjects, acquired with a 320 × 240 low resolution webcam of
a 13-inch MacBook Laptop. The video samples were recorded
under two different conditions: i) controlled, with an uniform
background and artificial lighting, and ii) adverse, with natu-
ral illumination and non-uniform background. In addition, this
database comprises three PAI species: printed attacks, photo-
replay attacks, and video-replay attacks.

• REPLAY-MOBILE (RM) [35] comprises 1190 video clips of printed,
photo-replay, and video-replay attacks of 40 subjects under dif-
ferent lighting conditions. Those videos were recorded with two
smartphone capture devices: an iPad Mini2 and a LG-G4 smart-
phone, thereby allowing the evaluation of PAD approaches for
the mobile scenario.

• MSU-MFSD [219] contains 440 video clips of photo-replay and
video-replay attacks of 35 subjects. Those PAI species were ac-
quired with two camera types: MacBook Air 13-inch and front-
camera in the Google Nexus 5 smartphone. The MSU-MFSD
database comprises two particular scenarios: i) a mobile phone
is used to capture both bona fide presentations and presenta-
tion attacks, simulating the application of mobile phone unlock,
and ii) the printed photos used for attacks are generated with a
state-of-the-art colour printer on larger sized paper.

• SiW-M [128] consists of 968 videos of 13 PAI species including
challenging attacks such as silicone masks, obfuscation, and cos-
metic makeup, among others. 660 BP videos from 493 subjects
are also included in the dataset. Those subjects are diverse in
ethnicity and age, and the videos were collected in 3 sessions:
i) a room environment where the subjects were recorded with
few variations such as pose, lighting and expression; ii) a dif-
ferent and so larger room where the subjects were recorded
with lighting and expression variations; and iii) a mobile phone
mode where the subjects are moving while the phone camera
is recording. Extreme pose angles and lighting conditions are
also introduced. As mentioned in Chapter 1, the impersonation
attacks are the focus of our Thesis. However, we evaluate on this
database the feasibility of our proposed common feature space
(i.e., FV) for concealing attacks such the obfuscation.

• Collaborative Real Mask Attack (CRMA) [55] consists of 423

BP videos and 12690 attacks of 47 subjects. The videos were
acquired with three different high-definition capture devices on
realistic scenarios. The PAI species are i) both unmasked (BM0)
and masked (BM1) bona fide presentations, ii) printed and video
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Figure 5.8: Example of BPs and APs in the CRMA database taken from [55].

replay attacks from subjects not wearing a mask (AM0), iii)
printed and video replay attacks from subjects wearing a mask
(AM1), and iv) partial attack where the unmasked printed/re-
played faces are covered with real masks (AM2). The CRMA is
challenging due to different face masks, multiple capture de-
vices, and several capture distances. An example of different BP
and AP samples is depicted in Fig. 5.8.

• OULU-NPU [19] consists of 4950 high-resolution short video
sequences of BP and AP attempts stemming from 55 subjects.
The BP samples were acquired in three different sessions under
different illumination conditions and background scenes. The
PAI species are printed and video-replay attacks which were
recorded using the frontal cameras of six mobile phones. This
database defines four different protocols as follows:

– Protocol 1 focuses on the generalisation ability of PAD
techniques across different environment conditions (i.e.,
illumination and background scenes).

– Protocol 2 is designed to evaluate the PAD generalisation
ability when the tested PAI species remain unknown from
the training set.

– Protocol 3 analyses the capture device interoperability fol-
lowing a Leave One Camera Out (LOCO) protocol, where
samples recorded by five smartphones are used for training
whilst videos captured by the sixth mobile device are used
in the evaluation.

– Protocol 4 is the most challenging scenario, as it combines
all described protocols. In particular, the generalisation
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ability of PAD approaches across previously unknown illu-
mination conditions, background scenes, PAI species, and
capture devices are simultaneously evaluated.

Since most databases contain videos, we select a random frame per
video to conduct our experiments.
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Table 5.4: A summary of databases considered in our experiments for facial characteristics.

DB #Samples Capture device Capture conditions PAI species

CASIA-FASD 600

Low-quality USB camera
Natural scenes Printed attacks, Cut photo, Video replayNormal-quality USB camera

High-quality Sony NEX-5 camera

REPLAY-ATTACK 1,200 Low-quality 13-inch MacBook webcam Controlled, Printed, Photo replay,
Video replayadverse scenes

REPLAY-MOBILE 1,190

High-quality iPad Mini 2
Controlled, adverse

Printed, Photo replay,
Video replay

direct sunlight,

High-quality LG G4 lateral sunlight,

diffuse and complex backgrounds

MSU-MFSD 440

Low-quality 13-inch MacBook webcam
Low-Quality Google Nexus 5 camera

Natural scenes Printed, Video replay

SiW-M 968

High-quality Logitech C920 webcam
High-quality Canon EOS T6

Controlled
adverse scenes

Printed, Video replay, Half mask, Silicone mask,

Transparent, Papercraft, Mannequin, Obfuscation,

Impersonation, Cosmetic, Funny Eye,

Paper Glasses, Partial Paper

CRMA 13,133

iPad Pro, Galaxy Tab S6,
Surface Pro-6

Realistic scenes
Printed and Video replay of
subjects wearing masks

OULU-NPU 4,950

Samsung Galaxy S6 edge, HTC Desire EYE,
MEIZU X5, ASUS Zenfone Selfie,
Sony XPERIA C5 Ultra Dual, OPPO N3

Controlled and adverse scenes Printed and Video replay



66 face presentation attack detection

5.5 results and discussion

5.5.1 known PAI species

5.5.1.1 Effect of the Semantic Sub-groups

Following the experimental evaluation in Chapter. 4, we first need
to find the optimal configuration of our proposed common feature
space in terms of the key parameters: the filter size l, the number of
BSIF filters N, and the number of semantic sub-groups K. Following
the overall protocol provided by the datasets [28, 35, 219, 236], we
compute the D-EER for each of sixty filter configurations (i.e., one
error rate for each filter set employed by our improved BSIF) and
report in Tab. 5.5 the mean and STD for each fixed K value. As it may
be observed, the detection performance of our method increases with
K: a D-EER of 0.45% on average is achieved for K = 1024, hence this K
value will be considered for the remaining experiments. In addition,
we may observe that the STD is below 1.0% in all datasets, hence
indicating that a statistically meaningful representation of face data
can be obtained using different BSIF filters, regardless of the values
chosen for N and l.

It should be noted that there is a high difference between the error
rates attained for CASIA and the ones achieved for the remaining
datasets. Specifically, D-EERs for CASIA are up to 20 times greater
than the ones reported for other databases. We think that this diver-
gence is mainly given by the image resolution variation employed for
training and testing our approach. Whereas the REPLAY-ATTACK,
REPLAY-MOBILE, and MSU-MSFD databases consist of images ac-
quired with fixed low or high-resolution capture devices respectively,
face images in CASIA were obtained with a mix of low-, medium-, and
high-resolution capture devices. Therefore, we analyse in Sect. 5.5.6
the impact of using image of varying resolutions on the PAD perfor-
mance. As a result, we anticipate that our approach is, like most PAD
algorithms, affected by the image quality varying.

5.5.1.2 Colour Space Analysis

According to Boulkenafet et al. [18], the RGB colour space has limited
discriminative power for face PAD due to the high correlation between
the three colour components. In contrast, HSV and YCbCr are based
on the separation of the luminance and chrominance components,
thereby providing additional information for learning more discrim-
inative features. Based on that observation, we evaluate in Tab. 5.6
the detection performance of the proposed FV approach for the three
aforementioned colour spaces. As it can be observed and contrary to
the conclusions drawn in [18], RGB appears to be the colour space
including the most discriminative features for facial PAD, thereby
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Table 5.5: Detection performance, in terms of D-EER (%), of our proposed
common feature space for different K values. The best result is
highlighted in bold.

DB

K
256 512 1024

CASIA-FASD 2.02 ± 0.93 1.95 ± 0.79 1.79 ± 0.82

REPLAY-ATTACK 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

REPLAY-MOBILE 0.01 ± 0.03 0.00 ± 0.00 0.00 ± 0.00

MSU-MFSD 0.02 ± 0.09 0.01 ± 0.08 0.01 ± 0.08

Avg. 0.51 0.49 0.45

resulting, on average, in a D-EER of 0.45%. However, taking a closer
look, we can observe that the three colour spaces report similar error
rates in three out of four datasets (i.e., REPLAY-ATTACK, REPLAY-
MOBILE, and MSU-MFSD): mean D-EERs of 0.003%, 0.03%, and 0.19%
are achieved by RGB, HSV, and YCbCr respectively.

In order to validate the detection performance achieved by our
proposed method using current colour spaces, we select the non-
parametric Mann-Whitney test [132] with a 95% of confidence to verify
the statistical significance of the sixty error rates reported by different
colour spaces. To that end, we define the null hypothesis H0 and
alternative hypothesis H1 as:

• H0: two colour spaces provide the same discriminative informa-
tion for face PAD.

• H1: two colour spaces do not provide the same discriminative
information for face PAD.

Then, an all-against-all comparison per dataset is performed. As
a result of this test, we do confirm that the RGB only provides the
most discriminative information for one out of four databases: error
rates attained by the RGB claim to be statistically higher than the
ones reported by the other colour spaces for the CASIA database. In
contrast, for the three remaining databases (i.e., REPLAY-ATTACK,
REPLAY-MOBILE, and MSU-MFSD), Mann-Whitney results state that
the three colour spaces include the same discriminative information,
thereby confirming their similar detection performances reported in
Tab. 5.6. The reason for this difference with respect to [18] is that we
carried out a feature decorrelation with PCA before finding the se-
mantic sub-groups, thereby leading to the detection of similar features
for the three colour spaces.
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Table 5.6: Detection performance in terms of D-EER (%) of the FV for the
best performing K = 1024.

DB

Colour
RGB HSV YCbCr

CASIA-FASD 1.79 ± 0.82 2.35 ± 1.07 2.20 ± 1.05

REPLAY-ATTACK 0.00 ± 0.00 0.02 ± 0.05 0.10 ± 0.26

REPLAY-MOBILE 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.26

MSU-MFSD 0.01 ± 0.08 0.08 ± 0.35 0.35 ± 0.81

Avg. 0.45 0.79 0.69

Table 5.7: Benchmark with state-of-the-art in terms of D-EER (%) for the
known PAI species scenario using K = 1024 on RGB. The best
results per database are highlighted in bold.

Method CASIA RA MSU RM

BSIF-SVM [164] 10.21 - -

MBSIF-TOP [7] 7.20 - -

CSURF + FV [16] 2.80 0.10 2.20 -

Texture fusion [18] 4.60 1.20 1.50 -

Depth CNNs [9] 2.67 0.72 0.35 ± 0.19 -

ResNet-15-3D [84] 2.22 0.25 - -

FaceSpoofBuster [21] 3.88 5.50 - -

shallowCNN-LE [163] 4.00 3.70 8.41 -

DR-UDA [211] 3.30 1.30
‡

6.30 -

SPMT + SSD [185] 0.04 0.03 - -

DeepPixBiS [65] - - - 0.00

WeightedAvg. [56] - 1.43 - 9.95

HR-CNN [139] 0.02 - 0.04 -

Our Method (FV) 1.79 ± 0.82 0.00 ± 0.00 0.01 ± 0.08 0.00 ± 0.00

Best D-EER†
0.37 0.00 0.00 0.00

BPCER100 0.00 0.00 0.00 0.00

† The best D-EER as well as the BPCER100 per dataset are attained for N
= 10 filters of size l = 9.

‡ Half Total Error Rates (HTER) reported in [211]

5.5.1.3 Benchmark with the State of the Art

Finally, we benchmark in Tab. 5.7 our FV with the top state-of-the-art
PAD techniques for the best performing colour space and K value
(i.e., RGB and K = 1024). On the one hand, it can be observed that
a baseline implementation based on BSIF and SVMs in [7], where
extracted features have not been transformed with the FV technique,
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reports a D-EER of 10.21%, in contrast to the best D-EER achieved in
this work for CASIA (i.e., 0.37%).

On the other hand, it may be also observed that the FV represen-
tation does not produce a reliable detection performance: it depends
on a good feature extractor for the specific data domain. Specifically,
the combination of FV and SURF descriptors, which has shown a
remarkable detection performance for fingerprint PAD in Chapter. 4,
achieves D-EERs of 2.80% and 0.10% for CASIA and REPLAY-ATTACK
respectively, which are still far away from the ones reported in this
work. Therefore, we can conclude that the use of the improved BSIF
descriptors presents a clear advantage for facial PAD with respect to
gradient-based features such as SURF.

