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Abstract: Sapphire is a robust and wear-resistant material. However, efficient and high-quality
micromachining is still a challenge. This contribution demonstrates and discusses two novels, previ-
ously unreported approaches for femtosecond laser-based micromachining of rotational-symmetric
sapphire workpieces, whereas both methods are in principal hybrids of laser scanning and laser
turning or laser lathe. The first process, a combination of a sequential linear hatch pattern in parallel
to the workpiece’s main axis with a defined incremental workpiece rotation, enables the fabrication
of sapphire fibers with diameters of 50 µm over a length of 4.5 mm. Furthermore, sapphire specimens
with a diameter of 25 µm over a length of 2 mm can be fabricated whereas an arithmetical mean
height, i.e., Sa parameter, of 281 nm is achieved. The second process combines a constant workpiece
feed and orthogonal scanning with incremental workpiece rotation. With this approach, workpiece
length limitations of the first process are overcome and sapphire fibers with an average diameter of
90 µm over a length of 20 cm are manufactured. Again, the sapphire specimen exhibits a comparable
surface roughness with an average Sa value of 249 nm over 20 cm. Based on the obtained results,
the proposed manufacturing method paves an innovative and flexible, all laser-based way towards
the fabrication or microstructuring of sapphire optical devices, and thus, a promising alternative to
chemical processes.

Keywords: sapphire; femtosecond laser; micromachining; laser turning; laser lathe; ablation
threshold

1. Introduction

Monocrystalline sapphire is one of the most durable materials since it features out-
standing chemical, temperature, and corrosion resistance [1]. Therefore, it is nowadays
used throughout a variety of scientific, industrial, and medical application fields. Typical
examples are sapphire fibers for composite materials, sapphire substrates for optoelec-
tronic devices and sensors, chemical ware, and optical windows or lenses [2,3]. On the
other hand, due to its material properties, high-precision machining of sapphire remains
a challenge. Thus, various scientific groups have been working on possible solutions for
alternative sapphire machining approaches throughout recent years, whereas especially
femtosecond laser-based processes are emerging as a promising method for efficient, high-
quality, and high-precision machining of sapphire materials. In comparison to conventional
methods, such as grinding, milling, and lapping, the non-contact processing approach via
femtosecond lasers features minimized thermal effects [4–7]. While most contributions
discuss surface ablation processes for bulk sapphire substrates [8–18], there are also pub-
lications with a focus on drilling [19–21], cutting [22,23], and the generation of photonic
structures, such as integrated waveguides, Bragg gratings and polarizers [24–29]. Sapphire-
based optical components are of great interest, since they enable long-term operation in
high-temperature environments [30].
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Machining of rotational-symmetric workpieces via laser turning with ultrashort pulse
lasers is also a topic of constantly rising interest. In contrast to classical ablation or modifi-
cation processes, this methodology is relatively novel and, thus, it is neither well explored
nor is its potential fully exploited yet. However, recent studies already demonstrated
promising results for the micromachining of metals as well as dielectrics by means of
femtosecond laser turning [31–34]. Furthermore, Boerner et al. already conducted an initial
study on laser turning of sapphire rods, reaching into the sub-mm range and, therefore, the
micromachining regime. It is found that the realization of small feature sizes is still critical
since unwanted heat accumulation effects lead to cracks and splinters on the machined
specimen’s surface [35].

This contribution demonstrates two novel femtosecond laser-based approaches for
micromachining of rotational-symmetric sapphire workpieces. Both are hybrid methods,
combining laser scanning and turning processes. Depending on the employed method,
sapphire fibers with outer diameters down to 25 µm, or with lengths up to 20 cm can be
manufactured. The study also examines the resulting surface quality of both processes.
Furthermore, the ablation threshold of monocrystalline sapphire for femtosecond pulses
with different wavelengths is determined.

