Multiclass classification of Autism Spectrum Disorder, attention deficit hyperactivity disorder, and typically developed individuals using fMRI functional connectivity analysis

  • Neurodevelopmental conditions, such as Autism Spectrum Disorder (ASD) and Attention Deficit Hyperactivity Disorder (ADHD), present unique challenges due to overlapping symptoms, making an accurate diagnosis and targeted intervention difficult. Our study employs advanced machine learning techniques to analyze functional magnetic resonance imaging (fMRI) data from individuals with ASD, ADHD, and typically developed (TD) controls, totaling 120 subjects in the study. Leveraging multiclass classification (ML) algorithms, we achieve superior accuracy in distinguishing between ASD, ADHD, and TD groups, surpassing existing benchmarks with an area under the ROC curve near 98%. Our analysis reveals distinct neural signatures associated with ASD and ADHD: individuals with ADHD exhibit altered connectivity patterns of regions involved in attention and impulse control, whereas those with ASD show disruptions in brain regions critical for social and cognitive functions. The observed connectivity patterns, on which the ML c

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Caroline L. Alves, Francisco A. Rodrigues, Loriz Francisco Sallum, Thaise Toutain, Joel Porto, Patricia Aguiar, Christiane ThielemannORCiD, Michael Möckel
URL:https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305630
DOI:https://doi.org/https://doi.org/10.1371/journal.pone.0305630
Parent Title (English):plos one
Document Type:Article
Language:English
Year of Completion:2024
Date of first Publication:2024/10/17
Release Date:2024/10/21
GND Keyword:Aufmerksamkeitsdefizit-Syndrom; Autismus; Funktionelle Kernspintomografie
Volume:2024
Issue:19(10)
First Page:1
Last Page:35
Urheberrecht:1
Institutes:Fakultät Ingenieurwissenschaften und Informatik / Labore / BIOMEMS Lab
research focus :Intelligent Systems / Artifical Intelligence and Data Science
Reviewed:ja
Licence (German):Creative Commons - CC BY - Namensnennung 4.0 International
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.