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Abstract—This paper presents a new self-learning control
scheme for lateral track guidance of industrial trucks using
artificial intelligence (AI). It is an universally applicable lateral
dynamic control concept which is able to adapt itself to different
truck variants. Moreover it shall consider vehicle parameter vari-
ations that occur during operation, such as the load dependent
change of vehicle mass and moment of inertia. The proposed
approach uses Reinforcement Learning (RL). In order to reduce
the training effort, a new concept is realized, taking into account
a priori knowledge of vehicle behavior. Its fundamental idea
consists of dividing the training process into two steps. In the
first step the controller will be pre-trained on basis of a nominal
model representing a priori knowledge of lateral dynamic vehicle
behavior. Since this model is derived for an industrial truck with
average vehicle parameter values, a fine tuning of the control
parameters has to be performed in the second step. In this way
the controller is adapted to the actual truck variant and the
corresponding vehicle parameter values. In order to demonstrate
the efficiency of the proposed control scheme, the simulation
results given in this paper are compared to the closed loop
behavior using standard LQR.

Index Terms—automatic track guidance, reinforcement learn-
ing, self-learning control, a priori knowledge

I. INTRODUCTION

A. Motivation

The automation of intralogistic processes is an important

key for ensuring the competitiveness of industrial companies

in a global market. Therefore, Aschaffenburg University has

been cooperating for many years with Linde Material Handling

Ltd., one of globally leading suppliers of automation solutions

for intralogistics and one of the most important manufacturers

of industrial trucks. The joint research project Cooperative
Autonomous Intralogistic Systems funded by the Bavarian

Ministry of Economic Affairs, Regional Development and En-

ergy aims to improve the efficiency of intralogistic processes

via intelligent networking and automation of industrial trucks.

The cooperative behavior of all autonomous fleet members

shall result in a significant increase of internal material flow.

B. Problem Description and Requirements

Figure 1 demonstrates the principle of automatic steering

control of an industrial truck. First of all, the desired vehicle

trajectory (predefined path) is calculated and stored as data set.

The record includes the necessary setpoint information for the

automated vehicle guidance, such as the Cartesian coordinates

and curvature of the trajectory. In order to ensure a precise

vehicle guidance, the forklift has to follow this predefined path

with a low lateral deviation a. For this purpose it is necessary

to measure the vehicle’s position and to calculate the lateral

deviation to a reference point on the trajectory. This deviation

corresponds in the simplest case to the distance between the

vehicle’s center of gravity (CoG) and the reference point R in

figure 1. Using this information, the controller calculates an

appropriate control signal for the steering actuator in order to

reduce the lateral deviation of the industrial truck with respect

to the predefined path.

Position
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Real-Time
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Fig. 1. Principle of automatic track guidance

Control design using classical methods is based on a

mathematical model that describes the lateral dynamic vehicle

behavior. Hence, in case of the automation of a complete fleet

of different industrial truck variants, for each truck variant an

appropriate model has to be derived as basis of the control

design. This approach is very time-consuming. Moreover, the

classical control design methods do not allow the consideration

of vehicle parameter changes during operation.

As a consequence, a control concept is required that is capable

of controlling the wide variety of different forklift variants and

to adapt independently to the actual vehicle parameters.

C. Related Research

In [1] - [5], forklifts are automatically guided along a

trajectory using different control methods. However, these

publications focus on the automatic track guidance of only one

vehicle variant. In addition to the classical adaptive control
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concepts ( [7] - [10]), new possibilities for adaptive control

arise from AI methods. Two different classes of AI control

concepts have to be distinguished. The controllers of the

first class are called indirect neural controllers [11], [12].

They are characterized by the fact, that an artificial neural

network (ANN) is used to model the plant behavior. In a

subsequent step this ANN is integrated in the control law. This

class includes, for example, the methods of Neural Network

Predictive Control [13], [14].

The methods of direct neural control represent the second

class of AI control. Here the ANN directly assumes the role

of the controller. Starting from an initial parameterization

the ANN is optimized using an appropriate training method.