2. Materials and Methods
2.1. Sapphire Substrates and Fibers

The ablation threshold study is conducted on planar sapphire specimens (AL663025,
Goodfellow, Hamburg, Germany). The substrates exhibit a quadratic footprint, with an
edge length of 25 mm, and a thickness of 0.25 mm. Monocrystalline sapphire fibers (SF250-
15 or SF150-50, Laser Components, Olching, Germany) are employed for the femtosecond
laser-based microstructuring studies. The wrought material exhibits an outer diameter of
250 µm and a length of 15 cm, or a diameter of 150 µm and a length of 50 cm, respectively.

2.2. Laser Setup

A schematic of the employed laser setup is depicted in Figure 1.
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An ultrashort pulse laser system (Pharos-10-600 or Carbide, Light Conversion, Vil-
nius, Lithuania) featuring a 2nd and 3rd harmonic generation module is employed for
all experiments discussed in this contribution. It enables irradiation of the samples with
wavelengths of either 1030 nm, 515 nm, or 343 nm. Since it is equipped with a built-in pulse
picker, the laser system is also able to emit a defined pulse quantity or single pulses, thus,
enabling the single-shot laser damage threshold measurements. The radiation is imaged
onto the sapphire workpieces by means of a laser scanning head (Miniscan II, Raylase,
Wessling, Germany). While a focusing lens with a focal length of 100 mm is used for the
ablation threshold experiments, a focal length of 55.6 mm is employed throughout all
microstructuring studies. Although this leads to reduced focal spot diameters, the result-
ing Rayleigh range of 114 µm is still sufficient to omit the necessity of refocusing during
the processes. Focal spot size quantification is realized by means of an adequate camera
(UI-1490SE, IDS, Obersulm, Germany). While planar sapphire specimens are positioned
on a conventional linear translation stage, cylindrical workpieces are mounted within a
rotational axis (ACS-LP, Aerotech, Pittsburgh, PA, USA). Additionally, they are supported
by a V-grooved fixture. The fixture consists of polyether ether ketone (PEEK), additionally
supported by a stainless-steel mount. The employed V-groove is specifically tailored for
this application with a depth of 400 µm and a bottom width of 200 µm, while its sidewalls
exhibit an angle of 30 deg. With a length of 30 cm, the V-groove is capable of supporting
workpieces up to an equal extent. All process parameters stated and discussed in Section 3
are determined empirically, with a focus on achieving the minimum fiber diameter over
the maximum length.

2.3. Ablation Threshold Determination

A preliminary ablation threshold study is conducted in order to determine the opti-
mum wavelength for the femtosecond laser-based microstructuring of sapphire. Therefore,
the planar substrates are locally irradiated with different wavelengths. While pulse dura-
tion and repetition rate are kept constant with values of 230 fs and 100 kHz, each emission
wavelength features a different focal spot diameter. For wavelengths of 1030 nm, 515 nm,
and 343 nm, the respective focal spot sizes are determined experimentally as 36 µm, 21 µm,
and 20 µm. By adapting the laser’s average output power, the resulting peak fluence within
the focal spot is varied. The diameter of the induced ablation area is then evaluated via
bright-field microscopy (DM6000M, Leica, Wetzlar, Germany). Theoretically, the squared
diameter d2 of the ablation area correlates to the pulse peak fluence F according to

d2 = 2ω2
0 ln

(
F

Fth

)
, (1)

whereas ω0 represents the focal spot radius while Fth is the ablation threshold fluence.
Thus, it is possible to quantify the ablation threshold by plotting the squared diameter of
the ablated areas as a function of the applied laser fluence in a semi-logarithmic manner.
The ablation threshold is then determined by the respective linear least square fit function’s
abscissa intersection [36,37].