In addition, the texture fusion approach in [18] can be also outper-
formed by a relative 96% and 100% respectively, depending on the
testing database. Among the next five deep learning-based techniques,
the lowest D-EER reported are 2.22% and 0.25%, which are also twelve
and twenty-five times worse than our best results for CASIA and
REPLAY-ATTACK databases, respectively. In contrast, the last two ap-
proaches analysed [139, 185] outperform our technique by one order
of magnitude for the CASIA database. However, our best result is
three-time better than the ones reported in [185] for REPLAY-ATTACK
(i.e., 0.00% vs 0.03%). It should be noted that the authors of those
works admit that their PAD approaches are time-consuming methods.
Very low computational cost is an additional advantage of our ap-
proach, which needs about 0.7 seconds per single attempt transaction
(i.e., image load, feature extraction, and AP decision), thereby making
it suitable for real-time applications. Finally, we can observe that for a
high security threshold (i.e., APCER = 1.0%), our proposed method
reports a remarkable BPCER of 0.0% for all databases: only one in 100

AP attempts are accepted while zero BPs are rejected by our algorithm
when PAI species and capture devices employed in the PAI acquisition
are known a priori.

5.5.2 Unknown PAI species

As it has been mentioned in this Thesis, one of the main goals is to
address the detection of unknown PAI species. In particular, we tackle
the challenging scenario where PAI species remain unknown in the
training set of PAD techniques. To that end, two sets of experiments are
carried out over the five selected databases following the LOO protocol
described in [8]: one PAI species is evaluated while the remaining PAI
species are included in the training set.

5.5.2.1 Generalisation across Traditional unknown PAI species

In the first set of experiments, we evaluate the feasibility of our FV
method to detect unknown PAI species over traditional PAI species
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(i.e., printed attacks, cut photo attacks, and photo and video replay
attacks). The corresponding results are reported in Tab. 5.8. It should
be noted that error rates for each particular unknown PAI species in
CASIA are multiplied by a factor of 2.17% on average with respect to
the corresponding D-EERs reported in Tab. 5.7 (i.e., 3.88% vs. 1.79%).
In contrast, theD-EERs for the remaining datasets are comparable with
their corresponding error rates for the known PAI species scenario.
These observations confirm the sensitivity of our approach to training
with datasets having images of varying resolutions.
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Table 5.8: Benchmark with the state-of-the-art in terms of the AUC (%) for K = 1024 and RGB over traditional unknown PAI species. The best results
per PAI species are highlighted in bold.

CASIA REPLAY-ATTACK MSU-MFSD REPLAY-MOBILE

Cut Warped Video Digital Printed Video Printed HR Video Mobile Video Digital Printed Video

OC-SVM_RGB+BSIF [8] 60.70 95.90 70.70 88.10 73.70 84.30 64.80 87.40 74.70 - - -

NN+LBP [221] 88.40 79.90 94.20 95.20 78.90 99.80 50.60 99.90 93.50 - - -

DTN [128] 97.30 97.50 90.00 99.90 99.60 99.90 81.60 99.90 97.50 - - -

CDCN [229] 99.90 99.80 98.48 99.43 99.92 100 70.82 100 99.99 - - -

TTN-S [218] 100 100 99.57 100 100 100 87.06 100 94.50 - - -

our FV (AUC) 99.6 97.9 99.9 100 100 100 99.32 100 100 100 100 100

our FV (D-EER)? 3.33 6.67 2.22 0.00 0.00 0.00 1.96 0.00 0.00 0.00 0.00 0.00

our FV (mean D-EER) 4.11 ± 1.99 6.15 ± 2.42 1.37 ± 1.60 0.00 ± 0.00 1.35 ± 1.73 0.00 ± 0.00 6.64 ± 4.62 0.00 ± 0.00 0.11 ± 0.44 0.00 ± 0.00 0.34 ± 0.63 0.02 ± 0.12

? The D-EER and AUC values per dataset are reported for N = 10 filters of size l = 9.
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Figure 5.9: Traditional unknown PAI species DET curves over the LOO
protocol for the CASIA, REPLAY-ATTACK, and MSU-MFSD
databases. The REPLAY-MOBILE database reports a remarkable
BPCER = 0.0% for any APCER. unknown PAI species such as dig-
ital and video for REPLAY-ATTACK and m_video and hr_video
for MSU-MFSD attain a BPCER = 0.0% for any APCER, hence
their corresponding curves are not shown.

Regarding the MSU-MFSD database, our method suffers a perfor-
mance deterioration for printed attacks. Whereas both HR video (i.e.,
hr_video in Fig 5.9) and mobile video (i.e., m_video in Fig 5.9) at-
tacks report on average a D-EER of 0.0%, printed attacks attain an
average error rate of 6.64%, hence indicating that BSIF texture features
of the latter are as close to BP semantic sub-groups as the semantic
sub-groups defined from video replay attacks. This, in turn, states that
the detection performance over unknown PAI species depends on a
reliable known PAI species selection for training. Due to the lack of
a proper quantitative analysis of the top state-of-the-art methods in
compliance with the ISO/IEC 30107-3 standard on biometric PAD [97],
we establish a benchmark in terms of AUC. In spite of the previous
shortcomings, we can note that for a fixed filter configuration (i.e.,
N = 10 filters of size l = 9 pixels), our approach achieves current
state-of-the-art results for all datasets, thereby resulting in an AUC
close to 100%.

Finally, a high detection performance of our method can be per-
ceived in Fig. 5.9: a BPCER in the range of 0.0% - 17% for any
APCER ≥ 1.0% confirms the soundness of the common feature space
defined by FV to separate an unknown PAI species from a BP attempt.

5.5.2.2 Generalisation across Challenging unknown PAI species

In the second set of experiments, we evaluate challenging unknown
PAI species such as 3D Masks (i.e., Silicone masks, Transparent masks,
and Mannequin Head) and Makeup (obfuscation, impersonation, and
cosmetic) in the SiW-M database following the LOO protocol: twelve
PAI species are employed for training and the remaining thirteenth
PAI species is used for testing. It is worth pointing out that there is no
overlap between training and test subjects. Tab. 5.9 reports the D-EER
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for N = 10 BSIF filters of size l = 9 and the best BSIF performing
filter configurations. The corresponding DET curves for the latter are
depicted in Fig. 5.10. As it may be observed, our best filter performing-
based FV representation reports an improvement with respect to the
results attained by state-of-the-art methods, thereby yielding a D-EER
of 11.44% and a STD of 8.73%. We can also note that this approach
attains the top state-of-the-art error rates for the challenging Mask
attacks (i.e., D-EER of 9.33%), even though some prior techniques [127,
229] employ additional information such as depth and temporal cues
to detect those 3D Mask attacks. In addition, it should be noted that
the FV algorithm reports a detection performance deterioration for
the BSIF filter setting adopted from the known PAI species evaluation
(i.e., N = 10 filters of size l = 9), thereby resulting in a mean D-EER
of 15.86%. Despite the accuracy degradation, this representation is
still able to achieve the state-of-the-art schemes, thereby showing its
soundness for this scenario. In order to enhance the BSIF computation
and remove the dependency on the current 60 filter configurations, we
plan as future work to perform the BSIF quantisation over the filters
learned by intermediate CNN layers.
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Table 5.9: Benchmark with the state-of-the-art for challenging unknown PAI species on RGB for K = 1024 in terms of D-EER (%). The best results per
PAI species are highlighted in bold.

Methods Replay Printed
Mask Attacks Makeup Attacks Partial Attacks

Average
Half Silicone Trans. Papercraft Manneq. Obfusc. Imperson. Cosmetic Funny Eye Paper Glasses Partial Paper

Auxiliary [127] 14.00 4.30 11.60 12.40 24.60 7.80 10.00 72.10 10.00 9.40 21.40 18.60 4.00 16.95 ± 17.72

DTN [128] 10.00 2.10 14.40 18.60 26.50 5.70 9.60 50.20 10.10 13.20 19.80 20.50 8.80 16.12 ± 12.23

DeepPixBis [65] 11.68 7.94 7.22 15.04 21.30 3.78 4.52 26.49 1.23 14.89 23.28 18.90 4.82 12.39 ± 8.25

MCCNN [66] 12.82 12.94 11.33 13.70 13.47 0.56 5.60 22.17 0.59 15.14 14.40 23.93 9.82 12.04 ± 6.92

CDCN++ [229] 9.20 5.60 4.20 11.10 19.30 5.90 5.00 43.50 0.00 14.00 23.30 14.30 0.00 11.95 ± 11.79

FV Method (Optimum) 10.28 7.70 7.98 18.42 17.87 0.00 2.40 27.93 0.00 16.78 17.84 18.22 3.27 11.44 ± 8.73

Optimum BSIF filters
N = 11 N = 5 T = 7 N = 8 N = 10 N = 5 N = 6 N = 6 N = 6 N = 9 N = 9 N = 11 N = 11 -

l = 7 l = 3 l = 15 l = 5 l = 7 l = 11 l = 11 l = 11 l = 13 l = 13 l = 13 l = 7 l = 13 -

FV Method (Fixed)? 12.49 11.76 14.20 22.94 23.20 5.61 7.19 34.57 1.58 22.07 23.71 23.26 3.65 15.86 ± 9.89

? D-EERs per dataset are reported for N = 10 filters of size l = 9.
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Figure 5.10: Challenging unknown PAI species DET curves over the LOO
protocol for the SiW-M database on the best BSIF filter configu-
ration. DET curves for Papercraft and Impersonation attacks are
not shown since they report a BPCER = 0.0% for any APCER.

Taking a closer look at Tab. 5.9, we can also see that all PAD tech-
niques report a poor detection performance for the obfuscation at-
tacks included in the SiW-M database: D-EERs are for none of the
approaches lower than 22%, which indicates that this is the most chal-
lenging PAI species. This is due to the fact that the makeup applied
over the faces is subtle and hence looks like real human faces. Given
that the majority of subjects in the obfuscation set are not in the BP
dataset, a proper evaluation reporting the impact of those cosmetic
beautifications on a real face recognition system cannot be carried
out [168]. The main question to address the threat of a given PAI is
whether it is able to change the appearance of the subject enough to
lead to a False-Non-Match. However, other studies about the impact of
similar obfuscated images on real deep face recognition systems have
reported a high biometric performance: a reliable False Non-Match
Rate (FNMR) of 7.80% at a False Match Rate (FMR) of 0.1% for Arc-
Face [42] and a remarkable FNMR of 1.60% at a FMR = 0.01% for a
new ArcFace variant [184] indicate the low dangerousness of those
PAI species for facial biometric systems. Based on these observations,
we think that those attacks should not be taken into account for PAD
training since they can negatively impact the detection of another PAI
species (e.g., Transparent Masks, see Tab. 5.9). In other words, we
think that by excluding obfuscation attacks from the training set, we
could significantly improve the detection performance of current PAD
techniques.

Finally, we observe in Fig. 5.10 that our approach reports an average
BPCER of 21.53% for the challenging mask attacks: only one in 100 AP
attempts are accepted while at most 22 in 100 BPs are rejected by our
PAD system. In addition, it should be noted that the proposed method
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Table 5.10: Benchmark with the state-of-the-art in terms of the D-EER (%) for
the cross-database scenarios over the best BSIF filter configuration.
The best results per PAI species are highlighted in bold.

Train MSU RA CASIA
Avg.

Test CASIA RA MSU CASIA MSU RA

Colour Texture [17] 46.00 33.90 34.10 37.70 24.40 30.30 34.40

Texture fusion [18] 29.20 16.20 21.40 31.20 19.90 9.90 21.30

DupGAN [90] 27.10 35.40 36.20 46.50 33.40 42.4 36.83

KSA [125] 9.10 33.30 34.90 12.30 15.10 39.30 24.00

ADA [209] 17.70 5.10 30.50 41.50 9.30 17.50 20.27

DR-UDA [211] 16.80 3.00 29.00 34.20 9.00 15.60 17.93

FV (Optimum) 24.67 6.57 11.67 29.33 12.86 24.36 18.24

Optimum BSIF filters
N = 7 N = 7 N = 12 N = 10 N = 8 N = 6

-
l = 7 l = 3 l = 11 l = 9 l = 13 l = 3

FV (Fixed)? 31.56 25.79 24.29 29.33 33.10 35.71 29.97

? D-EERs per dataset are reported for N = 10 filters of size l = 9.

achieves a remarkable BPCER of 0.0% for any APCER over these types
of impersonation attacks included in SiW-M. This PAI species, unlike
the obfuscation attacks in SiW-M, are more challenging for real deep
face recognition systems, as they have reported a significant biometric
performance deterioration (i.e., FNMR = 47.80% @ FMR = 0.01% [184]).

5.5.3 Cross-database Evaluation

Similar to capture devices employed for fingerprint acquisition, most
face capture devices age and stop working, hence will be replaced
by new sensors for which we have no AP samples for training the
PAD systems. Therefore, it is of utmost importance that our PAD
methods are robust to those situations. To that end, we select three
databases (i.e., CASIA Face Anti-Spoofing, MSU-MFSD, and REPLAY-
ATTACK) and establish in Tab. 5.10 a benchmark of our proposed
representation with the current state-of-the-art techniques for each
training-test configuration. It should be noted that our approach is able
to achieve current state-of-the-art results, thereby yielding a D-EER of
18.24% on average for the best BSIF filter configuration. In addition,
the best performing deep learning-based scheme for cross-database
(i.e., DR-UDA [211]) reports, on average, a D-EER of 17.93%, which is
up to twice lower than the worst result reported for this scenario (i.e.,
36.83% for DupGAN [90]). In order to improve generalisation cross-
database, this method, like DupGAN [90], KSA [125], and ADA [209],
is fully based on domain adaptation, which transfers the knowledge
learned from a source domain to a target domain. In spite of the
results attained for this scenario, the DR-UDA algorithm is unable
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Figure 5.11: DET curves for the cross-database scenario for the best BSIF
filter configurations.

to achieve reliable error rates for known PAI species (i.e., D-EERs of
3.20%, 6.00%, and 7.20% for CASIA, MSU-MFSD, and Rose-Youtu
databases, respectively).