Reinforcement Learning (RL) is one of these training methods

which especially seems to be well suited to the control problem

described above. In analogy to the human learning process

RL is performed in closed-loop operation. Through targeted

interaction with the vehicle, the controller builds up knowledge

of the lateral dynamic vehicle behavior and adapts itself to the

actual truck variant and to the current vehicle parameters [15],

[16], [17].

However, in view of the large variety of different industrial

trucks the RL-control methods known from the literature have

an essential disadvantage. Since these methods do not exploit

any a priori knowledge about the lateral dynamic vehicle

behavior, for each truck variant the whole training process

has to be started from scratch. The actually well-known basic

vehicle behavior, which is a common feature of all industrial

truck variants, must therefore be learned all over again. This

results in a unnecessarily time-consuming training process and

requires a large amount of training data.

Another disadvantage is related to the training of the con-

troller during real-time vehicle operation. Since RL is started

with a random parameterization of the controller without using

any a priori knowledge of the basic vehicle behavior, closed-

loop stability and hence a safe and collision-free automated

vehicle guidance cannot be guaranteed during the training

process. Especially in the start-up phase of the training, real-

time operation of the RL-controller can be very dangerous.

D. Main Contribution and outline of this paper

In this paper, a novel control concept based on RL for

automated lateral dynamic guidance of industrial trucks is

presented, which is able to adapt itself to different vehicle vari-

ants and vehicle parameters. In contrast to the RL-approaches

known from literature, here the existing a priori knowledge

of lateral dynamic vehicle behavior will be integrated into

the training process. This shall reduce the training effort and

improve the robustness of the training process. The main idea

consists of dividing the training process into two steps. In

the first step the controller will be pre-trained on a nominal

model representing a priori knowledge of fundamental lateral

dynamic vehicle behavior. Since this model is derived for an

industrial truck with average vehicle parameter values, a fine

tuning of the control parameters has to be performed in the

second step. In this way the controller is adapted to the actual

truck variant and the corresponding vehicle parameter values.

This step is done in real-time application of the controller.

Due to the pre-training phase on the nominal model, a stable

closed-loop behavior and hence a safe vehicle guidance is

ensured during this second training phase.

Another main contribution concerns the choice of the ref-

erence point on the predefined track, used for lateral vehicle

guidance. A detailed analysis of the system in section II will

show a nonminimum phase behavior, in case of using the

vehicle’s CoG and the corresponding nearest reference point

R on the predefined path for vehicle guidance, see figure 1.

This is also an important a priori knowledge, which will be

included in the first RL training period using a vehicle model

with preview concept that will be explained in detail in section

II.

This paper is organized as follows. Section II introduces the

control structure. Furthermore, the nominal model used in the

first training period of the RL-controller, to include a priori

knowledge about the basic lateral dynamic vehicle behavior is

derived, validated and analyzed with respect to the influence

of the preview concept. In section III the fundamentals of

RL are presented and the approach of Twin Delayed Deep

Deterministic Policy Gradient (TD3) is explained. Using TD3,

an RL-controller is trained in section IV. For comparison pur-

poses additionally a standard LQR is designed. Subsequently,

the simulation results of both control concepts are assessed

(section V). At the end of the paper, in section VI, the main

conclusions and open issues are discussed.

II. CONTROL STRUCTURE AND MODELING OF THE PLANT

A. Control structure

Figure 2 provides the structure of the proposed vehicle

guidance system. The output of the lateral controller δset,
which is the first input signal of the controlled system, is

calculated with respect to the reference point R and the

vehicle’s CoG shown in figure 1, where R is a reference

point on the predefined path, which is calculated as a function

of the vehicle’s CoG by means of the algorithms given in

[20]. The curvature χ = 1
ρpath

of the predefined path in

the reference point R represents the second input of the

controlled system, considered as disturbance input of the

model. If the preview concept is used, δset is calculated

with respect to Rp and Pp and the path curvature χp in Rp

represents the disturbance input of the model.

