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Abstract 

In this study, we present a combinatory chaos analysis of daily wavelet-filtered (denoised) S&P 500 returns 

(2000–2020) compared with respective surrogate datasets, Brownian motion returns and a Lorenz system 

realisation. We show that the dynamics of the S&P 500 return series consist of an almost equally divided 

combination of stochastic and deterministic chaos. The strange attractor of the S&P 500 return system is 

graphically displayed via Takens’ embedding and by spectral embedding in combination with Laplacian 

Eigenmaps. For the field of nonlinear and financial chaos research, we present a bibliometric analysis paired with 

citation network analysis. We critically discuss implications and future prospects. 
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Highlights [separate page in final version] 

 A combinatory methodological analysis framework for financial data is applied to cascadic level 12 Haar 

wavelet-filtered (denoised) S&P 500 daily returns (2000–2020) compared with respective surrogate 

datasets (ft, aaft and iaaft), a Brownian motion return realisation and a Lorenz system realisation. 

 The dynamics of the daily (denoised) S&P 500 return series are shown to be an almost equally divided 

combination of stochastic and deterministic chaos. 

 The strange (chaotic) attractor of the S&P 500 daily return system is graphically displayed via Takens’ 

delay-time embedding and via spectral embedding in combination with Laplacian Eigenmaps. 

 For the field of nonlinear dynamics and financial chaos research, a bibliometric analysis paired with a 

citation network analysis is presented and relevant publications are shown in order to bridge the diverged 

research streams of the same research topics and related questions, which occur due to ‘over-

specialisations’. 

 Encompassing theoretical and empirical implications of the financial chaotic dynamics are conducted and 

a critical discussion of financial forecasting capabilities and future prospects is presented. 
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1. Introduction 

In our digitalised, fully connected and global economy of financial systems, the concepts of financial and risk 

modelling are a major area of interest within the field of quantitative modelling (Aguilar-Rivera et al., 2015). 

Central to the entirety of this discipline is the concept of forecasting of financial markets and crises (Beltratti & 

Stulz, 2019; Gong & Xu, 2018). Nevertheless, market actors and researchers alike are challenged in their 

forecasting endeavours by the existence of stylised facts, which mimic the underlying properties of markets, 

shown via empirical experiments (Poon & Granger, 2003; Vogl & Rötzel, 2021). 

These stylised facts are evident in a large variety of studies and describe the dynamics of financial time series 

(e.g., Bodnar & Hautsch, 2016), asymmetries (e.g., Dzieliński et al., 2018) as well as structural breaks (e.g., Jung 

& Maderitsch, 2014). Moreover, clustering and shocks (e.g., Charfeddine, 2014), regime switches (e.g., Ma et al., 

2017) and the trend-inducing momentum effect (e.g., Berghorn, 2015), which is used in factor investments, can 

be mentioned. Furthermore, elaborating on stylised facts requires the stating of the additional existence of 

heterogeneity of actors (e.g., Ramiah et al., 2015), leading to multifractal time scales, behavioural patterns (e.g., 

Celeste et al., 2019) as well as microstructure noise (e.g., Lee & Seo, 2017), among many non-stated others. All 

of the above-mentioned properties occur at different time scales simultaneously, featuring the emergence of 

nonlinearities (e.g., De Luca et al., 2019) within the system of financial markets. In recent years, there has been 

a substantial increase in nonlinear testing and modelling of economic and financial time series, facilitating a better 

understanding of the behaviour of markets, the price risks and the formation of actors’ expectations therein 

(Kyrtsou et al., 2004). 

When contemplating real-life confrontations, similar scenarios tend to evolve in a similar manner and occur 

repeatedly, leading to the association of a predefined level of determinism in real-life systems (e.g., financial 

markets) due to the development of memory and experience effects (Marwan et al., 2007). Thus, modelling via 

deterministic differential equations reveals itself as suitable for these kinds of systems since their entirety can be 

characterised by equivalent mathematical differential equations (Marwan et al., 2007). Under the premise that the 

initial conditions of the system are noted exactly, these differential equations enable the prediction of the system 

states to an indefinite level of precision and time span due to the deterministic behaviour of the system (Marwan 

et al., 2007). In terms of attempts to forecast systems, considering a deterministic scenario would illustrate the 

prerequisite of the future development of the system to be completely explicable via the current state, principally 

indicating a plainness in terms of the predictability of such a system (Song et al., 2016; Guégan & Leroux, 2009). 

 

 

Electronic copy available at: https://ssrn.com/abstract=3802753



2 
 

Nevertheless, scrutinizing a financial market as an example of such a real-world system can also be viewed as 

highly complex feedback system driven by the aforementioned empirical properties (e.g., asymmetries), resulting 

in a contrastingly challenging effort in terms of predictability and modelling in comparison to the previously 

assumed plainness of deterministic forecasts (Marwan et al., 2007; Fernández-Rodríguez et al., 2005). 

Furthermore, these seemingly conceptual differences lay grounds for the discussion about the underlying nature 

and the essential functioning of the emerging dynamics of financial markets or other defined economic systems 

(Marwan et al., 2007). Elaborating on a deeper understanding of such assumed underlying laws of dynamical 

motions reveal chaotic dynamical analysis to be thoroughly applied at length in financial systems (Barkoulas et 

al., 2012). Substantial literature about testing for nonlinear dynamics and chaos in financial markets provides 

strong evidence of nonlinearity and a special class of models, namely chaos models, that have emerged 

(Fernández-Rodríguez et al., 2005; Matilla-García et al., 2004). 