Consequently with the results reported in Tab. 5.9 for a fixed BSIF
filter configuration (i.e., N = 10 filters of size l = 9) our proposed
method decreases its detection performance up to 40%, thereby result-
ing in a D-EER of 29.97%. This, in turn, states the need of removing
the dependency to current BSIF filters in order to keep stable the
performance of our algorithm for different PAD scenarios.

On the other hand, it may be observed that our proposed method
trained with images of varying resolutions in CASIA performs well
for high-resolution face images (i.e., 12.86% for MSU). In contrast,
it reports a detection performance decrease of up to 47% for face
samples stemming from low-resolution capture devices (i.e., 24.36%
for REPLAY-ATTACK). However, by training our approach with high-
resolution images in MSU-MFSD, a D-EER of 6.57% can be yielded for
those low-quality face images in REPLAY-ATTACK, thereby indicating
the need for future studies about the impact of external factors such
as image resolution and acquisition conditions over this challenging
scenario. Furthermore, unlike current PAD techniques in the literature,
a reliable D-EER of 11.67% for high-resolution face images can be
attained by tuning our proposed PAD algorithm with low-quality im-
ages in REPLAY-ATTACK. These results confirm that PAIs in MSU and
REPLAY-ATTACK contain similar artefacts which can be successfully
represented by the semantic sub-groups learned by the GMM.

Finally, it should be noted in Fig 5.11 that the proposed algorithm
reports a detection performance deterioration for high-security thresh-
olds: a poor average BPCER100 of 73.90% confirms the need for new
interoperable PAD schemes in order to improve their generalisation
capabilities for this scenario without losing accuracy for the remaining
scenarios.
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5.5.4 Computational Complexity

In order to report the computation complexity of our proposed method,
we focus on the four main steps carried out to analyse whether a sam-
ple at hand is either a BP or AP: i) the extraction of compact BSIF
histograms, ii) PCA projection of such histograms, iii) the loglikeli-
hood computation through FV, and iv) SVM decision.

5.5.4.1 Compact BSIF Histograms

Let I(x, y)2 ∈ R3×M×M be an input RGB image and W a set of N filters
of size l × l. As it was mentioned, in the first step our algorithm
extracts compact BSIF histograms from several points sampled over
a regular grid on I(x, y). To that end, the facial image I(x, y) is first
convolved per RGB channel using each of N filters in W and then quan-
tised by the Eq. 3.3, thereby resulting in 3 × M × M × N × l × l ≈
M2 × l2 × N operations. Consequently, P histograms are densely
extracted per point over the regular grid at different window sizes
r, thereby leading to many operations similar to the ones reported
by the earlier convolution (i.e., P × M2 × r2). Since both P, N, r,
and l take fixed finite values in the ranges: P = 4, N = {5, . . . , 12},
r = {4, 6, 8, 10}, and l = {5, 7, 9, 11, 13, 15, 17}, the number of oper-
ations for the extraction of spatial BSIF histograms is asymptotically
bounded by M2 operations. Hence, its computational complexity is
O(M2).

5.5.4.2 PCA Projection

In this second step, the T BSIF histograms of size d′ = 128 previously
extracted for I(x, y) are projected to a low dimensional space d < d′

(i.e., d = 64) using the PCA base vectors obtained in training time.
To that end a matrix multiplication is performed. This has a com-
putational complexity O(T × d′ × d). By assuming that T ≤ M2

and d′ = 128 and d = 64 take fixed finite values, the final computa-
tional complexity of the PCA projection is asymptotically bounded by
O(d × d′ × M2) ≈ O(M2).

5.5.4.3 The FV Computation

As it was mentioned, the FV computes the loglikelihood between
T ≤ M2 descriptors of size d extracted from I(x, y) and the GMM
parameters learned in the training: GK = {(πk, µk, σk) : k = 1 . . . K}.
To that end, the soft assignment weight (or posterior probability) of

2 We focus on the computational complexity over a square RGB image of size M × M
for a better understanding of the readers. The same reasoning can be applied to
rectangular images.
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the i− th features xi is computed for each semantic sub-group (k) as
follows [176]:

αi(k) =
exp

[
− 1

2 (xi − µk)
′
σ−1

k (xi − µk)
]

∑K
j=1 exp

[
− 1

2 (xi − µj)
′σ−1

k (xi − µj)
] , (5.3)

As it should be noted, the operators involved in the posterior prob-
ability computation are the GMM parameters {µk, σk) : k = 1 . . . K}
and the descriptor xi. Whereas, the numerator in the fraction can
be computed in O(d), its denominator carries out K × d operations.
Therefore, the computational complexity for xi ∈ Rd is bounded by
the maximum between d and K × d, thereby resulting in O(K × d).
Given that this operation is computed for each xi=1,...,T, the final com-
putational complexity for the soft assignment weight computation is
O(T × K× d) ≈ O(M2).

Now, the computational complexity for the Eq. 3.11 and 3.12 must
be computed. As it should be observed, there are several additions,
subtraction, and multiplication operations between vectors which can
be sequentially performed. Keeping in mind that the Eq. 3.11 and 3.12

are computed for each xi=1,...,T and semantic-sub group k ∈ {1, . . . , K},
their computational complexity is bounded by O(T × K × d) ≈ O(M2).

5.5.4.4 SVM Classification

In the last step, the BP or AP decision is taken by a linear SVM.
To that end, the algorithm computes the Eq. 3.14 between the in-
put FV representation x ∈ R1×2Kd and the SVM parameters (i.e.,
W′ ∈ R2Kd×1 and b′ ∈ R). This has a computational complexity
O(2× K× d) ≈ O(K× d)

Finally, following the big−O properties, the final computational
complexity of our proposed method is asymptotically bounded by the
maximum between the computational complexities of the intermediate
steps: O(M2). In a nutshell, the number of operations carried out by
our algorithm for the worst case is O(M2) (i.e., linear to the number
of image pixels).

5.5.5 Visualisation of the FV Representation

Finally, a t-SNE visualisation in Fig. 5.12 of BP and AP samples in
the CASIA database confirms the aforementioned hypothesis, which
state that the PAIs share more texture, shape, and appearance features
with known PAI species than with those BP samples. Whereas the
FV representations of APs (blue, red and yellow) are separated of the
BPs (green spots), they are close to each other. However, we can also
observe that some PAI species such as warped (yellow) and cut photo
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Figure 5.12: t-SNE visualisation for BP vs. AP samples in the CASIA
database.

attacks (blue), still overlap with BP samples, thus indicating that the
data distribution learned by a GMM model using the BSIF features
needs to be improved in order to get a better detection performance.

5.5.6 Analysis of the Impact of Image Resolution Variation

As the above results show, our FV common feature space suffers a
performance degradation when images of varying resolutions are
employed either for training or testing. Following the pipeline in
Sect. 5.3.1, we evaluate the sensitivity of using images of varying
resolutions on PAD performance. To that end, we select the CASIA
database which includes images with the desired quality properties.

5.5.6.1 Known PAI species: Analysis of a Single Image Resolution

The first set of experiments evaluates the PAD performance under
three resolution settings. The corresponding D-EER values are re-
ported in Tab. 5.11. We can first note that for each particular PAI
species the error rates attained depend on the image resolution being
evaluated. Specifically, D-EERs of 18.01 ± 1.67, 16.82 ± 2.67, and 15.65

± 6.08 are reported on average for cut, warped, and video-replay
attacks, respectively, hence indicating that PAD approaches widely
depend on both the PAI species used (different average D-EER) and
the resolution settings employed to acquire them (up to 6% STD in
the D-EER).

In addition, we observe that the error rates for each PAI species
follow different trends depending on the resolution of the images
used. Whereas the cut and warped photo attacks achieve their best
detection performance on average across all descriptors for face im-
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Table 5.11: Average D-EER (%) values under the known PAI species protocol.

Attack Cut Warped Video

L M H L M H L M H

LBP 20.00 16.67 17.78 17.78 18.89 10.00 18.89 21.11 4.44

LPQ 20.00 15.00 20.00 13.33 21.67 16.67 22.50 20.00 1.67

BSIF 18.61 23.56 20.56 16.83 26.03 12.19 17.28 20.86 2.17

MobileNet 23.33 26.67 23.33 16.67 33.33 36.67 23.33 13.33 10.00

MobileNetV2 16.67 13.33 13.33 10.00 16.67 10.00 23.33 6.67 16.67

InceptionV3 6.67 20.00 16.67 16.67 13.33 16.67 33.33 33.33 16.67

Xception 16.67 16.67 26.67 10.00 16.67 26.67 20.00 10.00 16.67

DenseNet121 10.00 10.00 20.00 10.00 6.67 10.00 13.33 3.33 6.67

Avg. 16.49 17.74 19.79 13.91 19.16 17.39 21.50 16.08 9.37

Figure 5.13: BP and AP samples with their corresponding blurriness values.

Blur = 103.87 Blur = 87.56 Blur = 64.96Blur = 11.43Blur = 8.78 Blur = 9.31

Bona fide Bona fide Bona fideAttack 
presentation

Attack 
presentation

Attack 
presentation

ages acquired with low-resolution capture devices (i.e., D-EERs of
16.49% and 13.91 for cut and warped, respectively), the video-replay
shows its best D-EER for high-resolution images (i.e., 9.37%). However,
taking a closer look we can note that the handcrafted descriptors
LBP and BSIF do perform better with high-quality images not only
for video-replay but also for warped attacks. In contrast, the deep
learning-based techniques achieve their best detection performance
for low to medium quality images for cut and warped attacks, and
also for medium quality images for video-replay attacks. To shed
some light on these differences, we investigated some intrinsic image
properties and confirmed that the screen projection of the video-replay
attacks on a high-resolution capture device unveils several blurri-
ness and sharpness artefacts, which are successfully detected by all
PAD techniques. In Fig. 5.13 we show some BP and AP samples with
their blurriness values, which were computed as the variation of the
Laplacian [160].
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Table 5.12: Average D-EER values under the known PAI species protocol.

PAI species

Quality Single Multiple

L M H L ∪ M L ∪ H M ∪ H L ∪ M ∪ H

Si
ng

le cut 17.94 21.71 19.64 21.82 24.27 27.16 24.22

warped 16.02 24.03 12.41 23.49 19.74 24.92 24.60

video 17.49 19.64 3.00 19.85 14.64 14.67 18.43

M
ul

ti
pl

e cut ∪ video 19.31 25.06 16.47 22.57 23.80 28.19 25.44

cut ∪ warped 16.37 21.19 16.95 21.47 23.62 28.40 26.61

warped ∪ video 19.43 23.45 12.73 22.52 19.42 24.31 24.08

cut ∪ warped ∪ video 16.25 24.83 15.11 22.15 23.01 26.48 25.74

Table 5.13: D-EER (%) values for single and multiple attack-resolution set-
tings.

Attack

Quality
Single Multiple

Single 16.88 ± 6.17 21.48 ± 4.06

Multiple 18.93 ± 3.99 24.24 ± 2.45

5.5.6.2 Known PAI species: Analysis of Images of Mixed Resolutions

We present in Tab. 5.12 a joint evaluation of the proposed descriptors
over several PAI species combinations, which were simultaneously
acquired with different resolution by their respective capture devices.
We can observe that the D-EER values for multiple resolution images
are up to seven times higher than the ones achieved for the best single
image quality (e.g., 3.00% for high image quality vs. 19.85% for L
∪ M). In contrast, similar D-EER values are reported when several
PAI species are employed for training over face images acquired by a
single capture device (e.g., 17.94% for Cut photo attacks vs. 16.37% for
cut ∪ warped). Thus we can highlight how the utilisation of images
of varying resolutions leads to a high PAD performance deterioration
across different PAI species.

Finally, it should be also noted that the PAD approaches can be cir-
cumvented by launching Cut photo and Warped photo attack samples
which were recorded with medium and high-resolution capture de-
vices: a high mean D-EER of 28.40% is attained for that configuration.

Following those observations, we tried to determine which of these
two image properties (i.e., PAI species or image resolution) produces
the strongest PAD performance deterioration. To that end, we com-
pute in Tab. 5.13 the average for each single and multiple combination
depicted in Tab. 5.12. On the one hand, for a configuration where
either several PAI species or images of varying resolutions are em-



5.5 results and discussion 83

APCER (%)
  0.1   0.2  0.5    1     2     5     10    20    40 

  0.1 

  0.2 

 0.5  
  1   
  2   

  5   

  10  

  20  

  40  

BP
CE

R 
(%

)

Low

L U M U H

Medium
High

(a) BSIF descriptor.

APCER (%)
  0.1   0.2  0.5    1     2     5     10    20    40 

  0.1
  0.2
 0.5  
  1   
  2   

  5   

  10 

  20 

  40 

Low

L U M U H

Medium
High

BP
CE

R 
(%

)

(b) DenseNet descriptor.