Plant Model

Lateral 
Control

  δSet

Predefined 
Path

Position-
Controlled 

Steering Actuator

  
δr Single Track 

Model Kinematics
β 

RL

a / ap

χ / χp

Fig. 2. Structure of the vehicle guidance system

The plant model itself consists of three parts starting

with the position controlled steering actuator which gets the

calculated setpoints δset as its input signal and accordingly
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adjusts the rear axle steering angle δr. The second part of

the controlled system is the so-called single track model,

that describes the lateral vehicle dynamics depending on the

steering angle δr. It will be derived in detail in the following

subsection II-B. The last part represents the kinematics of the

vehicle, i.e. its relative motion with respect to the predefined

path. The resulting lateral deviation a, or ap respectively

(output signal of the plant) forms the input signal of the lateral

controller.

B. Modeling
In this subsection the vehicle model with preview as well

as the model without preview are derived.

The model of the position controlled steering actuator de-

scribes the actuator dynamics in form of a first order delay

element with the time constant Ts.

δ̇r = − 1

Ts
· δr + 1

Ts
· δset (1)

In order to describe the vehicle lateral dynamic, the well-

known single track model [18], [20] is adapted to forklifts

with rear axle steering. It is based on some simplifications

and assumptions:

• Reduction to one wheel per axle

• Neglect of longitudinal dynamic forces such as traction

forces, braking forces as well as aerodynamic drag forces

• Constant or only slowly changing vehicle speed

• Small steering angles, slip angles and side slip angles

Taking into account these assumptions and adapting the

model to forklifts with rear-axle steering (figure 3), the fol-

lowing equations of motion are obtained.

δr
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p
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Fig. 3. Single track model with rear axle steering

m · v · (−β̇ + ψ̇) = Fy,f + Fy,r (2)

J · ψ̈ = Fy,f · lf − Fy,r · lr , (3)

where m is the vehicle mass and J is the moment of inertia

at the forklifts CoG about the vertical axis. Assuming small

steering angles the tire forces Fy,f and Fy,r can be linearised

and represented as:

Fy,f = cf · αf , Fy,r = cr · αr , (4)

with

αf = β − lf · ψ̇
v
, αr = lr · ψ̇

v
+ β − δset (5)

Thus, the tire forces are assumed to be proportional to the

vehicle’s slip angles αf and αr, while the lateral tire stiffnesses

cf and cr are assumed to be constant. The third part of the

model represents the kinematics of the vehicle and is extending

the model equations to describe the relative motion of the

vehicle with respect to the predefined path. Specifically, the

following relationship results for the lateral deviation and the

course angle [19].

Δκ̇ = κ̇path + β̇ − ψ̇ (6)

ȧ = v ·Δκ (7)

κ̇path =
v

ρpath
(8)

At this point, the influence of the preview concept becomes

apparent. By extending the model with the preview concept,

the lateral deviation ap is calculated with respect to the

preview point Pp and the reference point on the predefined

path Rp (see figure 1) [22]. The equation of the fourth state

variable ap is the only one affected by the extension of the

model (see equation (9) which replaces equation (7) in the

case of using the preview concept).

ȧp = −lp · ψ̇ + v ·Δκ (9)

⎡
⎢⎢⎢⎢⎣

β̇

ψ̈

Δ̇κ
ȧp
δ̇r

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

− cf+cr
m·v

−cr·lr+cf ·lf
m·v2 + 1 0 0 cr

m·v
−cr·lr+cf ·lf

J − cr·l2r+cf ·l2f
J·v 0 0 cr·lr

J

− cf+cr
m·v

cf ·lf−cr·lr
m·v2 0 0 cr

m·v
0 −lp v 0 0
0 0 0 0 − 1

Ts

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
system matrix A

·

⎡
⎢⎢⎢⎢⎣

β

ψ̇
Δκ
ap
δr

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 v
0 0
1
Ts

0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
control matrix B

·
[
δset
χ

]

(10)

The equations (1) - (9) can be given in state space repre-

sentation for the model with preview concept (10), where

x =
[
β, ψ̇,Δκ, ap, δr

]T
describes the system’s state vector.
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u represents the input vector and consists of the steering angle

setpoint calculated by the lateral controller and the curvature

of the predefined path, considered as disturbance variable.

C. Analysis and validation of the plant model

To investigate the validity of the single track model, the

most important part of the model, a double lane change

maneuver is performed at two different vehicle speeds. For this

purpose, a forklift that is comparable to the nominal Linde E30

(see table I) is equipped with an Inertial Measurement Unit

(IMU) and the state variables β and ψ̇ as well as the vehicle

speed v and the steering angle δr are recorded while driving.