Chaos constitutes a deeper reasoning about the above-mentioned essential characteristics (stylised facts) and the 

underlying nature of the evolutionary processes driving a (financial) system, which is affected by nonlinearities 

(Song et al., 2016). The first property, or one of the distinctive feature of chaotic dynamical systems, is that even 

though deterministic, these systems characterise themselves via sensitivity on initial conditions. This means that 

slight fluctuations, or even marginal perturbations of the initial conditions1, can render precise predictions on a 

long time scale meaningless (Guégan & Leroux, 2009; Barkoulas et al., 2012). In addition, data measurement 

limitations2 with regard to the current initial conditions specify an upper bound for the predictability, even if the 

model is completely disclosed (Barkoulas et al., 2012). The second is the recurrence property, reflecting upon the 

dynamical behaviour of such systems (Marwan et al., 2007). 

Recent trends within chaotic dynamical analysis have led to a proliferation of studies that state structural nonlinear 

models capable of displaying financial market instabilities and chaos being able to mimic the empirical properties 

of time series (Barkoulas et al., 2012). Therefore, a central pillar in nonlinear forecasting for over 40 years is the 

revelation of whether the considered (financial) data sets are generated via deterministic or stochastic3 dynamical 

systems, since their respective mathematical operations differ noticeably (Çoban & Büyüklü, 2009; Matilla-

García & Marín, 2010; Sandubete & Escot, 2020). This leads to vast disseminations of literature about 

deterministic chaotic behaviour and the design of economic models in the regime of chaotic behaviour from a 

theoretical view (Sandubete & Escot, 2020). A variety of studies imply the cause of structural nonlinear financial 

models to output chaotic dynamics is due to the previously mentioned heterogeneity in actors’ expectations 

(Fernández-Rodríguez et al., 2005; Sandubete & Escot, 2020). 

                                                           
1 Deviations from a trajectory of the system’s phase (state) space 
2 In terms of measurement errors, sampling frequency and data accuracy, among others 
3 Originating from pure randomness 
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Speaking in a mathematical sense, a chaotic dynamical system has a dense collection of points with periodic 

orbits, sensitivity to initial conditions and topological transitivity, which are discussed in Eckmann and Ruelle 

(1985) and Devaney (1989) (BenSaïda & Litimi, 2013). 

Chaos further refers to bounded steady-state behaviour, which neither represents an equilibrium point, a quasi-

periodic point or a periodic point nor indicates that nearby points separate exponentially in finite time, resulting 

in those chaotic systems to manifest very complex and seemingly random evolutions out of the view of standard 

statistical tests (Barkoulas et al., 2012). In financial systems, hyperchaotic4 phenomena potentially evolve into a 

crisis, denying any form of system control (Jahanshahi et al., 2019a). Regarding the academic literature, first 

tests5 of chaotic behaviour for financial systems were executed following the BDS (Brock, Dechert and 

Scheinkman) test of Brock et al. (1996), but also revealed its omnipotence since it cannot differentiate between 

whether the discovered nonlinearities originate from stochastic or chaotic dynamics (BenSaïda, 2014). 

Unfortunately, comparisons between even the most powerful tests (e.g., close-return test, BDS-test and Lyapunov 

exponent6) do not result in conclusive findings (BenSaïda, 2014). Actually, several propositions7 towards a more 

conclusive solution in the academic literature was brought to light, with no further positive indications (BenSaïda, 

2014). 

Following BenSaïda and Litimi (2013), the results indicate for six stock indices as well as for six exchange rate 

series that chaos cannot be confirmed via hypothesis. McKenzie (2001), among many others, states the same 

result, namely, the denial of chaotic behaviour in favour for stochasticity. On the other hand, following Park & 

Whang (2012) and Mishra et al. (2011), among many others8, reveal chaotic dynamics in their respective data 

samples. As a by-product of this ongoing discussion, Altan et al. (2019) state that the existence of a small 

correlation dimension9 in a time series implies a non-zero deterministic part of the ‘world decomposition’, thereby 

proofing for a time series with a finite correlation dimension its deterministic part mandatorily to be of non-zero 

nature. The former statement is an allegory for the vast dilemma concerning the determination of the true, mostly 

unknown, nature of (financial) dynamical systems, whether it be stochasticity or chaoticity. These systems are 

almost graphically similar and cannot be differentiated by respective tests (BenSaïda & Litimi, 2013; Aguirre & 

Billings, 1995).  