Figure 5.14: DET curves for the best handcrafted and deep learning-based
approach over the known PAI species scenario. For the BSIF
computation, we use N = 10 filters of size l = 13.

ployed, a high-performance decrease can be seen. In particular, a mean
D-EER of 21.48% is reported when PAD approaches are trained with
a single PAI species which was acquired under several resolution
settings. This number is in turn worse than the one achieved when
the PAD methods are trained with multiple PAI species with a single
image resolution (18.93%). On the other hand, as could be expected,
a high mean D-EER of 24.24% is attained for the worst case where
the PAD approaches are optimised utilising several PAI species which
were acquired with varying-resolution capture devices. We thus con-
clude that the utilisation of images with varying quality produces the
greatest PAD performance deterioration. In addition, we confirm the
PAD performance decrease reported by state-of-the-art algorithms in
Tab. 5.2 and answer the question launched in Sect. 5.3: PAD techniques
based both on handcrafted and deep learning features are sensitive
to images with varying resolutions, which lead to a high accuracy
decrease in the detection of APs.

5.5.6.3 Known PAI species: A Deeper PAD Performance Analysis

Finally, we show in Fig. 5.14 the DET curves for the best handcrafted
and deep learning approaches over the Quality test and Overall test
protocols from [236]. As it can be observed, the joint training for
the analysed PAI species, which were acquired with three varying-
resolution capture devices (i.e., thick red line), yields on average a
high BPCER of 67.23% for any APCER ≤ 1%. This is in turn higher
than the ones attained for every single resolution. In addition, the BSIF
descriptor reports its best BPCER value for high-resolution images.
In contrast, the deep learning approach achieves its best BPCER for
images of medium quality. In this context, we can conclude that either
a down-sampling or up-sampling step performed by the deep learning-
based descriptors for fitting the size of a given image into the input
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(a) Handcrafted descriptors. (b) Deep learning descriptors.

Figure 5.15: Handcrafted vs. Deep Learning performance on the detection of
unknown PAI species.

layer can lead to an information loss for low and high-quality input
images. In particular, for a database, such as CASIA whose cropped
face images pose an average size of 180 × 157 and 644 × 545 pixels
for low and high-resolution settings, respectively, an up-sampling and
down-sampling procedure to fit the image size to 224 × 224 pixels
(input layer size) can approximately affect on average a 65% of pixels
of a given face image. This could in turn remove several artefacts
produced in the creation of PAIs. In contrast, this re-sizing procedure
affects only 37% of the pixels of medium resolution images, thereby
leading to higher detection performance.

5.5.6.4 Unknown PAI species: In-depth Generalisation Capability Analysis

Once the image resolution issues have been evaluated, we selected
the worst-case scenario from the previous experiment (i.e., several
PAI species acquired under numerous image quality conditions are
employed for training) and assessed the generalisation capability of
the PAD approaches in Fig. 5.15. To that end, we follow the LOO
protocol in [8].

We can observe in Fig. 5.15 a high D-EER variance for each unknown
PAI species evaluated, which confirms the high impact degree of the
image resolution on the PAD generalisation capabilities. On the other
hand, a mean D-EER of 24.57% ± 8.64 indicates that the handcrafted
PAD approaches perform better for low-resolution samples stemming
from unknown PAI species. Depending on the given PAI species,
the detection performance of deep learning approaches attained for
low-resolution unknown PAI species outperforms the one reported
for medium-resolution samples (e.g., 13.33% ± 4.08 vs. 17.33 ± 6.41

for warped photo attacks). In addition, the error rates yielded for
high-resolution images lead to a considerable detection performance
deterioration, thereby resulting in a mean D-EER of 34.14%. We can
therefore conclude that the resolution variation is not the only exter-
nal factor which affects the detection performance of PAD methods.
Other acquisition conditions such as the distance between the PAI
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(b) DenseNet descriptor.

Figure 5.16: DET curves for the best handcrafted and deep learning-based
approaches over the unknown PAI species scenario. For BSIF
computation, we use N = 10 filters of size l = 13.

and capture device, which differs for different samples on the CASIA
database, can also produce an accuracy decrease of PAD algorithms.

To conclude our analysis, we show in Fig. 5.16 the DET curves for the
best handcrafted and deep learning approaches over the unknown PAI
species scenario. First, we can note that there is a correlation between
the error rates represented in Fig. 5.15 and the detection performance
attained by a particular handcrafted and deep learning descriptor:
the BSIF descriptor shows its best detection performance for a low-
resolution setting, thereby resulting in a BPCER20 of 16.67% for the
entire set of PAIs. Similarly, the DenseNet descriptor for medium-
resolution configuration attains on average a BPCER20 of 6.67% which
outperforms the BPCER values achieved for the remaining resolution
settings (i.e., a BPCER20 of 13.44% and 35.55% for low and high
resolution samples, respectively). These results confirm that the deep
learning approaches report an accuracy decrease when the images
size at hand is not close to the size of their input layer. In addition,
they reveal that the PAD methods highly depend on the resolution of
the capture device and hence should be carefully optimised for each
particular application.
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Figure 5.17: Impact of image transformation on different facial regions.

5.5.7 Facial Regions Analysis

5.5.7.1 Known PAI species

effects of image transformation for PAD Since the size of
facial regions can vary across images, we also investigate the effect of
image resolution over facial regions for PAD. To that end, we compute
the D-EER per facial region and algorithm defined in Sect. 5.2.3 over
three databases: CASIA, RM, and RA. Fig. 5.17 reports the boxplots
per facial region over three resolutions i.e., 64 × 64, 128 × 128, 256 ×
256: greater resolution configurations might result in a performance
deterioration due to pixel value interpolation for the smallest regions.
We note that the D-EER improves with the image resolution, thus
yielding the best detection performance for an image size of 256 ×
256 pixels. We also observe that those regions having a large image
size (e.g., full face, right face, left face, and jaw) report a low STD for
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Figure 5.18: Best performing facial regions for known PAI species.

an image resize greater or equal than 128 × 128 pixels (see red and
green boxes in Fig. 5.17-b): the mean STD is approximately 6.99. In
contrast, their STD increases when a small size of 64 × 64 is used (see
blue boxes in Fig. 5.17-b): the mean STD is approximately 10.25.

Following the above observations, we also see that the pixel value
estimation for the smallest facial regions (i.e., left and right eyes, left
and right eyebrows, both eyebrows, both eyes, mouth, nose, and chin)
during the resize significantly affects the algorithm’s detection per-
formance, thus resulting in a high STD in the ranges [6.72, . . . , 13.62].
These resolution results confirm the findings observed in Sect. 5.5.6:
the up-sampling or down-sampling step performed by the deep learn-
ing approaches to adjust the size of a given image in the input layer
leads to an information loss of artefacts for the smallest or largest
sizes, respectively.

Based on the fact that most facial regions report on average their
best detection performance for a resize configuration of 256 × 256

pixels, we select it for further experiments.

detection performance of facial regions In the second
set of experiments, we evaluate the PAD performance for each facial
region over CASIA, RM, and RA databases following their corre-
sponding known PAI species protocols. Similar to the above experi-
ment, we compute the D-EER per facial region and algorithm defined
in Sect. 5.2.3 and report their detection performance as boxplots in
Fig. 5.18. As it may be noted, the training and evaluation of selected
approaches using the full face attain on average the best D-EER: a
median D-EER of 3.92% (indicated by the central blue mark in the
boxplots) outperforms the remaining facial regions. Regarding com-
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No Glasses
Glasses

Figure 5.19: Detection performance for images containing glasses (blue boxes)
and no glasses (red boxes).

posite regions, we also observe that they report the best performances
e.g., right face (median D-EER = 4.61%), left face (median D-EER =
5.38%), jaw (median D-EER = 5.53%), and central face (median D-EER
= 6.28%). Furthermore, the error rates of these composite regions tend
to their median values, thus resulting in a low STD with respect to
the mean values: their STD is in the ranges [5.88, . . . , 7.97]. Among
the single regions, the nose achieves the best detection performance,
yielding a median D-EER of 7.19% ± 7.06. In fact, this outperforms the
performance attained by both eyes (median D-EER = 7.83%). Whereas
the 75% of D-EER values for the nose region are below its median,
only 25% of error rates for both eyes are below its median, hence
indicating that the nose is more suitable for PAD than both eyes. Since
the nose is a flat region composed mostly of skin, we think that any
variation in quality, colour, or texture can lead to an improvement in
the detection of APs.

We observe that the worst regions are right and left eyebrows and
mouth which report median D-EERs above 13% and STD values in the
ranges [10.28, . . . , 12.08]. We can also see that the union between both
regions (i.e., both eyebrows) improves their individual errors by three
percentage points (i.e., 10.41% for both eyebrows vs. 14.01% for the
right eyebrow). This is because the region comprising both eyebrows
includes a flat skin in between which allows algorithms to detect APs.
Similar behaviour can be also perceived in the results achieved for
both eyes.

impact of wearing glasses on pad Taking a closer look at
Fig. 5.18, we note that most regions around the eyes (i.e., left and right
eyes and left and right eyebrows) report a high performance deterio-
ration, thus yielding STD values in the ranges [10, . . . , 12]. Based on



5.5 results and discussion 89

this observation, we investigate the effect of wearing glasses in those
regions that might contain such accessories. To that end, we follow the
same experimental evaluation used in Sect. 5.5.7.1 and split the train-
ing and evaluation sets from the CASIA, RM and RA databases into
two balanced sets each containing faces with glasses and faces without
glasses. We then show in Fig. 5.19 the boxplots representing D-EERs
achieved by the proposed methods per the facial region over the above
databases. We perceive that i) wearing glasses affects the detection
performance of approaches evaluated when trained using either the
full face or the central face, ii) right and left faces are not affected by
wearing glasses, thus yielding a better detection performance when
faces contain glasses, iii) wearing glasses impact the PAD performance
for both left and right eyes along their fusion (i.e., both eyes), and
iv) whereas the performance for left and right eyebrows is not highly
affected by wearing glasses, the fusion region (i.e., both eyebrows) is.
The latter is due to the accuracy of the region extraction algorithm: it
includes part of the glasses in the final images. These findings comple-
ment the study conducted in [149]: wearing glasses also has a negative
impact on iris segmentation and thus on iris recognition.

correlation, cross-detection performance , and utility

We explore now the correlation between facial regions. For this pur-
pose, we first train the PAD approaches for each facial region over
the CASIA, RM, and RA databases. On the evaluation sets, we extract
the latent vectors from the last FCL before the final decision layer and
average them. Finally, we illustrate in Fig. 5.20-a the average Pearson
correlation coefficient between facial regions. It should be noted that
the features representing the facial region combination share at least
50% of their characteristics with each other. We highlight with a green
rectangle the facial regions that are highly correlated with each other.
Specifically, the latent vectors of facial regions such as the left and
right eyes, left and right eyebrows, mouth and nose report as expected
a high Pearson correlation ranging from 0.74 to 1.00. As expected, we
also see that the right and left regions of the faces share 82% of their
characteristics with each other. Therefore, they can be interchangeably
used for PAD. Finally, the full face is highly correlated with the central
part of the face, followed by the jaw and the left and right regions of
the face.

Following the above idea, we also compute the detection perfor-
mance between facial regions (as it is illustrated in Fig. 5.20-b). In
this experiment, we train the architectures using one facial region
(depicted by the rows) and evaluate the remaining regions (shown by
the columns) over three databases (i.e., CASIA, RM, and RA). Then,
the mean D-EER between facial region combinations is reported in
Fig. 5.20-b. It is important to point out that error rates are normalised
following the eq. 5.2. It should be observed that the evaluation of



90 face presentation attack detection

(a) Absolute correlation values between facial regions.

(b) Detection performance normalised between facial regions

Figure 5.20: Correlation and detection performance between facial regions.
The green rectangles highlight some examples of facial region
configurations which report high correlations and detection
performances.

facial regions such as the jaw, central face, and left and right regions
achieves the best detection when the algorithms are trained using the
full face. In fact, the jaw yields the same D-EER to the one attained by
the full face (i.e., D-EER = 0.05). Subsequently, the central face and left
and right face regions depict similar detection performance (i.e., 0.10

vs. 0.12). As a consequence of these results, we perceive that the full
face can be used to spot an AP attempt in the probe image when PAD
algorithms are trained on either jaw, left face, right face, or central face
regions.
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Figure 5.21: Facial Region Utility computed from the correlation and detec-
tion performance matrices. The green rectangles highlight the
combinations of facial regions with a high utility. The red rect-
angles state those examples of facial region combinations whose
correlation and detection performance values show a contrary
trend in Fig. 5.20.