2.4. Axial Scanning and Incremental Workpiece Rotation

Monocrystalline sapphire fibers with an initial diameter of 250 µm and a length of
15 cm are fixed within the rotational mount on one side while most of the fiber rests
within the V-grooved fixture. In this configuration, the resulting focal spot diameter
is determined as 7 µm. Throughout the whole process, repetition rate, average output
power, pulse duration, and pulse fluence are kept constant at 300 kHz, 1.11 W, 290 fs, and
9.6 J cm−2, respectively. The focal spot is positioned on the workpiece’s rotation axis, which
prevents the necessity of in-situ refocusing. As outlined in Figure 2, a superposition of four
individual linear hatch patterns (A, B, C, D) is used to remove material from the untreated
sapphire specimen.
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Figure 2. Femtosecond laser-based diameter reduction of sapphire rods by means of an axial scanning
process combined with incremental workpiece rotation.

The scanning speed is chosen to obtain a resulting pulse overlap of approximately 65%
along each line, whereas the lateral distance between two lines is 10 µm within each pattern.
All hatch patterns are executed sequentially, starting with pattern A. Every subsequent
hatch is offset laterally by 2.5 µm with respect to the previous one. This way, it is possible
to maintain an effective lateral pulse overlap of 65% while, simultaneously, parasitic heat
accumulation effects are drastically reduced. With 400 µm, the overall sequential hatch
pattern width is chosen extensively larger than the initial fiber diameter to counter possible
misalignments or process-related wobble movements.

After scanning of the whole superimposed hatch pattern, the sapphire fiber is rotated
by an angle of 190 deg around the fiber’s optical axis with a speed of 200 deg·s−1. The
rotation angle is deliberately chosen, since consistent material removal from both sides of
the fiber is preferable to maintain its physical integrity. It is found that one-sided material
removal as well as employing a rotation angle of 180 deg leads to instabilities during the
process and results in bending or deformation of the sapphire fiber. The scanning process is
repeated 36 times, which effectively yields an overall workpiece rotation of 360 deg. After
this first iteration, the diameter of a 250 µm monocrystalline sapphire fiber is reduced to
approximately 160 µm. Iterative repetition of the whole process finally defines the resulting
fiber diameter.

2.5. Orthogonal Scanning Combined with Constant Workpiece Feed and Incremental Rotation

Again, laser radiation with a wavelength of 343 nm is employed for this ablation
process. While the pulse repetition rate is also 100 kHz, pulse duration, as well as spot
diameter, are adapted to process-optimized values of 190 fs and 9.5 µm. The adapted
average output power of 0.31 W yields a pulse fluence of 1.55 J cm−2. Throughout this
procedure, the laser beam is scanned over the workpiece in an orthogonal direction to its
major axis (y-direction) with a scanning speed of 400 mm·s−1. Simultaneously the specimen
is translated alongside the x-axis at a constant feed rate of 0.45 mm·s−1. This parameter
combination yields a pulse overlap of approximately 60% in x- as well as in y-direction.
After a deliberately defined feed length, the workpiece is rotated by 210 deg before the
ablation process starts over. Overall, this ablation procedure consists of 96 repetitions,



Materials 2022, 15, 6233 5 of 11

which translates to 56 full rotations of the sapphire specimen. A schematic of the proposed
microstructuring process is shown in Figure 3.
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Figure 3. Femtosecond laser-based diameter reduction of sapphire rods over a length of 20 cm by
means of an orthogonal scanning process.

While the maximum feed length in the x-direction is only limited by the maximum
translation range of the employed axis, the alignment precision of the supportive V-grooved
fixture is insufficient for lengths beyond 1 cm. To counter unwanted misalignment effects
by means of manual refocusing and repositioning, the sapphire workpiece is therefore
processed in 1 cm sections. While this practically also results in the stitching of multiple
working fields, no stitching errors are observed due to the orthogonal scanning approach.
Again, the resulting diameter of the processed sapphire workpiece can be adapted by the
number of process iterations.

3. Results and Discussion
3.1. Ablation Threshold of Sapphire

The determined squared ablation spot diameter as a function of the applied laser
fluence is depicted in Figure 4. For a wavelength of 1030 nm, a single pulse ablation
threshold fluence of 2.96 J cm−2 is observed. This value is comparable to previous ablation
threshold studies utilizing femtosecond radiation in the infrared regime [8].