                                                           
4 Hyperchaos is considered if more than two positive Lyapunov exponents exist (e.g., Rössler, 1979; Ma & Wang, 2012; Gao & Ma, 
2009). If a discrete nonlinear system is dissipative (spontaneously symmetry-breaking), a positive Lyapunov exponent is an indication 
of chaotic dynamics within the system under regard (Dechert & Gençay, 1996). 
5 See Hsieh (1991), Takala & Virén (1996) or Opong et al. (1999) as early references. 
6 Applied to financial time series, a positive Lyapunov exponent can occur even in non-chaotic series due to inadequate use on noisy 
datasets (BenSaïda, 2014). 
7 See fractal dimension estimates of Smith (1992); nonlinear forecasting of Casdagli (1992); estimations of entropy by Eckmann & 
Ruelle (1985); dominant Lyapunov exponent estimates by Wolf et al. (1985) and Hsieh (1991). 
8 We will provide a sophisticated overview of relevant empirical results in the main part of this study (see 2.3). 
9 An alternative to the fractal (Hausdorff) dimension of a system. 
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Following Aguirre and Billings (1995), a verification of strong noise influence on the identifiability of chaotic 

dynamics is provided, leading to misspecifications of chaotic dynamics as stochastic dynamics due to noise 

disturbance, rendering the discovery of chaotic processes very demanding (Kyrtsou et al., 2004).  

Empirical financial data is often small and noisy in comparison to its “physics’ data counterparts”, suggesting a 

preclusion of dynamical identification if the noise levels are greater than a predefined critical threshold value 

(Kostelich, 1997; Aguirre & Billings, 1995; Song et al., 2016). Therefore, the great controversy of the nonlinear 

financial literature is whether a financial system is characterisable via low-dimensional deterministic chaos or can 

be generated via stochastic dynamics as well as if those chaotic systems are controllable10 (Song et al., 2016; 

Kostelich, 1997). This draws major implications in terms of financial forecasting, since when under the 

assumption of chaos, predictability is only further possible on short time scales, which still face all the above-

mentioned empirical properties (e.g., asymmetries) (Barkoulas et al., 2012). A huge variety of newly developed 

chaos models tends to explicate the chaotic structures in asset prices due to heterogeneity of traders’ expectations 

(Kyrtsou et al., 2004). Another faction tries to analyse the chaos regime by applying neural network solutions, 

assuming the phase space of the system to be finite and high-dimensional (Boullé et al., 2020). Further, the 

quantification of the recurrence property seems promising in terms of distinguishing the nature of the dynamical 

systems (Holyst & Urbanowicz, 2001). 

We contribute to this ongoing debate by (1) deducing a bibliometric and citation network analysis of the whole 

field of nonlinear dynamics as well as of nonlinear financial analysis in order to bridge diverged research streams 

of the same research topics and related questions, which occur due to ‘over-specialisations’, (2) calculating a 

novel combination of several major chaotic tests (e.g., Bask-Gençay test) for financial datasets in particular, which 

are only applied scattered within the academic literature so far, in order to provide a sufficient financial analysis 

framework for nonlinear dynamics to avoid future inconclusive results, (3) analyse financial chaotic dynamics 

via classical phase space reconstruction11 using the embedding approach of Takens (1981) as well as by following 

Song et al. (2016) in applying a spectral embedding for nonlinear dimensionality reduction, which consists of a 

combination of principal component analysis based on a k-nearest neighbours algorithm and the calculation of 

eigenvalues via Laplacian Eigenmaps and (4) validating the results via a full recurrence quantification analysis. 

We use wavelet-filtered (denoised) daily S&P 500 returns (2000–2020), respective surrogate datasets, a Brownian 

motion return realisation and a Lorenz system for the points (2)–(4). Lastly, we elucidate the implications of chaos 

on financial forecasting attempts as well as the possibility of chaos control, before critically discussing financial 

forecasting under chaotic dynamics and this first-time combinatory framework approach. 

                                                           
10 Chaos control can be induced via a periodic, dynamically unstable state variable (e.g., Ott et al., 1990) (Kostelich, 1997). 
11 This approach can be executed to show potential (strange) attractors of dynamical systems visually applying a single time series. 
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2. Bibliometric and Citation Network Analysis 

2.1. Bibliometric Analysis and Snowball Sampling 

Within this study, we employ a bibliometric analysis to identify relevant publications, conduct a subsequent 

snowball sampling as well as execute a citation analysis that investigates authors, journals and respective sources 

(Biernacki & Waldorf, 1981; Rötzel, 2019; Vogl & Rötzel, 2021). The citation analysis is based on the assumption 

that references provide a valid indication of the scientific interaction between scholars and research organisations. 

Further, we assume that interconnections between researchers reflect upon the latter interactions, making 

conjunctions and scientific conceptions visible (Garfield, 1979; Small, 1978; Vogl & Rötzel, 2021). Following 

Kitchenham and Brereton (2013), we execute a literature search in the database “Science Direct”, querying the 

respective keywords and their combinations as stated in Table 1. The resulting literature is required to be written 

in English, be blind peer-reviewed and be either review article, research article, data article, mini-review article 

or practice guideline. Other document types are neglected. The non-duplicate, relevant results are gathered 

accordingly (Vogl & Rötzel, 2021). The keywords focus on special terms taken out of the field of nonlinear 

dynamics and financial chaos analysis (e.g., chaotic attractor, financial chaos and nonlinear dynamics). 