The measured variables β and ψ̇ (solid line) are compared

to the corresponding simulation results (dashed line) based

on the model derived above (figure 4). The simulation results

approximate the time course of the measured variables quite

accurately. This a priori knowledge in form of a validated

model will be used to pretrain the RL-controller in simulation,

in order to build up experience regarding the basic vehicle

behavior of a nominal forklift variant. Thus, based on this

pre-trained RL-controller, only the fine-tuning has to be done

during real time operation, which significantly accelerates the

training and reduces the risk of collisions.
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Fig. 4. Double lane change with 1 m/s (left) and 2 m/s (right)

Based on (10) and using the parameter set of a nominal

forklift variant like the Linde E30, the pole-zero diagram can

be mapped for the system. Figure 5 shows the poles (x) and

zeros (o) for the model without preview concept on the left

hand side and for the model with preview concept on the

right hand side. Obviously, in case of controlling the CoG the

diagram shows a zero located in the right half plane. From this,

a nonminimum phase behavior can be concluded [1], [10] and

results from rear axle steering. Due to this, a more difficult

controllability is expected. The effects of the nonminimum

phase behavior can be explained by figure 3. While a steering

angle, like shown in figure 3 results in a short-time increase

in the lateral deviation a at the CoG (reverse response), the

lateral deviation ap at the preview point Pp is immediately

reduced by the same steering angle. This effect results from

the orientation of the velocity vectors in the vehicle’s CoG

(v) or the preview point (vp), respectively. A minimum phase

behavior can be ensured by controlling a preview point Pp,

located in a sufficiently large preview distance lp in front of

the vehicle [6]. In this case the controller aims to minimize the

lateral deviation ap of the preview point Pp with respect to

the reference point Rp, shown in figure 1. Obviously, after

integrating the preview point Pp with a constant preview

distance of lp = 1.5m, the zero point on the figure 5’s right

hand side, was shifted to the negative real half-plane. The

preview distance is defined to lp = 1.5m in order to place the

preview point nearly to the end of the fork.

TABLE I
PARAMETER SETS OF LINDE E16, LINDE E30 AND LINDE E80 [21]

Linde E16 Linde E30 Linde E80

m 2984 kg 4981 kg 15720 kg
l 1.492 m 1.665 m 2.400 m
cf 62000 N/rad 62000 N/rad 62000 N/rad
cr 122000 N/rad 122000 N/rad 122000 N/rad
lf 0.705 m 0.858 m 1.181 m
lr 0.724 m 0.807 m 1.219 m

J 1584 kgm2 3624 kgm2 26490 kgm2

Ts 0.2 sec 0.2 sec 0.2 sec
v 2 m/s 2 m/s 2 m/s

Fig. 5. Pole-Zero-Map of the controlled system without preview concept (left)
and with preview concept (right) for Linde E30 forklift

III. REINFORCEMENT LEARNING

A. Basics

Reinforcement Learning in the domain of control systems

is not a new approach [23], [24], [25]. Due to the analogy to

the human learning process, the self learning characteristics of

RL offers potential for solving complex control problems. The

principle of closed loop operation process of RL is displayed

in figure 6. In RL theory, the basic classical control terms

are often replaced. In order to use consistent terms in this

publication they are given in table II.

TABLE II
OVERVIEW OF USED TERMS

Classical control theory RL theory
controller agent
controlled system, plant environment
control signal action
state state, observation
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The current state xk of the vehicle is transmitted to the

RL-controller, where comparable to the classical methods, the

control signal uk is calculated in order to affect the controlled

system. By this interaction the RL-controller receives the

following state xk+1 of the vehicle as well as a feedback

rk for the performed output signal in the certain situation,

called reward r. Using this information the RL-controller is

able to build up knowledge of the lateral dynamic vehicle

behavior. This contains information about the relation between

the calculated output of the RL-controller on the one hand

and the resulting behavior of the controlled system and the

corresponding reward on the other hand. Using this informa-

tion the RL-controller is able to create an internal model of

the controlled system during the training process as well as a

control policy by itself. The main objective of optimizing the

RL-controller’s behavior is the maximization of the reward r.