Furthermore, especially for pulse quantities of N ≤ 10, a significant reduction of the
ablation threshold is found with decreasing wavelengths, whereas the single pulse ablation
threshold for green and ultraviolet radiation is quantified as 2.53 and 1.25 J cm−2, respec-
tively. In contrast, a deviating behavior is observed for larger pulse quantities (N = 100).
While there is still a significant threshold reduction when green instead of infrared radi-
ation is utilized, no further improvement is observed at a wavelength of 343 nm for this
pulse quantity. This behavior is attributed to heat accumulation and microdamage [36,38].
However, especially in the outline of micromachining small-footprint workpieces, single-
or few-pulse ablation is preferable to prevent suchlike effects. Consequently, based on
this study, UV femtosecond radiation is generally preferable for the micromachining of
sapphire workpieces.
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3.2. Microstructuring via Axial Scanning and Incremental Workpiece Rotation

Based on the proposed methodology, the diameter of sapphire fibers can be drastically
reduced over an extended length, as shown in Figure 5.
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Figure 5. (a,b) Microscopic images of a sapphire fiber. It exhibits a reduced diameter of 50 µm over a
length of 4.5 mm. (c) Surface roughness quantification via white-light interferometry.

Therein, exemplary microscopic images of a diameter-reduced sapphire fiber, man-
ufactured by employing three iterations of the fabrication process, are depicted. With a
diameter of 50 µm over a length of 4.5 mm, the specimen exhibits an aspect ratio of 90.
After machining, the fiber is still straight and does not suffer from unwanted bending or
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deformations due to parasitic heat accumulation effects or intrinsic material tensions (see
Figure 5a). Additionally, the specimen’s surface roughness is quantified with a white-light
interferometer (WLI), whereas the height resolution of the employed device (Contour-GT,
Bruker, Billerica, MA, USA) is specified as 0.1 nm by the manufacturer. Figure 5b,c depicts
a high-resolution microscopic image as well as the sample’s height profile determined via
WLI. Based on the determined mean surface area roughness, or Sa parameter, of 281 nm, the
microstructured workpiece exhibits an outstanding surface quality. Except for a flattening
algorithm to remove the fiber’s surface curvature, no additional filtering is employed in
this evaluation process. Furthermore, no chipping, fissures, or cracks are evident on the
machined specimen’s surface. The overall process time amounts to nine minutes which
results in a diameter reduction speed of 22 µm·min−1. With length-related diameter re-
duction rates of up to 10 µm·cm·min−1, this femtosecond laser-based process is up to ten
times faster than high-temperature wet etching approaches, currently, the only alternative
to fabricate sapphire fibers with this dimension [39].

As depicted in Figure 6, by executing a fourth iteration of the femtosecond laser-based
diameter reduction process, the final sapphire fiber diameter can be further reduced to
25 µm.
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Figure 6. Microscopic images of a sapphire fiber with a reduced diameter of 25 µm.

Again, the final specimen is free from unwanted deformations. However, with this
diameter, the maximum length is limited to 2 mm, which yields a maximum aspect ratio
of 80, before thermal accumulation effects begin to compromise the structural integrity of
the workpiece.

With this process, the maximum achievable length for diameter reductions down to
50 µm is defined by the effective scanning range of the applied combination of lateral
translation stage and laser scanning head. Overall, the maximum scanning range is given
as 5 mm. Thus, in order to achieve diameter reduction over extended lengths, stitching
procedures are necessary. This, however, also results in stitching errors, as shown in
Figure 7.
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Figure 7. Microscopic images of stitching errors.

It is found that stitching multiple working fields next to each other leads to local
neckings and, thus, predetermined breaking points. Stitching can, in general, be omitted
by employing endless-feed systems, as already demonstrated in the outline of continuous
metal fiber manufacturing or cutting machines based on endless diamond wires [40,41].
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3.3. Microstructuring via Orthogonal Scanning Combined with Constant Workpiece Feed and
Incremental Rotation

Alternatively, stitching errors can be avoided by employing this micromachining
approach, which leads to a drastic increase in the achievable microstructuring length.