The initially resulting dataset encompasses 80,651 unique12 publications. In order to secure the quality of the 

gathered literature, we apply two journal ranking lists, namely, the Harzing’s journal ranking list and the SCImago 

journal ranking and country ranking list. Harzing’s journal ranking list consists of 12 different and independent 

journal rankings (e.g., VHB-JQ3, EJL2016 and EJIS2007), which additionally need to comply with our following 

criteria: blind-peer review, more than two rankings in Harzing’s list and a rank that is not the lowest in more than 

50% of all given ranks on average (Vogl & Rötzel, 2021; Harzing, 2019). Further, the SCImago journal and 

country rank is developed from information in the Scopus® database by Elsevier B.V. and consists of 27 major 

thematic areas and 313 specific subject categories, which need to comply with the following criterion for the 

selected categories stated in Table 2: must belong to the top 25% of the Q1 ranking (SCImago Lab, 2021). After 

filtering, the stored data executing these frameworks result in a list of literature further used by this paper and 

results in a sum of 17,413 publications. Furthermore, we rate these publications using a framework stated in 

Briner and Deyner (2012), which ranks a paper in accordance with four qualitative criteria (namely, contribution, 

theory, methodology and data analysis). For each criterion, it is possible to evaluate the content of a given paper 

from low (zero) to high (three) or “not applicable”. Further, we enforce studied papers to result in a Deyner rating 

of greater than two on average over all criteria, leaving 1,674 publications (Briner & Deyner, 2012; Vogl & 

Rötzel, 2021). Additionally, these 1,674 publications act as input for a snowball-sampling procedure (Biernacki 

& Waldorf, 1981). 

                                                           
12 Total results are 148,431 publications for all keywords, including duplicates. 
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We conclude the snowball sampling with 54,217 additional unique publications. We then select again following 

the before mentioned process and update the findings accordingly (Vogl & Rötzel, 2021). After applying the two 

journal rankings, 6,393 papers remain, which results in an addition of 280 Deyner-rated publications, concluding 

in a complete sample-size of 1,954 publications. 

Table 1: Overview of keywords used to search the Science Direct database and the respective counts (#) 

Keywords # Keywords # 

adiabatic chaos 

- 61 embedding dimension chaotic system 133 

time series analysis 2 

financial chaos 

technology 5 

diffusion 3 neural networks 8 

attractor 
financial system 208 algorithms 10 

reconstruction space 105 - 139 

bifurcation 

Lyapunov exponents 767 nonlinear dynamics 17 

chaotic system 1,704 noise 10 

financial markets 48 topological structure 46 

time series analysis 196 fractals 17 

chaos 
 

finance 33 chaos control - 2,499 

financial system 76 Hamiltonian chaos - 363 

attractor 1,446 
Lyapunov 

finance 16 

- 12,536 financial modelling 21 

time series analysis 535 Lyapunov diagrams financial system 5 

financial markets 67 manifold dynamical system 1,259 

Lyapunov time 642 manifold chaotic system 299 

forecasting 229 nonlinear dependence Hurst 7 

trading 73 

nonlinear dynamic system 

- 15,946 

economical system 11 wavelets 160 

stochastic processes 371 multiresolution analysis 10 

chaotic attractor 
financial markets 8 frequency analysis 1,195 

stocks 2 nonlinear dynamics - 20,452 

chaotic dynamical system - 3,470 nonlinear noise wavelets 174 

chaotic system 

- 9,758 nonlinear resonance financial system 2 

statistical test 122 nonlinear system - 67,761 

noise 751 Poincaré sections chaotic system 203 

autocorrelation 80 radial chaotic migration - 2 

machine learning 60 
recurrence quantification analysis 

finance 1 

artificial intelligence 25 chaotic system 27 

wavelets 119 sensitive dependence Initial conditions 214 

diffusion 427 space time separation time series 111 

time scales 410 
spectral embedding 

chaotic system 8 

separatrix matrix 1 attractor 23 
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Keywords # Keywords # 

chaotic system fractals 473 spectral embedding financial time series 59 

correlation dimension financial system 23 state space financial system 70 

deterministic chaos - 1,014 stochastic chaos - 1,214 

deterministic system financial markets 41 surrogates chaotic system 48 

Total Counts for all Keywords 148,431 

Total Unique Counts for all Keywords 80,651 

 

Table 2: SCImago journal and country rank selection of categories and subcategories 

Journal Category Journal Subcategory 

Physics and Astronomy 
Statistical and Nonlinear Physics 

General and Miscellaneous 

Mathematics 

Mathematical Physics 
Modelling and Simulation 
Statistics and Probability 

General and Miscellaneous 

Computer Science 
Artificial Intelligence 

Computational Theory and Mathematics 
Signal Processing 

 

2.2. Citation Network Analysis 

Before we present the structure of the analysis, we select 448 publications as financial subsample (FS) of the 

previously mentioned 1,954 total paper sample (TS), whose content is based on a relation with econometrical 

and financial topics. We do so to elaborate not only the complete field of nonlinear dynamics, which encompasses 

many different scientific regimes, but also to display the interconnections of the financial disciplines separately 

and in more detail. Therefore, we will state these two samples parallel to each other in this section. The structure 

of the analysis is as follows: First, we determine metrics and other test parameters for each of the samples (Vogl 

& Rötzel, 2021). Second, we graphically deduce the citation networks using the Force Atlas algorithm provided 

by the software package Gephi. Third, we modify the plots using filters, size as well as colour changes, which 

present given metrics (Vogl & Rötzel, 2021). Lastly, we provide a sufficient explication. In order to prepare the 

input data for Gephi, we include the publications of the two referring samples as “mother-nodes”, whilst using 

their respective references of papers as “daughter-nodes”13 (Vogl & Rötzel, 2021). For TS, we obtain 56,104 

results and for FS 17,156 data points, respectively. Once uploaded, we calculate the HITS-metrics (Hubs 

distribution and authority measurement), randomised modularity, Eigenvector Centrality with 100 iterations and 

the average path length as displayed in Table 3 (Vogl & Rötzel, 2021). 