Based on Fig. 5.20, we compute in Fig. 5.21 using the eq. 5.1 the
Facial Region Utility. As it was mentioned in Sect. 5.2.4, this metric
indicates the usefulness of a particular region for training to spot an
AP based on the other region in a probe image. As it can be observed,
the same region used simultaneously for training and testing reports
the best utility (i.e., diagonal values). We also note that facial regions
such as the full face, left and right faces, central face, and jaw can be
used the create a reliable train and test configuration as they report
high Facial Region Utility values. In particular, the training of a PAD
approach over the full face (i.e, red rectangle at the bottom) allows
the successful evaluation of regions such as jaw (U(·) = 0.84), central
face (U(·) = 0.83), right face (U(·) = 0.80), and left face (U(·) = 0.79).
It should be noted that the Facial Region Utility highly depends both
on the correlation and the algorithm’s detection performance. We
highlight with red rectangles those train-test facial regions which drop
their Facial Region Utility due to contrary trends depicted in Fig. 5.20.
Whereas mouth, nose, right and left eyes and left and right eyebrows
pose a high correlation with each other (see Fig. 5.20-a), the detection
performance between them decreases considerably (see Fig. 5.20-b).
Therefore, they are not suitable for a PAD train-test configuration.
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Table 5.14: Benchmark of the state-of-the-art algorithms trained on the full
face and evaluated on the regions with the best Facial Region
Utility in terms of D-EER (%) using the OULU-NPU database.

P Approach
Facial Regions

Full Face Jaw Central Face Right Face Left Face

1

FV [72] 8.19 ± 1.19 7.59 ± 0.80 13.71 ± 2.39 8.54 ± 1.05 12.06 ± 1.07

DeepPixelBis [65] 4.17 6.67 6.67 4.48 10.83

CDCN [229] 4.48 10.83 20.94 15.83 16.68

2

FV [72] 8.30 ± 1.75 7.23 ± 1.37 11.71 ± 2.59 9.53 ± 2.20 10.74 ± 2.56

DeepPixelBis [65] 2.78 3.83 7.25 8.01 10.52

CDCN [229] 3.96 11.11 18.89 16.94 17.78

3

FV [72] 8.29 ± 6.75 8.27 ± 6.54 12.59 ± 6.42 10.22 ± 6.50 14.92 ± 8.41

DeepPixelBis [65] 1.25 ± 1.23 4.10 ± 2.80 6.33 ± 5.49 5.53 ± 5.47 7.62 ± 5.08

CDCN [229] 1.88 ± 0.93 13.40 ± 3.38 22.78 ± 3.75 13.47 ± 5.30 14.27 ± 5.41

4

FV [72] 24.86 ± 8.47 19.88 ± 10.17 27.66 ± 7.62 20.56 ± 13.12 28.53 ± 6.19

DeepPixelBis [65] 10.42 ± 10.51 12.71 ± 5.83 16.67 ± 5.74 16.04 ± 13.66 19.58 ± 11.64

CDCN [229] 13.54 ± 4.21 22.29 ± 7.56 28.33 ± 6.83 22.71 ± 14.88 22.71 ± 12.31

5.5.7.2 Analysis of the Facial Region Utility on Challenging Scenarios

In order to verify the usefulness of the Facial Region Utility, we select
several state-of-the-art PAD techniques and train them using the full
face. Then, we evaluate the best utility regions (i.e., jaw, central face,
right face, and left face) in Tab. 5.14 over the challenging protocols in
the OULU-NPU database. It is important to highlight that the results
depicted in Tab. 5.14 might differ from the ones yielded by their
corresponding papers. We train and assess these algorithms using
a random video frame in contrast to the original pipelines which
use all video frames to make the final decision. We can see that the
D-EERs improve with the utility of facial regions independently of
the evaluated protocol. Specifically, the best detection performance is
yielded by the full face, followed by the jaw. According to the Facial
Region Utility, the central face is the third best region to spot an AP
attempt in a probe image after the full face and jaw. However, we may
note that this region reports a detection performance decrease with
respect to the results achieved by right and left faces. This behaviour
mostly happens due to the sensitivity of this region to the use of
glasses (see Fig. 5.19). In addition, we observe that the right face
outperforms the left face in all experiments. This is mainly due to
variables such as the asymmetry of the face and the artificial light
positions used in the BP and AP acquisition. The latter causes most of
the characteristics separating a BP from an AP to be detected in the
right region of the face (see Fig. 5.22).

On the other hand, we observe that the detection performance
attained by our semantic common feature space (i.e., FV) shows for
the jaw an improvement regarding the remaining regions. Unlike deep
learning approaches evaluated, this algorithm derives a kernel from
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a) Original Face b) Symetric Face

c) Bona Fide d) Attack Presentation

Figure 5.22: Some images that show why the detection performance between
left and right faces is different. a) and b) represent the visual
differences between a perfect symmetrical face (i.e., b) and its
original face (i.e, a) [123]. c and d are examples of BP and AP
in OULU-NPU whose artificial light configurations differ with
each other.

the parameters learned by a generative model (i.e., GMM [176]) to
characterise how the distribution of a set of unknown local descriptors
differs from the distribution of known features. Therefore, this does
not require the probe image to be similar in terms of shape to the
trained samples. It can be observed that deep learning schemes suffer
from a detection performance deterioration when the object in the
probe image (e.g., the jaw) is different from the one used for training
(i.e., the full face). We think that deep learning solutions focused on
local patches could improve the above limitation.
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Table 5.15: The detection performance of the DeepPixelBis algorithm on the
CRMA database. The PAD decision threshold employed in the
APCER, BPCER, and ACER computation is the one yielded at a
BPCER10 on only unmasked data in the development set.

Approach
BPCER (%) APCER (%) - Print APCER (%) - Replay

ACER (%)
BM0 BM1 AM0 AM1 AM1 AM0 AM1 AM1

DeepPixelBis (Full Face) [65] 63.16 64.04 0.00 0.00 0.00 0.00 0.64 0.00 29.47

DeepPixelBisRW (Full Face) [54] 35.09 41.23 0.00 0.10 1.17 0.19 1.95 0.58 18.58

DeepPixelBisPAL (Full Face) [54] 42.11 51.75 0.00 0.00 0.00 0.00 0.44 0.00 23.35

DeepPixelBisRW−PAL (Full Face) [54] 26.32 29.82 0.00 0.19 1.17 0.00 1.32 0.29 14.81

DeepPixelBis (Central Face) 7.02 15.79 3.12 2.83 7.02 8.48 6.84 9.06 9.51

5.5.7.3 Benchmark with the State Of The Art

In order to validate the usefulness of facial regions for a real ap-
plication, we select the best performing algorithm in Tab. 5.14 (i.e.,
DeepPixelBis) and establish a benchmark with the state-of-the-art
techniques in Tab. 5.15 over the CRMA database. To conduct a re-
alistic analysis where the behaviour of the PAD on masked data is
still unknown, we follow the experimental setup in [54] and report
the APCER and BPCER values by using the threshold BPCER10 that
is computed on only unmasked data in the development. In this ex-
periment, the algorithms are trained on the full faces and evaluated
either on the full face (i.e., the four first rows) or the central face (i.e.,
the last row). In addition, we compute the ACER due to the lack of a
proper evaluation of the state-of-the-art compliant with the ISO/IEC
30107-3 [97] for biometric PAD. Taking a closer look at Tab. 5.15, we
note that the evaluation of the algorithms using the full face leads to
a significant detection performance deterioration. In particular, the
BPCER values for BM0 and BM1 are considerably high (i.e., first
row, BPCER ≥ 63.16%), thereby confirming our initial hypothesis:
PAD algorithms misclassify BPs as an intentional AP when subjects
wear some accessories e.g., masks. In fact, the Regional Weight (RW)
and Partial Attack Label (PAL) methodologies proposed in [54] to
mitigate masked attacks build a secure (APCER ≤ 1.95%) but not
convenient (BPCER ≥ 26.32) PAD subsystem. In contrast, we see that
the detection of a facial mask and then the evaluation of the central
region result in an overall improvement of the detection performance:
an ACER of 9.51% which outperforms the DeepPixelBis [65] and
DeepPixelBisRW−PAL [54] method by relative improvements of 67.73%
and 17.98%, respectively, allows the building of a secure and conve-
nient system. Finally, it is worth noting that the subjects only wear
glasses in 16% of the images in CRMA database unlike OULU-NPU,
whose subjects wear masks in 50% of the images. Therefore, these
results are not fully biased by this type of accessory.
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5.6 summary

To summarise the findings on the face PAD, we can highlight the
following takeaway messages:

• The FV common feature space is able to keep a high generali-
sation capability for facial images. By combining the FV with
a compact BSIF we can obtain a BPCER100 in a range of 0.0%
to 17% for traditional unknown PAI species such as printed,
photo- and video-replay, and cut photo attacks. These results
outperformed the top state-of-the-art and confirmed that our
PAD approach can yield a secure and convenient system under
that challenging scenario.

• A remarkable performance is also reported for more challenging
attacks: a mean D-EER of 11.44% showed the FV soundness in the
detection of unknown PAI species. In particular, the algorithm
was able to yield an APCER of 26.09% for a type of obfuscation
attacks, which is up to four times better than the ones reported
by current state-of-the-art PAD techniques.

• The experimental results over the common feature space in-
dicated the statistical advantage of RGB with respect to other
colour spaces for datasets having images of varying resolutions,
thereby resulting in a minimum average D-EER of 0.45% for
known PAI species detection.

• Regarding the facial region analysis, we showed that the com-
posite regions achieved the best detection performances among
regions. In particular, the full face yielded a median D-EER of
3.92%, followed by the right face (median D-EER = 4.61%), left
face (median D-EER = 5.38%), jaw (median D-EER = 5.53%), and
central face (median D-EER = 6.28%).

• Further, the experimental results unveiled the existence of a
correlation between left and right regions of the face as well as
both eyes and eyebrows in terms of PAD performance.

• The proposed Facial Region Utility metric indicated those regions
capable of being used to improve the performance reported by
the full face when the subjects use common accessories.

• A particular use case where individuals wore masks to prevent
respiratory infections showed the feasibility of using the central
face over the full face in the evaluation: an ACER of 9.51%
which outperforms the state-of-the-art methods by a relative
improvement up to 67.73%, allows the building of a secure and
convenient PAD module. In addition, we noted that the BPCER
values yielded by the state-of-the-art were decreased down to
7.02% (BM0) and 15.79% (BM1) for pristine subjects.
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• Wearing glasses affects the detection performance of algorithms
when either the full face, eyes, or central face is used to detect
AP attempts

• Increasing the size of facial regions impacts the detection perfor-
mance of the analysed algorithms: 256 × 256 pixels reported the
best results for all regions. Furthermore, we see that the pixel
value estimation for the smallest facial regions such as left and
right eyes, left and right eyebrows, both eyebrows, both eyes,
mouth, nose, and chin during the resize considerably affects the
algorithm’s detection performance, thus resulting in high STD
values.

• The above observations were also confirmed on the evaluation
of the impact of images of varying quality for the facial PAD.
Images of varying resolutions produce a high PAD performance
decrease, which can be even greater than the use of numerous
PAI species.

• Deep learning-based descriptors reported the worst PAD per-
formance deterioration for face images whose sizes are widely
different from the input layer size.

• Video replay attacks screened on a high-resolution capture de-
vice unveiled several blurriness and sharpness properties, which
can be successfully detected by PAD techniques.

• The training of PAD methods with several PAI species which
are acquired with varying-resolution capture devices appears to
be the worst case for the face PAD task, thereby resulting in a
D-EER of 24.24% and a joint BPCER100 of 67.23%. This, in turn,
confirmed that the image resolution is a requirement which must
carefully be taken into account to build a secure and reliable face
PAD module.
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V O I C E P R E S E N TAT I O N AT TA C K D E T E C T I O N

In this Chapter, we evaluate the feasibility of using FV for voice PAD.
To the best of our knowledge, very few works have explored texture-
based analysis (Sect. 6.1) for voice PAD. Alegre et al. [4] proposed an
algorithm based on the combination of LBP and one-class classifiers.
Even if the proposed technique reported a poor detection performance
for some unknown PAI species such as Voice Conversion (VC), that
study showed the generalisation capability of the proposed texture-
based representation for voice PAD. Motivated by that fact, we explore
in this Chapter several image processing texture descriptors in combi-
nation with a SVM (Sect. 6.2), which have been successfully employed
for fingerprint [135] and face [62] PAD. In order to improve the gener-
alisation capability of the analysed texture descriptors, we utilise the
FV representation (Sect. 6.3). In addition, we establish a benchmark
of our generalisable common feature space (i.e., FV) with a new deep
learning-based approach namely Dual-Stream Temporal CNN (see
Sect. 6.4). This Chapter summarises the results in [76, 79] and answers
the RQ 5.

6.1 1d audio waveforms to 2d spectrograms

The visualisation of audio/speech signals is key to many audio analy-
sis tasks, usually involving: i) time-domain, ii) frequency-domain, or
iii) time-frequency-domain representations known as spectrograms,
which show the signal amplitude over time at a set of discrete frequen-
cies. Many time-frequency representations have been proposed, each
with different characteristics. Keeping in mind that an audio signal
can be represented as an image, as shown in Fig. 6.1, in this Thesis we
focus on the following four time-frequency representations:

• The Short-Time Fourier Transform (STFT) [147] is a time-frequency
decomposition based upon the application of Fourier analysis
to short segments or windows of the audio signal. As such, it
is effectively a filter bank where the bandwidth of each filter
is constant and is related to the window function. The STFT
is implemented on a 30ms window with a 15ms shift and a
1024-point Fourier transform.