 

control strategy

learning algorithm

vehicle

reward

state
control strategy 
adjustment

action

reward
function

state

Reinforcement Learning Controller

Fig. 6. Principle of Reinforcement Learning

In order to store the knowledge of the RL-controller, differ-

ent, so-called value functions are used [25]. In this publication

Qπ(x, u) is called state action function and is used to predict

the expected reward r of being in the state x and selecting

the control signal u. The selected output in a certain system

state refers to the strategy π which influences the value

function Qπ(x, u). In progressive algorithms the strategy is

often represented by an ANN. The weights and biases of the

ANN act as adjustable parameters θ. The optimal strategy π∗ is

represented by the optimal ANN parameters θ∗ and maximizes

the return R (cumulative reward), as simplified in equation

(11) [26].

θ∗ = argmax
θ

[Rk] (11)

B. Twin Delayed Deep Deterministic Policy Gradient (TD3)
TD3 is a so-called Actor-Critic-method (AC) and will

be used in this publication. AC-methods are using separate

memory structures to differ between the policy and the value

function. Both are represented in form of an ANN. While

the actor-ANN is used to calculate the controller’s output, the

critic-ANN is estimating the value function [25]. This AC-

method is known as the TD3 algorithm by [27] and upgrades

the Deep Deterministic Policy Gradient (DDPG) algorithm

given in [24]. The advantages of the AC, that led to the choice

of this method in the context of this publication are briefly

listed below [25]:

• Input and output data can be value continuous

• Transition data is stored in a ring buffer which makes the

training process more time efficient

• Additional measures, e.g. target-nets are used to stabilize

the training process

With TD3, the value function for the critic-ANN is the Q-

Function Qπ(x, u) and is optimized by methods of supervised

learning [28], [29]. Collected state transitions of the controlled

system are stored and used for the training of the critic-ANN,

in order to map the reward behavior from given state and

action as given in equation (12) which includes the discounting

of the reward. In applications without a target state, like

the continuous task of automatic track guidance of industrial

trucks, the discount factor γ ensures a finite value of the sum

of the rewards [25].

Rk =
∞∑
i=k

γi · ri (12)

The parameters of the actor-ANN should be optimized in

order to maximize the state action function Qπ(x, u) and thus

the expected discounted return R. To implement this, J given

in equation (13), is derived based on Qπ(x, u). The optimal

parametrization of the actor-ANN can be approximated by

optimizing J , using a gradient method. θ represents the

parameters of the actor-ANN, while φ represents those of the

critic-ANN [24].

∇θJ ≈ 1

N

N∑
i

∇uQ(x, u|φ)|x=xi,u=μ(xi)∇θμ(x|θ)|x=xi

(13)

IV. CONTROLLER DESIGN

In the approach presented in this publication, the main focus

is on consideration of existing a priori knowledge. Therefore,

the controller design of both methods (LQR and RL-controller)

is based on a nominal model with the vehicle parameters

of an average industrial truck variant. For this purpose, the

parameter set of the Linde E30 is used, which is given in

table I. In order to take into account the knowledge regarding

the system behavior acquired in section II, the model with

preview concept is used in the further course.

A. Classical Approach - Linear Quadratic Regulator

In order to interpret and evaluate the performance of au-

tomatic track guidance using the RL-controller, a LQR is

additionally designed. Based on the model (see equation (10))

the LQR is designed by the algorithms given in [9], [10].

Here, a quadratic cost function JLQR given in (14), with the

diagonal weighting matrices QLQR and RLQR described in

equations (15) and (16) is optimized.