 

                                                           
13 This process uses PDF files of the sample literature, extracts references and creates json files, which we then convert into Gephi-
readable-formats using self-written Python code. 
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Table 3: Overview of citation network analysis metrics, analogue to Vogl and Rötzel (2021) 

Metric Description Explanation Value (TS) Value (FS) 

HITS 
calculates the Hubs-distribution 

and authority measures 

hyperlink-based topic search (~ page 

authority in surface web) 
1.0 ∗ 10ିସ 

Eigenvector Centrality 

determines the directed sum of 

change in terms of Eigenvector 

centrality with 100 iterations 

[0,1] provides the influence between 

nodes 
0.2384 0.2662 

Average Path Length 

(𝑎𝑣𝑝) 

calculates the directed path length 

and diameter of the network 

diameter (𝑑𝑖𝑎𝑚) is the maximal 

distance between two nodes 

𝑑𝑖𝑎𝑚: 17; 

𝑎𝑣𝑝: 5.6184 

𝑑𝑖𝑎𝑚: 4; 

𝑎𝑣𝑝: 1.4044 

Modularity 
randomised, edge-weighted 

community creation 

[-1,1] gives the structure of networks; 

density of connections 
0.902 0.904 

 

In terms of HITS, we concur for both samples, that not many research papers provide hyperlinks and are not 

dominant within the visible surface web, since the values of the respective papers tend to be zero14 (Kleinberg, 

1999). Regarding Eigenvector Centrality, which represents the influence of a node within a network, we see weak 

influence between the respective research papers in each sample, while FS scores a little higher (Vogl & Rötzel, 

2021). Further, regarding diameters (𝑑𝑖𝑎𝑚), the sample TS with a 𝑑𝑖𝑎𝑚 of 17 exceeds FS with a 𝑑𝑖𝑎𝑚 of four. 

Additionally, the TS sample yields 5.6184 as average path length (𝑎𝑣𝑝) in contrast to FS, which states an 𝑎𝑣𝑝 of 

1.4044, suggesting that the nodes of FS tend to be closer together (Newman, 2010; Vogl & Rötzel, 2021). 

Regarding modularity, which represents the weights of the edges, we state strong (almost identical) values for 

both samples (Blondel et al., 2008). After the creation of 285 communities for TS and 114 communities for FS, 

in terms of modularity, we apply three different node sizes and colour manipulations and one filtration each (Vogl 

& Rötzel, 2021). First, we change the node sizes from small to large as well as their colour with regards to the 

Betweenness Centrality, which measures how often a node appears on the shortest paths between nodes in the 

respective networks, with red tones indicating significance (Vogl & Rötzel, 2021). Following this, we apply a 

filter, which only shows nodes that correspond to a degree greater than three for TS and greater than two for FS 

accordingly, as stated in Figure 2 for TS and Figure 3 for FS (Vogl & Rötzel, 2021). In our second attempt, we 

set the colours in terms of the authority measure and the sizes to equal the Eigenvector Centrality of each node. 

The aggregate of important publications as well as their measure values taken out of both attempts are shown in 

Table 4 (Vogl & Rötzel, 2021). 

 

 

                                                           
14 Each parameter starts with the value of one and will be normalised into [0, 1], which can be interpreted as probability. 
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Table 4: Leading publications for the samples TS and FS: 𝐷𝑒𝑔𝑟𝑒𝑒 𝑇𝑆 >  3 and 𝐷𝑒𝑔𝑟𝑒𝑒 𝐹𝑆 >  2; significant markings in terms of Eigenvector 
Centrality (EC), Authority and Betweenness Centrality (BC) with stated degree and citation counts; if one publication belongs to FS, TS or both is 
indicated, the FS value is given in (∙) if a reference applies to both samples. The marking “-” indicates a zero value. Results are sorted in ascending 
order of citations. 