Figure 8 depicts a sapphire fiber whose outer diameter is reduced from 150 to 90 µm,
over a length of 20 cm, by performing three iterations of the process. The resulting specimen
exhibits a remarkable aspect ratio of 2200 while the overall length-related diameter reduc-
tion rate of this process is 0.6 µm·cm·min−1. However, at this point, it is worthwhile to note
that both microstructuring methods discussed in this contribution are not yet optimized
for process speed in any way.
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Figure 8. Sapphire fiber with an average outer diameter of 90 µm over a length of 20 cm, fabricated
via orthogonal scanning in combination with incremental rotation of the workpiece and constant
workpiece feed. Both zoom-ins show exemplary microscopic images at different positions along
the fiber.

The orthogonal scanning strategy also results in an outstanding surface quality, which
is confirmed by white-light interferometry measurements. All results are acquired with
a 200× objective and, except for a flattening algorithm to remove the fiber curvature, no
additional filtering is applied during the evaluation of the raw data. The obtained Sa values
along the fiber’s main axis, as well as an exemplary height profile acquired via WLI, are
depicted in Figure 9.
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mean height, or Sa value, of a micromachined sapphire fiber with an average diameter of 90 µm over
a length of 20 cm.
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On average, the arithmetical mean height along the sapphire workpiece is determined
as 249 nm. While most Sa values are located in-between 200 and 300 nm, there are occasional
outliers with Sa values up to 450 nm. This leads to a 1σ standard deviation of 58 nm. This
also means that both femtosecond-laser based sapphire microstructuring strategies result
in comparable surface qualities, which are in good agreement with surface roughness
values resulting from femtosecond laser-based ablation processes on planar sapphire
substrates [42].

4. Conclusions

In conclusion, this study demonstrates two novel femtosecond laser-based microma-
chining approaches for rotational symmetric sapphire workpieces. The first strategy is
based on a sequential hatch scanning pattern with parallel orientation to the workpiece’s
main axis, in combination with an incremental rotation process. With this approach, the
diameter of sapphire rods can be reduced to 50 µm over a length of 4.5 mm, or 25 µm over
a length of 2 mm. This results in aspect ratios of 90, or 80, respectively. The arithmetical
mean height (Sa value) of the machined specimen is determined as 281 nm by means of
white-light interferometry and the specimen’s surface is devoid of cracks, fissures, chip outs,
and other unwanted defects. This contribution also discusses the current limitations of the
proposed micromachining process based on axial scanning. Stitching errors, occurring at
the overlap of multiple work areas, limit the maximum microstructuring length of this strat-
egy. In contrast, the second approach, which is based on an orthogonal scanning process
combined with a constant feed alongside the specimen’s main axis as well as incremental
rotation of the workpiece, enables successful diameter reduction of sapphire rods down to
90 µm over a length of 20 cm. Thus, the final machined workpiece exhibits an aspect ratio of
2200. Furthermore, the specimen’s surface roughness is examined, resulting in an average
Sa value of 249 nm, with a 1σ standard deviation of 58 nm over the whole workpiece length.
The determined surface qualities of both processes are comparable to values achieved via
femtosecond laser ablation of planar sapphire substrates. Consequently, both femtosecond
laser-based micromachining approaches yield outstanding surface qualities while each
process offers individual strengths in terms of achievable minimum diameter, maximum
workpiece length, and process time. They additionally offer up to ten times increased fabri-
cation speed in comparison with high-temperature wet-etching processes. Based on the
achievable minimum diameters and the resulting surface quality, these newly developed
machining processes pave the way toward novel manufacturing and/or microstructur-
ing processes for sapphire-based optical fibers or sensors. Finally, this contribution also
contains a comprehensive wavelength-dependent ablation threshold study for sapphire
workpieces. It is found that, with an ablation threshold of 1.25 J cm−2, UV radiation is
preferable for the micromachining of sapphire workpieces.
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