JLQR =

∫ ∞

0

(xTQLQRx+ uTRLQRu)dt (14)

QLQR = diag([α1, α2, α3, α4, α5]) (15)
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RLQR =
[
α6

]
(16)

QLQR weights the quality of the controller while RLQR

determines the control energy and thus the controller’s dy-

namic. Both matrices need to be positive semidefinite, which

is ensured by diagonal elements [α1,α2,α3,α4,α5,α6] ≥ 0

(see table III). The elements of QLQR are chosen in such

a way, that the lateral deviation ap (fourth state variable) has

the highest priority. The lateral deviation is weighted much

higher than the other ones by the selection of a suitable

factor α4. Referring to the value α6 in the RLQR matrix,

a high entry has the consequence that the control effort is

strongly penalized and the controller becomes increasingly

conservative. The minimization of the quadratic cost function

results in the control law defined in equation (17), where K
is the gain matrix of the LQR.

u = −K · x (17)

TABLE III
REWARD VARIABLES, RELATED MAXIMUM VALUES AND WEIGHTING

FACTORS

variables max α

β 1 rad 1

ψ̇ 2.2 rad/s 1
Δκ 1.57 rad 1
ap 0.5 m 10000
δr 1.53 rad 1
δset 1.53 rad 5

B. Self-learning Approach - Reinforcement Learning

The LQR was chosen to receive a classical controller,

which can be compared to the RL-controller. The two control

methods are performing similar, due to the equal cost and

reward functions given in (14) and (18). This results in two

controllers with identical dynamics [30].

Based on the quadratic cost function of the LQR (14) and the

definition of the weighting matrices (15) and (16) the reward

function of the RL-controller is given in (18). The sign of this

equation indicates a penalty. The goal of the RL-approach

is to choose the action of the controller in such a way that

the penalty is as small as possible, which is equivalent to

maximizing the reward.

rk =−
(
α1 · β2

k + α2 · ψ̇2
k + α3 ·Δκ2k+

α4 · ap,2k +α5 · δr,2k +α6 · δset,2k
)

(18)

The state variables βk, ψ̇k, Δκk, ap,k and δr,k, used to

form the reward function, have to be measured on the real

system or on the model in simulation. The last variable used

for reward r is the control signal δset,k which determines the

control effort of the RL-controller. The weighting factors of the

reward function and the LQR matrices as well as the variables

maximum values are given in table III. In order to take into

account the limits of the control signal, a tanh function (19)

is used as activation function of the actor-ANN’s output layer,

which outputs the actuating signal. Due to this, the output is

scaled to a range within [-1;1]. By an additional downstream

multiplication with the maximum value of the steering angle

of 1.53 rad, the limit is defined (compare table III).

tanh(x) =
2

1 + e−2x
− 1 (19)

C. Comparison of the control methods

Both control concepts were designed/pre-trained based on

the nominal model using the vehicle parameters of a nominal

industrial truck, such as the Linde E30 (table I). In the scenario

investigated in the simulation, the vehicle starts with an initial

lateral deviation of ap = 0.2m, i.e. offset from the path. The

predefined path is applied as a disturbance variable illustrated

in figure 7. This means that the path initially runs as a straight

line and then changes to a curve with a constant radius.

The transition between the mentioned segments is realized

using so-called clothoids, where the path curvature is slowly

increased until it reaches the final value. The controllers have

to compensate the lateral deviation at the beginning and then

ensure that the industrial truck precisely follows the predefined

path, keeping the lateral deviation correspondingly as low as

possible.

0 1 2 3 4 5 6 7 8 9 10
time in seconds

0

0.02

0.04

0.06

0.08

0.1

Path curvature

Fig. 7. Path curvature in the reference point Rp

Figure 8 demonstrates the simulation results of both control

methods. The lateral offset of the preview point in front of the

vehicle ap (see Fig. 1) as well as the control signals δset are

shown. It can be seen from the figure that both methods have

similar dynamic behavior and comparably guide the vehicle.

V. SIMULATION TESTING RESULTS

The previously presented approach of dividing the training

process into two steps in order to take into account existing a

priori knowledge will now be tested. The control design of the

LQR as well as the first training period of the RL-controller

takes place in simulation, using the presented vehicle model

with preview concept and the parameters of the nominal Linde

E30 forklift. In order to investigate the approach with respect

to improved training efficiency and improved control quality,

the pre-trained RL-controller is used to guide other vehicle

variants. For this purpose, both a smaller forklift variant such

as the Linde E16 and a larger one, like the Linde E80 are used
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Fig. 8. Comparison of the control concepts

(see table I). Moreover, the adaptability of the RL-controller

with respect to changing model parameters is also investigated.