FS TS Publication Cited Degree BC Authority EC 

 x Kennedy & Eberhart (1995) 62,815 85 119,075.848 0.0025 0.0841 

 x Black & Scholes (1973) 41,260 134 52,731.0833 - 0.1598 

 x Lorenz (1963) 23,266 31 38,343.6638 0.0047 0.0465 

 x Guckenheimer & Holmes (1983) 20,657 34 62,338.6425 0.0055 0.0732 

 x Strogatz (2014) 13,478 58 421,022.3169 0.012 0.26472 

 x Pecora & Carroll (1990) 13,311 580 702,138.8041 0.9329 1 

 x Ott et al. (1990) 8,645 447 536,785.0031 0.3247 0.8005 

 x Grassberger & Procaccia (1983) 7,944 90 200,285.2014 - 0.0786 

 x May (1976) 7,879 32 114,217.8468 - 0.0471 

 x Kantz & Schreiber (2003) 7,544 114 228,113.258 0.0017 0.1919 

 x Ott (2002) 6,909 42 230,086.1269 0.0109 0.1455 

x  Barberis et al. (1998) 6,502 45 759 - 0.1637 

 x Grassberger & Procaccia (1983) 6,328 105 270,431.7703 0.0109 0.1925 

 x Packard et al. (1980) 5,259 105 115,441.5979 0.0032 0.1967 

 x Andrews (1991) 4,494 227 20,034.8524 0.0039 0.3618 

 x Theiler et al. (1992) 4,212 56 130,062.7126 - 0.0783 

 x Pyragas (1992) 4,195 54 14,492.0214 - 0.0449 

 x Rosenstein et al. (1993) 3,593 88 230,899.1811 0.0074 0.1149 

 x Abarbanel (1996) 3,340 51 40,424.619 - 0.0583 

 x Brandt & Pompe (2002) 2,916 39 23,261.9472 - 0.0669 

x x Andrews & Ploberger (1994) 2,784 69 (66) 21,926 (520) - ; (0.0016) 0.1202 (0.4637) 

 x Farmer & Sidorowich (1987) 2,674 40 31,546.742 - 0.0367 

 x Robinson (1995) 2,471 39 56,241.4555 0.0026 0.094 

 x Abarbenel et al. (1993) 2,278 161 232,010.0202 0.0057 0.3463 

 x Chen et al. (2004) 2,159 37 128,475.7873 0.0028 0.0397 

 x Casdagli (1989) 1,939 68 97,896.7212 0.0022 0.0883 

 x Chen & Dong (1998) 1,884 32 100,013.4552 0.0128 0.1567 

x x Balke & Fomby (1997) 1,865 
179 

(175) 

75,222.0643 

(2,618.8333) 
- ; (0.0087) 0.2453 (0.6525) 

 x Brock & Hommes (1998) 1,856 39 3,901.6428 0.0011 0.0145 

 x Arthur (1999) 1,635 111 - - 0.1917 

 x Rössler (1979) 1,486 68 44,897.7349 0.0121 0.1021 

x  Taylor & Allen (1992) 1,432 33 221.3333 - 0.1183 
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FS TS Publication Cited Degree BC Authority EC 

x  Abuaf & Jorion (1990) 1,283 185 - 0.0047 0.8413 

 x Pagan (1996) 1,087 65 87,326.4965 0.0021 0.1621 

 x Baptista (1998) 1,046 45 137,229.8204 0.0075 0.2016 

x  Adler & Lehmann (1983) 774 49 173 0.0012 0.3567 

 x Zhang et al. (2005) 486 31 129,706.4197 - 0.0674 

 x Judd & Mees (1995) 355 48 145,363.0754 - 0.10758 

 x Abarbanel et al. (1990) 320 87 146,857.3812 0.0035 0.2473 

x  Agnolucci (2009) 314 136 - 0.0015 0.5755 

 x Poincaré (1890) 263 197 - 0.0142 0.491 

 x Anishchenko et al. (1992) 242 37 57,878.7611 0.0037 0.0695 

 x Abhyankar et al. (1995) 209 88 43,766.6242 0.0023 0.1222 

x  Abraham et al. (2001) 203 253 - 0.9955 0.97749 

x  Aït-Sahalia & Mancini (2008) 175 141 - 0.0013 1 

 

For the final iteration, we let the node-sizes remain at the Eigenvector Centrality and change the colours to display 

the communities, which remain after the degree-filter applies as shown in Figure 3 for TS and Figure 4 for FS, 

respectively (Vogl & Rötzel, 2021). We present the five highest-scoring communities with example references 

for both samples in Table 5 (Vogl & Rötzel, 2021). 

Table 5: Example bridging paper out of each of the top five communities for each sample TS and FS in Figure 3 and Figure 4. 

Sample Community # Colour Paper 

TS 

Sensitivity Analysis & Mathematical Conceptions I Orange Sobol´ (1995) 

Chaos Control & Synchronisation II Blue Pecora & Carroll (1990); Ott et al. (1990) 

Chaotic Dynamics & Nonlinear Analysis III Turquoise Grassberger & Procaccia (1983) 

Financial Modelling IV Green Abu-Mostafa et al. (2001) 

Econometric Tests & Economics V Red Abuaf & Jorion (1990) 

FS 

Financial Chaos I Turquoise Adrangi et al. (2001) 

Volatility Modelling II Yellow Andersen & Bollerslev (1998) 

Economic Chaos III Red Agliari et al. (2005) 

Artificial Intelligence for Finance IV Green Abraham et al. (2001) 

Econometric Tests & Economics V Blue Andrews & Ploberger (1994) 
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Regarding the respective structure of the research streams of TS and FS, several indications occur in terms of 

interconnectivity and dispersion of relevant research topics (e.g., financial chaos, chaos control), which we intend 

to further elucidate. 

Beginning with TS, as stated in Figure 3, we determine a separation of the ‘Sensitivity Analysis & Mathematical 

Conceptions’ (I) from the other communities. This research stream exists solely within itself, yet serves as basis 

for the development of the other fields, especially ‘Econometric Tests & Economics’ (V) and ‘Chaos Control & 

Synchronisation’ (II). ‘Chaos Control & Synchronisation’ (II) and ‘Chaotic Dynamics & Nonlinear Analysis’ 

(III) tend to exist symbiotically, while mutually stimulating each other. ‘Financial Modelling’ (IV) and 

‘Econometric Tests & Economics’ (V) are also in symbiosis with each other, yet just tangent the methodologies 

of (II) and (III) in several cases in order to broaden the respective field prospects into other domains of research. 