• The Linear Frequency Cepstral Coefficients (LFCC) [193] coef-
ficients are computed from the STFT by applying the discrete
cosine transform (DCT) [147]. Generally, only lower-order coeffi-

97



98 voice presentation attack detection

1D Audio Waveform 2D image representation

Figure 6.1: A speech sample together with its texture image representation.

cients are retained since they represent the vocal tract configura-
tion.

• The Constant-Q Transform (CQT) [22] is a perceptually moti-
vated approach to time-frequency analysis. In contrast to Fourier-
based approaches, the bin frequencies of the filterbank are ge-
ometrically distributed. Compared to the STFT, the CQT has a
greater frequency resolution for lower frequencies and a greater
temporal resolution for higher frequencies. The CQT is applied
with a maximum frequency of Fmax = FNYQ, where FNYQ is the
Nyquist frequency of 8kHz. The minimum frequency is set to
Fmin = Fmax/29 ' 15Hz (9 being the number of octaves). The
number of bins per octave is set to 96. These parameters result
in a time shift of 8.5ms. For both STFT and CQT spectrogram-
to-image representations, we perform a min-max normalisation
and 8-bit quantisation on the log-magnitude spectrum.

• The Constant Q Cepstral Coefficients (CQCC) [192, 202] stem
from the application of cepstral processing to CQT represen-
tations. CQCCs offer a time-frequency resolution more closely
related to that of human perception. These features were de-
signed specifically for PAD but have also shown to be beneficial
for Automatic Speaker Verification (ASV) and utterance verifica-
tion [201].

6.2 texture descriptors

In order to analyse the texture features extracted from the time-
frequency image representations described above, we study some
well-known texture descriptors, exposed in Sect. 3.1, in combination
with SVMs: LBP [145], MB-LBP [231], BSIF [104], and LPQ [146]. It
worth noting that these descriptors are computed over the full image.
Therefore, an image is only represented by one feature vector.

6.3 application of FV

In a second approach, we evaluate the feasibility of using our common
feature space (i.e., FV) in combination with the best performing texture
descriptor and image representation described in Sect. 6.2 and 6.1,
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Figure 6.2: General overview of our dual-stream temporal CNN approach.

respectively. In essence, we follow the same pipeline described in
Chapter 3: i) the input 1D audio waveform is transformed to the
corresponding image representation, ii) the best performing descriptor
in Sect. 6.2 is computed over the whole image and iii) projected by
the FV. Finally, a linear SVM takes the final decision.

6.4 dual-stream temporal CNN

Finally, we propose a dual-stream temporal CNN which leverages
temporal information of latent embeddings extracted from the two
best image representations in Sect. 6.1 to enhance the generalisation
capabilities. Fig. 6.2 shows a general overview of our dual-stream
temporal CNN which takes advantage of the temporal latent represen-
tation of the input spectrograms for voice PAD. In essence, the input
1D audio waveforms are firstly transformed into 2D images using the
image representations described in Sect. 6.1. This transformation will
lead to an individual stream in our approach. The new images are then
split into several frames and represented by an intermediate latent
vector stemming from a traditional CNN (e.g., DenseNet, declared as
Backbone in Fig. 6.2). In order to include voice temporal information
in the network optimisation, the per-frame latent representation is
further processed by a series of LSTM layers, whose output layer is
concatenated with the one provided by the other stream. Finally, these
final concatenated features are fed to a FCL, which, in turn, inputs a
single unit layer for the BP vs. AP decision.

To optimise the network, we use the Binary Cross Entropy (BCE)
loss, which is generally employed for binary classification tasks [82].
BCE L(·) is computed as:

L(x) = y · log p(x) + (1− y) · log(1− p(x)), (6.1)

where p(x) is the predicted probability and y is the true label for the
input x. We assign y = 1 for BPs and y = 0 for APs.
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Table 6.1: General architecture of our dual-stream temporal CNN.

Layers CQT-stream STFT-stream

Input 5 × 64 × 128 5 × 64 × 128

Backbone latent space 5 × 512 5 × 512

LSTM (4 layers) 1 × 256 1 × 256

Concatenation 1 × 512

FCL 1 × 256

Sigmoid 1 × 1

6.4.1 Network Architecture

As mentioned, our dual-stream temporal CNN comprises two streams:
one optimised for the CQT representation and the other one for the
STFT representation. In our experiments, we first split the input spec-
trograms into 5 continuous frames, each of which has 64 ×128 pix-
els. A latent representation of 512 features per frame is computed
using a given backbone (e.g., DenseNet [91], ResNet [86], or Mo-
bileNetv2 [177]). To exploit temporal information of speech images,
the above latent representations are fed into 4 hidden LSTM layers
each consisting of 256 neurons. The LSTM outputs of each stream are
concatenated into a 512 vector, which in turn is further processed by
a 256 FCL. Finally, a FCL of a single unit with sigmoid activation is
added to produce the binary classification. A summary of the main
architecture is shown in Tab. 6.1.

In our implementation, we trained the network from scratch using
the Adam optimiser [107]. A learning rate of 1 × 10−4 with a weight
decay parameter of 1 × 10−6 was used. The framework was imple-
mented in PyTorch [155] and trained on the Nvidia GPU Tesla M10

with 16 GB DRAM.

6.5 experimental setup

The experimental evaluation has a threefold goal: i) evaluate the detec-
tion performance of our proposed method over challenging scenarios,
ii) analyse the effect of unbalanced data over the generalisation capa-
bilities, and iii) establish a benchmark with the state-of-the-art PAD
techniques.

• Analyse the detection performance of the texture descriptors for
the baseline scenario (i.e., known PAI species and unknown PAI
species).
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• Benchmark the detection performance of our two proposed
algorithms for known PAI species and unknown PAI species.

• Study the effect of unbalanced data over the generalisation capa-
bilities.

• Evaluate the detection performance for cross-database.

In order to establish a fair benchmark, we adopt two PAD baseline
approaches from the ASVspoof 2019 challenge [214], which use GMM
back-end classifier with either CQCC (B01) or LFCC (B02) features.
It should be noted that whereas the baseline approaches employed a
bi-cluster GMM model for the BP or AP classification, our analysed
FV technique uses it as a generative model to fit the BP and AP data
distribution.

6.5.1 Databases

The experimental evaluation was conducted over the freely available
databases ASVspoof 2019 [203] and 2021 [224] whose characteristics
are summarised in Tab. 6.2:

• ASVspoof 2019 database consists of two assessment scenarios:
Logical Access (LgA) and Physical Access (PhA)1. Both LgA
and PhA databases are partitioned into three disjoint datasets:
training, development, and evaluation. Whereas the PAIs in the
training and development datasets were built with the same
algorithms and capture conditions (i.e., it is the known PAI
species scenario), PAIs for the evaluation dataset were gener-
ated with different techniques and capture conditions (i.e., it is
theunknown PAI species scenario). The LgA partition contains
PAI samples which were generated using 17 different TTS and
VC technologies: six were designated for known PAI species
assessment (i.e., A01-A06) and 11 for unknown PAI species (i.e.,
A07-019 with exception of A16 = A04 and A19 = A06 and hence
both two attacks are in the training set). In order to analyse and
improve the ASV reliability in different acoustic environments
and replay setups, the training and development data for the
PhA scenario is created under 27 different acoustic and 9 replay
configurations. The replay settings comprise 3 attacker-to-talker
(i.e., A, B, C) recording distances and 3 loudspeaker quality (i.e.,
A, B, C). The evaluation dataset is generated in the same manner
as training and development data but with different random
acoustic and replay configurations. [203].

1 To avoid confusion with PA (presentation attack), we have named the two partitions
of the ASVspoof 2019 database LgA and PhA
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Table 6.2: A summary of ASVspoof databases.

Partition Dataset #BP #AP PAI species

2
0

1
9

LgA
training 2580 22800 A01, A03, A03,

A04, A05, A06development 2548 22296

evaluation 7355 63882

A07, A8, A09, A10,
A11, A12, A13, A14,
A15, A16, A17, A18, A19

PhA
training 5400 48600 AA, AB, AC,

BA, BB, BC,
CA, CB, CC

development 5400 24300

evaluation 18090 116640

2
0

2
1

LgA evaluation 18452 163114

C1, C2, C3,
C4, C5, C6, C7

• ASVspoof 2021 database includes an extra assessment scenario
(i.e., DeepFake) along with the LgA and PhA scenarios. Fol-
lowing the protocol in [224], we use the LgA partition for the
cross-database evaluation. More specifically, the proposed al-
gorithms are trained over the LgA partition in the ASVspoof
2019 and evaluated over the same partition in the ASVspoof
2021. ASVspoof 2021 is more challenging than ASVspoof 2019

as it includes new trials per speaker. In contrast to the LgA
partition in ASVspoof 2019, this set in ASVspoof 2021 contains
BPs and PAIs transmitted over a variety of telephony systems
including Voice-over-IP (VoIP) and a Public Switched Telephone
Network (PSTN). The data transmission across telephony sys-
tems introduces nuisance variability usually expected in several
real applications. Both BP and AP samples were treated with
one of seven distinct codecs as a result of transmission (i.e., C1

- C7). C1 replicates the LgA scenario in the ASVspoof 2019. C2

and C4-C7 correspond to the transmission across an Asterisk
Private Branch Exchange (PBX) system using one of five differ-
ent codecs operating at either 8 kHz or 16 kHz bandwidths. C3

relates to the transmission over a PSTN system starting from a
mobile smartphone and ending at a SIP endpoint hosted on a
professional VoIP system.
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Table 6.3: Benchmark in terms of D-EER(%) of the texture descriptors for the
best parameter configuration per speech-to-image domain trans-
formation for known PAI species.

CQCC LFCC STFT CQT

LgA PhA LgA PhA LgA PhA LgA PhA

Best BSIF N = 6 N = 8 N = 9 N = 11 N = 12 N = 9 N = 9 N = 9

Parameters l = 17 l = 3 l = 5 l = 7 l = 15 l = 5 l = 17 l = 13

LBP 32.72 16.39 17.39 28.42 10.12 15.50 9.77 7.65

LPQ 20.72 13.80 19.20 43.59 12.66 15.04 9.54 6.05

BSIF 18.53 13.11 14.30 18.08 0.86 11.30 2.11 4.54

MB-LBP 19.68 22.30 16.52 24.28 1.10 12.01 3.12 4.98

avg 22.91 16.40 16.85 28.59 6.19 13.46 6.14 5.80

6.6 results and discussion

6.6.1 Known PAI species

6.6.1.1 Texture Analysis

In order to analyse the detection performance, two sets of experiments
were carried out. In the first experiment set, we optimise the detection
performance of our texture descriptors in terms of the D-EER for
different parameter configurations. Table 6.3 shows the D-EER for the
best parameter setting over the development set in the LgA and PhA
scenarios. As it may be observed, among all speech-to-image domain
transformations, the CQT reports the best detection performance,
thereby resulting a mean D-EER of 6.14% and 5.80% for the LgA and
PhA scenarios, respectively. In addition, among the texture descriptors,
the BSIF unveils the best texture features for the audio PAD task: D-
EERs of 0.86% and 4.54% are attained for the LgA with STFT and PhA
with CQT, respectively, thereby showing its suitability for the audio
PAD task.

In a second set of experiments, we evaluate our FV approach for
the best texture descriptor (i.e., BSIF) for known PAI species detection.
Tab. 6.4 shows the FV detection performance for the best number of
Gaussian clusters per speech-to-image domain transformation. We
can observe that STFT achieves the same detection performance for
the LgA scenario for the pooled database (i.e., all PAI species) as
the one reported by the single BSIF descriptor: a D-EER of 0.86%,
which is approximately three times lower than the one attained by
the FV encoding with the images in the CQT domain. Alternatively,
a different detection performance is reported for the PhA scenario
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Table 6.4: Benchmark of our FV method and BSIF for known PAI species.

CQCC LFCC STFT CQT

K = 512 K = 512 K = 256 K = 512

PAI D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF
Lg

A
A01 9.69 0.2973 5.70 0.1749 0.38 0.0101 1.15 0.0454

A02 3.99 0.1202 11.22 0.3195 0.62 0.0201 0.92 0.0294

A03 11.40 0.3503 6.59 0.2065 0.74 0.0225 1.19 0.0388

A04 8.76 0.2650 19.34 0.5258 0.84 0.0282 2.68 0.0804

A05 7.14 0.2260 11.40 0.3374 1.50 0.0516 2.46 0.0715

A06 17.77 0.5044 12.73 0.5850 0.82 0.0278 4.09 0.1331

pooled 10.28 0.3060 13.27 0.3660 0.86 0.0294 2.55 0.0748

K = 256 K = 128 K = 512 K = 256

Ph
A

AA 16.26 0.4332 39.64 0.9045 21.32 0.5416 8.11 0.2038

AB 7.65 0.2184 27.26 0.6930 14.28 0.3763 2.43 0.0702

AC 6.23 0.1743 22.34 0.5767 9.75 0.2530 2.30 0.0671

BA 15.09 0.3859 33.26 0.8107 9.54 0.2334 5.19 0.1291

BB 6.53 0.1814 23.05 0.5933 6.19 0.1568 1.45 0.0373

BC 5.45 0.1502 19.03 0.5069 4.64 0.1141 1.16 0.0352

CA 15.56 0.4072 32.51 0.7987 9.19 0.2299 5.25 0.1365

CB 6.42 0.1719 22.73 0.6009 6.20 0.1566 1.21 0.0341

CC 5.11 0.1374 19.23 0.5136 4.19 0.1105 0.96 0.0275

pooled 9.94 0.2675 27.34 0.6784 11.05 0.2700 3.68 0.0976

where a D-EER of 3.68% for the CQT outperforms the one attained
by STFT (i.e., 11.05%). Finally, it may be noted that the minimum
normalised tandem Detection Cost Function (t-DCF)2 values for both
the STFT on LgA and CQT on PhA are respectively below 0.05 and
0.14, hence indicating that the FV provides a high security against
PAIs to the ASV systems.

