• search hit 21 of 56
Back to Result List

Femtosecond laser direct generation of 3D-microfluidic channels inside bulk PMMA

  • We report on laser direct generation of 3D-microchannels for microfluidic applications inside PMMA bulk material by focused femtosecond pulses. Inner lying channels with cross sectional areas from 100 µm2 to 4400 µm2 are directly created in the volume of a PMMA substrate. Using the presented process, the channel length is fundamentally unlimited. Here we demonstrate a channel length of 6 meters inside a substrate with dimensions of 20 × 20 × 1.1 mm. The formation of the micro channels is based on nonlinear absorption around the focal volume that triggers a material modification. The modified volume can be selectively opened to form the channel by a subsequent annealing process. The cross section of the channel is strongly influenced by the energy distribution and illumination around the focal volume determined by the optical setup and process design. The 3D channel layout can easily be realized by moving the specimen using 3D motorized stage, allowing freely chosen complex shaped channel architectures. Within a comprehensive parameter study, varying laser power, number of multi-passes, writing speed and writing depths, we identify an optimized process in terms of attainable channel height, width and aspect ratio, as well as process stability and reproducibility. The proof of concept for an application in three dimensional microfluidic systems is provided by florescence microscopy using a dye rhodamine B solution in isopropanol.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Gian-Luca Roth, Cemal Esen, Ralf HellmannORCiD
Parent Title (English):Optics Express
Document Type:Article
Language:English
Year of Completion:2017
Release Date:2020/04/30
GND Keyword:Femtosekundenlaser
Volume:25
Issue:15
First Page:18442
Last Page:18450
Urheberrecht:0
research focus :Intelligent Systems / Intelligent Sensors and Signals
Materials / Innovative Material Processing
Materials / Material Testing & Sensor Technology
Licence (German):Keine Lizenz - es gilt das deutsche Urheberrecht
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.