The research of (IV) and (V) are located near each other since they mostly differ in the respective choice of 

datasets and angles of academic vision (e.g., macroeconomic versus intra-market time series displays). 

Visually, comparing TS and FS creates the impression of FS being less densely connected than TS. This is due to 

the fact that FS is a sub-set of TS, which consists of lesser datasets, and the higher resolution of the respective 

research streams within the sub-sample. FS provides a more granular view of the research area. 

Elaborating further on FS stated in Figure 4, we determine a separation of the communities of ‘Economic Chaos’ 

(III) and ‘Econometric Tests & Economics’ (V). Whilst both tend towards the analysis of the same nature of data 

sets (e.g., macroeconomic data), they differ within the chosen methods for analysis. The field of ‘Volatility 

Modelling’ (II) represents a bridging research stream between all other stated communities. Regarding the streams 

of ‘Financial Chaos’ (I), we see a separation from the others, while the data basis mostly resembles those of (III), 

(V) or (II), thus defining another example of dispersion between research streams based upon the selection of 

analysis methods. With respect to ‘Artificial Intelligence for Finance’ (IV), a separation into a field of its own is 

visible, while targeting the other fields where needed. 

In total, we can make the separation of research fields into their own sub-domains visible, which can be interpreted 

as being caused by methodological ‘over-specialisations’, even if the core research questions and underlying 

datasets vastly display high resemblances. Therefore, we hint a potential future gap between ‘closely related’ 

research streams to diverge and encapsulate themselves, building separated ‘isles’ of independent research areas, 

which may lose the academic connection towards the other streams, even if the topic of research based upon the 

underlying data is ultimately the same and a symbiosis would bear fruition towards more encompassing results. 
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Figure 1: Citation Network TS: 𝐷𝑒𝑔𝑟𝑒𝑒 >  3, Size and Colour equal to Betweenness Centrality (small to big; black to red). 

 

Figure 2: Citation Network FS: 𝐷𝑒𝑔𝑟𝑒𝑒 >  2, Size and Colour equal to Betweenness Centrality (small to big; black to red). 
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Figure 3: Citation Network: Top 5 Communities of TS and 𝐷𝑒𝑔𝑟𝑒𝑒 >  3 with size equals Betweenness Centrality; for colour coding, see Table 5. 

 

Figure 4: Citation Network: Top 5 Communities of FS and 𝐷𝑒𝑔𝑟𝑒𝑒 >  2 with size equals Betweenness Centrality; for colour coding, see Table 5. 
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2.3. Empirical Results Out of Literature 

As indicated in the introductory part of this study, we will elaborate on the stated controversy of chaoticity versus 

stochasticity within the respective academic literature. Since we will develop the according theoretical 

background in the section hereinafter, we will begin by stating the most dominant reasons, interpretable as 

symbols, for the failings of tests and the inconclusiveness within the regarded empirical financial analysis of the 

respective literature. These are (1) small, finite data sets, which are eventually sampled at a rate that is too low 

(e.g., BenSaïda, 2014); (2) classical tests like the BDS-test cannot differentiate between stochasticity and 

chaoticity in terms of tested nonlinearities and are often misused (e.g., Matilla-García and Marín, 2010); (3) noise 

and measurement errors, which can render even a properly conducted analysis worthless (e.g., Aguirre and 

Billings, 1995); and (4) the incompleteness of analysis methodology and lack of details, which is especially 

mandatory within nonlinear time series analysis (e.g., Kantz and Schreiber, 2003). 

In order to display the inconclusiveness as well as the controversy, we will separate the literature regarding the 

results, shown in Table 6, in favour of chaos or in favour of stochasticity. 

Table 6: Empirical results in the academic literature about chaotic or non-chaotic financial behaviour of asset dynamics. 

Paper Result 

Grandmont (1985), Brock & Hommes (1998), Park et al. (2012), Mishra et al. (2011), 

Çoban & Büyüklü (2009), Yousefpoor et al. (2008), Kyrtsou and Terraza (2002),  

Das & Das (2007), Bask M. (2002), Scarlat et al. (2007), Peters (1994), Pannas & Ninni (2000),  

Moshiri & Foroutan (2006), Chichilnisky et al. (1995), Iseri et al. (2008),  

Chiarella & He (1999), Lux (1995, 1998), Malliaris & Stein (1999), Sandubete & Escot (2020), 

Cai & Huang (2007), Song et al. (2016) 

Chaos 

BenSaïda (2014), McKennzie (2001), BenSaïda & Litimi (2013), Cecen & Erkal (1996), 

Agnon (1999), Barkoulas (1997, 1999), Davidson (1997), Labys (1998), Sugihara (1990, 1996), 

Fernandez-Rodriguez (1998), Gilbert (1997), Cromwell (2000), Barnett (1997),  

Serletis & Shahmoradi (2004) 

No Chaos 

Shwartz & Yousefi (2003), Brock & Sayers (1988), Scheinkman & LeBaron (1989),  

Brock & Mallaris (1989), Bajo-Rubio (1992), Frank & Stengos (1988), DeGrauwe et al. (1993), 