6.6.1.2 Reliability of the Spectrogram Fusion

Now, we evaluate the feasibility of fusing the best two speech-image
representations (i.e., STFT and CQT) on the detection performance of
our dual-stream temporal CNN. To that end, we select three different

2 t-DCF [111] is the primary metric used for the ASVspoof 2019 challenge (https:
//www.asvspoof.org/), which evaluates the performance between the proposed PAD
approaches and an ASV system.

https://www.asvspoof.org/
https://www.asvspoof.org/
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Figure 6.3: Detection performance per backbone for known PAI species.

backbones which have reported remarkable results in several pattern
recognition tasks [92]: DenseNet with 121 layers [91], ResNet with 34

layers [86], and MobileNet version 2 [177]. As it can be seen in Tab. 6.2,
the AP samples represent 90% of the whole dataset. Therefore, we
select randomly for this experiment the same number of AP samples
as BPs at 5 different iterations. Then, we train our proposed method
for each random subset and report the D-EER for known PAI species
scenarios in Fig. 6.3. As it can be observed, our approach achieves a
mean D-EER lower than 0.10% and 4.04% for LgA and PhA, respec-
tively. Whereas ResNet attains the best mean D-EER of 0.03% ± 0.02

for LgA, DenseNet reports the best mean D-EER of 2.51% ± 0.93 for
PhA. The latter outperforms our common feature space (i.e., FV) com-
bined with BSIF by a relative 31.79%. We also note that the minimum
D-EER is yielded by DenseNet for LgA (i.e., D-EER = 0.00%) and
PhA (i.e., D-EER = 1.30%). Finally, we observe that low STDs ranging
0.02-0.16 and 0.60-1.34 for LgA and PhA, respectively, indicate that the
random selection of APs does not considerably impact the algorithm’s
detection performance.



106 voice presentation attack detection

Table 6.5: Benchmark in terms of D-EER(%) of the texture descriptors for
unknown PAI species detection.

CQCC LFCC STFT CQT

Method LgA PhA LgA LgA LgA LgA LgA LgA

LBP 24.61 17.87 28.30 25.88 22.44 16.26 17.43 7.16

LPQ 25.10 18.83 24.10 29.77 20.06 16.94 16.89 5.65

BSIF 20.35 14.29 18.36 19.74 15.33 11.29 14.73 4.94

MB-LBP 24.84 28.27 20.11 25.20 10.69 13.26 15.48 6.13

avg 23.73 19.82 22.72 25.15 17.27 14.44 16.13 5.97

6.6.2 Unknown PAI species

6.6.2.1 Texture Analysis

As mentioned in Sect. 6.5, one goal of this work is to analyse traditional
texture descriptors for unknown PAI species detection. To that end,
we select the evaluation dataset and assess the detection performance
for the adopted texture descriptors by setting up the same parameters
reported for the known PAI species experiment.

The corresponding results are presented in Tab. 6.5. We can note
that the BSIF descriptor attains again the best detection performance
for most speech-to-image transformations: a D-EER of 4.94% for PhA,
which is close to the one reported by the known PAI species scenario
(i.e., 3.68%). In addition, the MB-LBP outperforms the remaining
descriptors for the STFT-LgA scenario, achieving a D-EER of 10.69%.

Based on this fact, we also evaluated the combination between BSIF
and FV for each particular PAI species for the LgA and PhA scenarios
in Tab. 6.6 and established a benchmark against the baselines B01
and B02. As it can be observed, the CQT achieves the best detection
performance for the entire set of LgA-PAIs (i.e., a D-EER of 6.83%).
In addition, this outperforms the adopted baselines for the most
challenging PAIs for LgA scenario under the ASVSpoof 2019 database:
D-EERs of 7.91% and 1.94% are respectively achieved for A10 and
A13, which are two and five times lower than the ones reported by the
baselines. Moreover, their corresponding t-DCF values are better than
the ones attained by the baselines.

Consequently, for the PhA scenario our CQT-based FV approach
attains for the pooled a D-EER of 3.66%, which is three times lower
than the one yielded by the baselines (i.e., a D-EER of 11.04% for
B01 and a D-EER of 13.54% for B02). Furthermore, we outperform
the baselines for most PAI species: a D-EER in the range 1.10-7.64%
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Table 6.6: Benchmark with the state of the art (B01 and B02) of our FV
method and BSIF for unknown PAI species.

CQCC LFCC STFT CQT B01 B02

K = 512 K = 512 K = 256 K = 512 K = 2 K = 2

PAI D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF

Lg
A

A07 7.80 0.2445 17.78 0.5147 0.31 0.0100 4.45 0.1376 0.00 0.0000 12.86 0.3263

A08 6.62 0.1958 1.75 0.0466 1.25 0.0356 4.60 0.1431 0.04 0.0007 0.37 0.0086

A09 3.23 0.0944 1.16 0.0351 0.30 0.0089 0.89 0.0270 0.14 0.0060 0.00 0.0000

A10 9.29 0.2784 17.35 0.5111 10.81 0.3140 7.91 0.2438 15.16 0.4149 18.97 0.5089

A11 2.18 0.0685 9.32 0.2688 1.40 0.0430 3.41 0.1032 0.08 0.0020 0.12 0.0027

A12 7.08 0.2212 17.21 0.4900 5.84 0.1689 5.08 0.1560 4.74 0.1160 4.92 0.1197

A13 8.30 0.2648 23.91 0.6964 5.01 0.1415 1.94 0.0634 26.15 0.6729 9.57 0.2519

A14 8.83 0.2686 8.74 0.2585 3.15 0.0971 2.05 0.0638 10.85 0.2629 1.22 0.0314

A15 4.56 0.1415 5.13 0.1517 4.32 0.1345 4.48 0.1377 1.26 0.0344 2.22 0.0607

A16 7.54 0.2363 15.22 0.4259 0.74 0.0234 2.04 0.0669 0.00 0.0000 6.31 0.1419

A17 34.39 0.9115 21.22 0.5745 31.20 0.8643 16.62 0.4766 19.62 0.9820 7.71 0.4050

A18 36.08 0.9536 32.19 0.8853 5.94 0.1793 10.28 0.3080 3.81 0.2818 3.58 0.2387

A19 26.94 0.7321 23.08 0.6628 4.62 0.1388 11.49 0.3454 0.04 0.0014 13.94 0.4635

pooled 14.62 0.3691 16.79 0.3837 7.76 0.1881 6.83 0.1926 9.57 0.2366 8.09 0.2116

K = 256 K = 128 K = 512 K = 256 K = 2 K = 2

Ph
A

AA 23.14 0.5396 37.94 0.8827 19.45 0.4954 7.64 0.1985 25.28 0.4975 32.48 0.7359

AB 17.27 0.4162 26.89 0.7049 14.44 0.3714 2.05 0.0548 6.16 0.1751 4.40 0.1295

AC 11.28 0.2859 22.55 0.5913 10.70 0.2772 2.17 0.0594 2.13 0.0529 3.95 0.1121

BA 19.74 0.4967 31.24 0.7644 10.78 0.2785 5.17 0.1360 21.87 0.4658 24.59 0.6011

BB 14.40 0.3679 23.11 0.6132 7.06 0.1877 1.22 0.0341 5.26 0.1483 4.29 0.1252

BC 9.66 0.2517 19.32 0.5157 5.42 0.1458 1.23 0.0336 1.61 0.0433 3.20 0.0888

CA 18.64 0.4709 28.35 0.7084 9.88 0.2568 5.46 0.1408 21.10 0.5025 21.63 0.5524

CB 13.08 0.3358 22.40 0.5926 6.27 0.1692 1.22 0.0335 4.70 0.1360 3.92 0.1194

CC 9.05 0.2383 18.83 0.5087 5.22 0.1382 1.10 0.0308 1.79 0.0461 3.06 0.0895

pooled 15.68 0.3837 26.20 0.6649 11.21 0.2815 3.66 0.0946 11.04 0.2454 13.54 0.3017

together with a t-DCF between 0.03-0.20% unveils a reliable and secure
generalisation capability for this scenario.

6.6.2.2 Spectrogram Fusion

Now, we compute the detection performance of our dual-stream com-
bined with the three studied backbones (i.e., DenseNet, MobileNet,
and ResNet) in Fig. 6.4. We observe that the mean D-EER is multiplied
by a factor of 82 for DenseNet, 93 for MobileNet, and 457 for ResNet
in comparison with the D-EERs reported for the known PAI species
evaluation. Specifically, the best performing backbone (i.e., DenseNet)
achieves a mean D-EER of 7.56% ± 1.89, resulting in a minimum
D-EER of 5.79%.

In contrast to the results reported for LgA, the detection perfor-
mance per backbone for PhA is similar to those yielded for the known
PAI species. Mean D-EERs ranging 2.88%-4.41% confirm the above
observation over the same experiment: the features for unknown sam-
ples stemming from the PhA partition follow a similar distribution to
the ones for the spectrograms in the training set. Hence, we strongly
think that algorithms for voice PAD should be able to achieve similar
results for known PAI species and unknown PAI species over the PhA
partition.
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Figure 6.4: Detection performance per backbone for unknown PAI species.

6.6.2.3 Impact of Unbalanced Dataset over unknown PAI species

On the other hand, we evaluate to what extent the detection perfor-
mance of our CNN-based method is affected when trained with the
entire database. To that end, we selected the best performing backbone
(i.e., DenseNet). In order to avoid bias in classifier training, we opti-
mise the BCE loss in our approach by setting up weights per category
(i.e., 0.90 for BPs and 0.10 for APs). Fig. 6.5 shows a benchmark of
our proposed algorithm when it is trained with unbalanced (i.e., the
entire dataset, red dashed line) and balanced (i.e., a random selection
of AP samples) databases. We can see that the training with the entire
database yields similar results to those attained by the random selec-
tion of samples (see a) and b), column 1). Even, it achieves a D-EER of
0.00% for LgA (see a), column 1) which is lower than the mean value
reported by training with a balanced database. This is because the
features computed for the evaluation set follow the same distribution
as those of the training set.

In contrast to the results reported for known PAI species, we can
observe that training with an unbalanced database considerably in-
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Figure 6.5: Benchmark of our proposed method trained with data random
selection and the entire data (dashed red line).

creases the D-EER compared to training using the same number of
samples per category for unknown PAI species. In particular, a D-EER
of 12.61%, which is approximately twice higher than the one reported
by the mean of the data random selection (i.e., 7.56%), is achieved for
LgA. Subsequently, we can also note a decrease in the detection perfor-
mance of our proposed approach when trained with the unbalanced
database: a D-EER of 3.94% for an unbalanced database vs. a mean D-
EER of 3.11% for a balanced database confirms the impact of training
with an unbalanced database in the unknown PAI species detection.
We think that future studies focused on the PAD generalisation should
consider the issues of unbalanced databases.

6.6.2.4 Ablation Study

Finally, we conduct an ablation study of the dual-stream with respect
to each stream separately. Fig. 6.6 establishes a benchmark between the
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(a) Known PAI species evaluation

(b) Unknown PAI species evaluation.

Figure 6.6: Performance benchmark of the dual-stream with respect to each
stream separately.

proposed dual-stream with respect to each single scheme (i.e., STFT
or CQT). As it can be observed, the dual-stream scheme is capable
of outperforming both singular streams for the known PAI species
and unknown PAI species scenarios. In particular, for the challenging
unknown PAI species scenario, the fusion algorithm achieves mean
D-EERs of 7.56% and 3.11% for LgA and PhA, respectively, which
improve the single pipelines by up to a relative 33.97% and 71.73%.
These results do confirm that the fusion between the best perform-
ing spectrogram representations (i.e., STFT and CQT) improves the
detection performance of every single pipeline, especially for the un-
known PAI species scenario. These two spectrogram representations
contain different frequency information that complements each other
to improve the final decision.