For this purpose, the model parameters of the Linde E30

are used and an additional payload of 3 tons is simulated.

Instead of a second training period in real-time operation, the

simulation model with parameter sets of the corresponding

variants are used in this paper. Table IV impressively shows

that there are considerable advantages in terms of training

efficiency as a result of pre-training the RL-controller based

on the nominal model. Since the well-known basic vehicle

behavior has already been trained, the RL-controller is able to

adapt the control parameters in the second training period to

the new vehicle parameters by means of a short downstream

training, without the need to carry out the entire experiences

all over again. This increase in efficiency is clearly evident in

all three studies within this section (see the optimization steps

in table IV).

TABLE IV
OVERVIEW TRAINING CONDITIONS

Training Epochs Optimization steps

Training done in advance - E30 150 116822
Follow up training - E16 6 6000
Follow up training - E80 14 14000
Follow up training - E30 - 3t payload 2 2000

The performance of the RL control concept will again be

compared with the LQR designed for the Linde E30, which

is used as a representative of the classical control methods as

well as with the pre-trained RL-controller without fine-tuning.

For this, the scenario given in figure 7 is used again. Since

the vehicle variants of the Linde E30 and the Linde E16 are

comparable, both controllers work very well (see figure 9).

The retrained RL-controller can adapt the control parameters

in a short downstream training using the parameter set of

the Linde E16. The advantage becomes particularly clear in

the rear course of the diagram, when the path curvature is

applied. After the second training period the RL-controller can

significantly reduce the steady-state control error. Due to the

basic parameterization of the RL-controller, based on the first

training period, the second one can efficiently be done within

a very short time (6000 optimization steps).
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Fig. 9. Truck variant Linde E16

In the next simulation study, the Linde E80 is used. This

forklift variant is one of the largest and differs significantly

from the E30, which is reflected in the course of the LQR and

the pre-trained RL-controller. Both suffer significant control

quality losses, see figure 10. Oscillations can be seen in the

control signal and thus also in the lateral deviation ap. In

addition, the amplitude also increases significantly. It can be

seen that both controllers cannot completely compensate the

initial lateral deviation from the path within the first 5 seconds,

before the trajectory entered the curve. The self-learning

controller shows its advantages particularly clear. Through a

short downstream training, it is able to adapt to the new vehicle

variant. The self-learning controller guides the vehicle from

the initial lateral deviation quicker onto the nominal trajectory

while also exhibiting improved damping. The control quality

during the curve also shows clear advantages.
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Fig. 10. Truck variant Linde E80

Finally, it is to be tested whether the control systems can

also react to varying plant parameters, such as an additional

payload. For this purpose, the Linde E30 parameter set is used
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and an additional weight of 3 tons is assumed in simulation.

The RL-controller can adapt again to the new vehicle variant

during the second training period and guides the vehicle

from the initial lateral deviation without overshooting onto the

nominal trajectory. The control quality during the curve also

shows clear advantages compared to the other two controllers

(figure 11).
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Fig. 11. Truck variant Linde E30 with additional load of 3 tons

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new self-learning control method for

an accurate track guidance of industrial trucks. This approach

is based on RL-methods, taking into account the existing plant

knowledge during the training process. The advantage of the

well-known plant behavior is based on basic physical laws

and the relationships derived in the modeling. It is integrated

into the training process in the form of an experience build-up

of the self-learning controller carried out in the simulation.

The adaptation to new industrial truck variants is realized in

this paper with downstreamed trainings in simulation, using

the same single-track model with different vehicle variant

parameter sets. This means that the control parameters only

have to be slightly adjusted, which ensures a certain degree of

safety and shortens the training process enormously. Moreover,

a LQR based on the linear single track model was designed in

order to assess the performance of the developed RL control

scheme. The performance of the different controllers were

compared in simulation tests and demonstrate the ability of

the RL-controller to adapt to different vehicle variants and

vehicle paramters. Due to the basic parameterization, during

the first training perdiod, the RL-conroller is able to adapt

itself to different truck variants and is able to consider vehicle

parameter variations.
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