6.6.3 Cross-database Evaluation

We also assess the ability of our dual-stream temporal CNN to spot
PAIs across different databases and compare it with our FV represen-



6.6 results and discussion 111

FV

DenseNet

Figure 6.7: Cross-database evaluation for the best performing backbone (i.e.,
DenseNet).

tation. To that end, we follow the cross-database protocol defined in
Sect. 6.5 and compute in Fig. 6.7 the D-EER for the best performing
backbone (i.e., DenseNet) over the models trained over the five ran-
dom sets mentioned in Sect. 6.6.1.2. We observe that the CNN-based
algorithm achieves a mean D-EER of 35.61% with a STD of 2.58%
which is worse than the one attained by our common feature space
FV (i.e., 27.14%). Depending on the selection of the training set, a
minimum D-EER of 32.33% is yielded, which shows that the selec-
tion of training samples is a challenge for PAD generalisation and
should be taken into account in future research. In addition, these
results confirm the need of enhancing the generalisation capability of
neural networks. A considerable improvement of our results for this
challenging scenario would be the combination of our dual-stream
temporal CNN with those backbones which are developed for instance
for domain adaptation [213]. Furthermore, the latest CNN families of
EfficientNet architectures [197] could enhance the final decision of our
framework.

6.6.4 In-depth Performance Analysis

We establish a benchmark in Fig. 6.8 between both proposed algo-
rithms for LgA and PhA. As it can be seen, the dual-stream approach
considerably outperforms the FV for known PAI species and unknown
PAI species in most scenarios. In particular, for PhA, a BPCER ≤ 1.78%
and a BPCER ≤ 6.59% at an APCER ≥ 1.0% for known PAI species
and unknown PAI species, respectively confirm the soundness of
our learnable features for operating over this challenging scenario.
For LgA, the FV technique reports, for a high-security threshold (i.e.,
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Figure 6.8: Benchmark for known PAI species, unknown PAI species, and
cross-database. Diagonal light-gray lines represent the D-EER (%).
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Figure 6.9: t-SNE visualization of common feature spaces learned by the
FV-based approach for the CQT transformation.

APCER = 1.0%), a BPCER = 32.83% and BPCER = 82.72% for unknown
PAI species and cross-database, respectively. These are better than
the ones attained by the dual-stream method. Consistent with the
results shown in Fig. 6.7, the cross-database performance computed
by our both algorithms suffers a significant decrease for high secu-
rity thresholds, thus indicating the need for further research on these
scenarios.

6.6.5 Visualisation of the FV Representation

Finally, a t-SNE visualisation in Fig. 6.9 shows that most PAI species
share more homogeneous features with each other than with those
BPs. Thus, this confirms our hypothesis mentioned in Chapter 1. In
spite of the results, we note the overlap of some PAI species such as
A17, A18, AA, BA, and CA with the BP features. This indicates that the
data distribution learned by a GMM using the BSIF features needs to
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be improved in order to get a better generalisable FV common feature
space.

6.6.6 Summary

To summarise the findings on the voice PAD, we can highlight the
following takeaway messages:

• Among four image representations of speech audio, CQT and
STFT unveiled textural differences between BPs and APs, thereby
resulting in the best detection performance across several tradi-
tional texture descriptors.

• In particular, BSIF representation reported the best detection
performance for known PAI species and unknown PAI species
scenarios.

• The combination of BSIF with our common feature space (i.e.,
FV) yielded D-EERs in the range 0.86%-6.83% for known PAI
species and unknown PAI species scenarios, thus reporting a
performance improvement with respect to the use of BSIF alone.

• The fusion of the two best spectrograms (i.e., CQT and STFT)
through our dual-stream temporal CNN method outperformed
the FV representation for most scenarios. More specifically, a
BPCER ≤ 1.78% and a BPCER ≤ 6.59% at an APCER ≥ 1.0%
for known PAI species and unknown PAI species, respectively
confirm the soundness of our learnable features for operating
over this challenging scenario.

• Further, this fusion reports D-EERs which outperform each
spectrogram-based pipeline by up to a relative 33.97% and
71.73% for LgA and PhA, respectively. This does confirm that
the complementary information between STFT and CQT leads
to an improvement in the detection of unknown PAI species.

• In contrast to the results for PhA, the FV confirmed its soundness
for the challenging unknown PAI species and cross-database sce-
narios over LgA. This outperformed the dual-stream approach
for higher security thresholds (i.e., APCER ≤ 1.0%).

• In spite of the results, the FV representation decreases its per-
formance for this challenging scenarios over LgA: a BPCER =
32.83% and BPCER = 82.72% for unknown PAI species and cross-
database, respectively indicate the need for further research on
these scenarios.

• The results in Sect. 6.6.2.3 confirmed the need of further research
about the selection of PAI species to train PAD algorithms. The
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training over an unbalanced dataset considerably decreases the
generalisation capabilities of the PAD module.

• Finally, the results also confirmed the feasibility of using our
common feature space FV for voice PAD.



7
C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

Nowadays, numerous investigations carried out over a number of
years have shown that APs launched over the capture device to im-
personate someone else are a real threat to the security of biometric
systems. To prevent these threats, different PAD algorithms have
been developed in the last decades. Those techniques have reported
a remarkable detection performance to spot AP attempts whose PAI
species are known a priori. However, they drop their accuracy when
unknown PAI species are employed. In addition, those methods are
specifically proposed for a particular biometric characteristic, hence
their application on a different biometric characteristic leads to high-
performance degradation.

This Thesis investigated and proposed new algorithms mainly fo-
cused on improving the generalisation capabilities in challenging sce-
narios where either PAI species or capture devices remain unknown.
Specifically, we explored the use of different techniques which pro-
pose the definition of a semantic common feature space summarising
those features of BPs and APs that persist in different unknown PAI
species. Among three different common feature spaces studied, the FV
representation appeared to be capable of improving the generalisation
capabilities across different biometric characteristics such as finger-
print, face, and voice. In essence, this algorithm characterises how the
distribution of a set of local descriptors, extracted from unknown PAI
species, differs from the distribution of known APs and BPs, which
was previously learned by a generative model. Therefore, the final
transformed features are more robust to new samples, which may
stem from unknown scenarios and thus differ from the samples used
for training.

The FV representation was successfully evaluated over three differ-
ent types of biometric characteristics (i.e., fingerprint, face, and voice)
in combination with several handcrafted descriptors. The experimental
results reported in terms of the metrics defined in the international
ISO/IEC 30107-3 for biometric PAD [97] showed a remarkable detec-
tion performance over both unknown PAI species and cross-database
scenarios for these three biometric modalities. It is worth noting that
the FV common feature space was assessed in the international Fin-
gerprint Liveness Detection (LivDet) competition 2019, resulting in
the best overall accuracy among participants (i.e., overall accuracy of
96.17% [148]).

In general, the contributions of our Thesis per research question are:

115
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RQ 1: Keeping in mind that fingerprints consist of ridges and
valleys, can the lack of ridge’s continuity be used to detect the
artefacts produced in the fabrication of PAIs?
Is there a close relationship between the lack of ridge continuity
and those artefacts?
Can these features aid in successfully detecting unknown PAI
species?

The experimental results in Sect. 4.3 showed that gradient-based
descriptors (i.e., SIFT and SURF) successfully represent low coherence
areas produced by several fingerprint ridge pattern artefacts such
as black saturation, white saturation, lack of continuity, unwanted
noises, and ridge distortions, thereby resulting in the best detection
performance in most scenarios. In addition, a NFIQ2.0 evaluation
over the LivDet 2015 database depicted that the different analysed
descriptors improved their detection performance as the ridge pattern
of BP fingerprints enhanced: an D-EER < 2.58% is reported when the
BP fingerprint quality is greater than 60 (i.e., NFIQ2.0 > 60). Therefore,
the lack of ridge’s continuity can be used as a suitable indicator to sep-
arate a BP from an AP. Finally, the combination between the SIFT and
the FV representation reported a remarkable detection performance in
challenging scenarios such as unknown PAI species, cross-database,
and cross-session.

RQ 2: Can different colour spaces unveil discriminative fea-
tures to be capable of successfully detecting facial PAIs?
How can the facial artefacts, produced in the creation of PAIs,
be perceived in different colour spaces?

Boulkenafet et al. reported in [17] that the RGB colour space has
limited discriminative power for face PAD due to the high corre-
lation between the three colour components. In contrast, HSV and
YCbCr are based on the separation of the luminance and chrominance
components, thereby providing additional information for learning
more discriminative features. However, the experimental results in
this Thesis indicated the statistical advantage of RGB with respect to
other colour spaces for datasets having images of varying resolutions,
thereby resulting in a minimum average D-EER of 0.45% for known
PAI species detection. Contrary to the conclusions drawn in [18], we
observed that the three explored colour spaces reported similar error
rates in three out of four datasets (i.e., REPLAY-ATTACK, REPLAY-
MOBILE, and MSU-MFSD): mean D-EERs of 0.003%, 0.03%, and 0.19%
are achieved by RGB, HSV, and YCbCr respectively. The main reason
for this difference with respect to [18] is that we carried out a fea-
ture decorrelation with PCA before finding the semantic sub-groups,
thereby leading to the detection of similar features for the three colour
spaces.
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RQ 3: What is the most appropriate facial region to identify
PAIs?
Taking into account that the face consists of several regions such
as the mouth, eyes, eyebrows, or chin, then how many facial
regions are required to correctly identify a PAI.
What is the minimum or the optimal number of facial regions
needed to detect PAIs?

The experimental results in Sect. 5.5.7 showed that the composite
regions achieved the best detection performances among regions. In
particular, the full face yielded a D-EER of 3.92%, followed by right
face (D-EER = 4.61%), left face (D-EER = 5.38%), the jaw (D-EER =
5.53%), and central face (D-EER = 6.28%). However, the use of the nose
region is capable of achieving error rates comparable to those reported
by the composite regions. In addition, we proposed a Facial Region
Utility metric which indicated the usefulness of a particular region for
training to spot an AP based on the other region in a probe image. A
practical application where individuals wore masks to prevent respi-
ratory infections showed the feasibility of using the central face over
the full face in the evaluation: an ACER of 9.51% which outperforms
the state-of-the-art methods by a relative improvement up to 67.73%,
allows the building of a secure and convenient PAD module. In addi-
tion, we noted that the BPCER values yielded by the state-of-the-art
were decreased down to 7.02% (BM0) and 15.79% (BM1) for pristine
subjects.

RQ 4: Can the image resolution affect face PAD process?

1) Given that several lower, medium, and high resolution cap-
ture devices are employed for acquiring face images, how
can the facial artefacts be detected in different image reso-
lutions?

2) Keeping in mind that numerous lower, medium, and higher
resolution capture devices are employed for replay attacks,
how can the image resolution of such devices affect or help
the detection capability of PAD approaches?

3) How does the combination between replay and capture de-
vice resolutions affect the detection capability of PAD ap-
proaches?

In Sect. 5.5.6, we explored the impact of using image of varying
resolutions to detect APs. We noted that the utilisation of images
of varying quality for the facial PAD produces a high-performance
decrease, which can be even greater than the use of numerous PAI
species; ii) the current deep learning-based descriptors report the
worst PAD performance deterioration for face images whose sizes are
widely different from the input layer size; iii) Video-replay attacks,
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screened on a high-resolution capture device, include several blurri-
ness and sharpness properties, which can be successfully detected
by PAD techniques; and iv) training PAD methods with several PAI
species which are acquired with varying-resolution capture devices
appears to be the worst case for the face PAD task, thereby resulting
in a D-EER of 24.24% and a joint BPCER100 of 67.23%. Therefore, we
can confirm that the image resolution is a requirement which must
carefully be taken into account in order to build a secure and reliable
face PAD module.

RQ 5: Can a general framework be built to successfully detect
known PAI species and unknown PAI species by generalising
across different biometric characteristics

The main finding of this Thesis was the use of semantic common
feature spaces to improve PAD generalisation capabilities. In particular,
we reported that the FV representation is able to define semantic
feature sub-groups from known samples which are then found in
unknown PAI species. The experimental evaluation conducted over
three different types of biometric characteristics (i.e., fingerprint, face,
and voice) confirmed the soundness of FV to detect both known PAI
species and unknown PAI species. Therefore, this representation based
on the combination of generative and discriminative models can be
successfully employed to build a general framework for biometric
PAD.

7.1 future work

Based on the findings of this Thesis, some future directions emerge:

• As it was shown through this Thesis, the FV representation is
able to define a semantic common feature space that allows
improving the generalisation capability on different biometric
characteristics. This approach was combined with traditional
handcrafted descriptors such as SIFT, SURF, BSIF, and LBP,
among others. Therefore, its combination with deep features
learnt from powerful CNNs is expected to enhance our results.

• Further, the FV computation with more powerful generative
models such as VAEs and GANs could improve results for the
challenging cross-database scenario. A major advance would be
the combination of the FV representation with the above deep
generative models in an end-to-end scheme. Thus, we would
have a robust approach capable of building a secure biometric
system against unknown PAI species.

• Given that the FV representation reported a remarkable generali-
sation ability over different types of biometric characteristics (i.e.,
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fingerprint, face, and voice), we strongly think that transforming
its features into a multimodal common feature space would be
a viable way forward to overcome the current state-of-the-art
limitations.

• Since our research is mostly focused on capture devices that
acquire the images under visible spectrum, the properties of
near-infrared images might be analysed for improving PAD.

• Finally, the feasibility of our PAD subsystems should be evalu-
ated for the emerged contactless fingerprint attacks.
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