Dewachter (1993), Adrangi et al. (2001) 

Inconclusive 

Kyrtsou et al. (2004), Holyst & Urbanowicz (2001) 
Chaoticity and Stochasticity 

coupled 
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3. Theory of Chaotic Dynamics and Methodology of the Study 

Vast amounts of literature under regard for this study apply chaos tests and measures fractioned from each other, 

which, in total, would sum up to an implementation of a complete framework. Following Kantz and Schreiber 

(2003), existing research does not exert enough care while handling theoretical implications within the respective 

applications and interpretations. In order to build and present such a complete framework, with specialization 

towards application within financial analysis, we present an encompassing body of theoretical essences within 

this section in order to ensure transparency as well as to create an encompassing basis of comprehensibility of our 

empirical results presented in Section 5, which strictly follow the order of this section. In order to sum up the 

framework as well as the theoretical concepts, which we will present, we provide a graphical representation of 

the course of the empirical analysis in Figure 5. 

 

Figure 5: Novel combinatory-methodological framework to analyse nonlinear dynamics with financial data sets. 
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3.1. Theory of Chaotic Dynamics 

3.1.1. Dynamical Systems 

Before presenting the empirical analysis, we elaborate on the brief theoretical background of the research area. 

We will firstly discuss in a formal manner the definition of dynamical systems and related topics, which we will 

apply in our empirical analysis. A function present within a given system, portraying the dependence of time of 

a given point in a geometrical space, is called a dynamical system (Strogatz, 2014). Such a dynamical system has 

a state given by a tuple of real numbers (vectors) that can be depicted by a point in a phase (or state) space (mostly 

a geometrical manifold15) at any given time (Strogatz, 2014). The evolutionary rule of the dynamical system is 

constituted via a function16 reflecting upon the future states, which are deducted from the current systems’ states 

(Hasselblatt & Katok, 2003). Assuming the case that the system is solvable given an initial point (e.g., a 

representation by respective differential equations), the possibility arises of determining all of its possible future 

positions, namely, collections of points labelled as trajectories or orbits (see 3.1.2) (Hasselblatt & Katok, 2003). 

Systems too complicated to be represented by one single trajectory bear fruition to a collection of difficulties, 

namely, (1) the system itself or its parameter setting is unknown, yielding implications in terms of the Lyapunov 

stability or the structural stability, (2) the type of the trajectory itself is of more prominence than the relevant 

realisation of the latter, (3) parameter setting variations may lead to bifurcations17 and (4) determining the long-

time behaviour of the system may differ, if considering ergodic18 versus hyperbolic systems (Hasselblatt & Katok, 

2003; Strogatz, 2014). Furthermore, alongside various other theorems as exhibited in Table 7, the Poincaré 

recurrence theorem indicates system states to return to a state very close to the initial state (further explicated and 

enhanced in the Birkhoff’s ergodic theorem) (Poincaré, 1890; Hirsch, 1997; Giunti & Mazzola, 2012). 

As a pathway towards a definition, a dynamical system is stated as a manifold ℳ, labelled the phase (or state) 

space endowed with a family of smooth evolutionary functions Φ௧, which, for any element 𝑡 ∈ 𝑇 reflecting time, 

maps a point of the latter phase space back into the phase space (Giunti & Mazzola, 2012; Mazzola & Giunti, 

2012). More precisely, Φ௧ equals an operation of 𝑇 on ℳ, while Φ଴ indicates the identity function and 

Φ௦ା௧ = Φ௦ + Φ௧, thus representing a semi-group operation, which does neither require 𝑡 < 0, nor Φ௧ to be 

invertible (Giunti & Mazzola, 2012; Mazzola & Giunti, 2012). For a given initial condition 𝑥, the identity 

Φ௧(𝑥) =  Φ௫(𝑡) ≡ Φ(𝑡, 𝑥) can be derived (Giunti & Mazzola, 2012; Mazzola & Giunti, 2012). 

                                                           
15 Topological space, which locally resembles Euclidean space near each point 
16 Mostly, these functions are assumed to be deterministic, but they also can reflect a stochastic system. 
17 Qualitative change in a system’s dynamics due to varying parameters 
18 Ergodic theory describes the statistical properties of deterministic dynamical systems (e.g., via long-time behaviour of time averages 
of various functions alongside of the respective dynamical systems trajectories). 
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Therefore, the following formal (geometrical) definition19 of a dynamical system can be stated as follows (Giunti 

& Mazzola, 2012; Mazzola & Giunti, 2012): 

“A dynamical system is the tuple 〈ℳ, 𝛷௧ , 𝑇〉, with ℳ being a manifold (locally resembling a Banach or Euclidean 

space), 𝑇 as time domain and 𝛷௧ as evolutionary function 𝑡 → 𝛷௧(𝑡 ∈ 𝑇) in a manner of 𝛷௧ to be a 

diffeomorphism of ℳ to itself.” 

Hence, 𝛷௧ is regarded as a respective mapping of  𝑇 into the space of diffeomorphisms (see 3.1.3) of  ℳ to itself, 

whilst 𝛷௧ represents a diffeomorphism for every 𝑡 ∈ 𝑇 (Giunti & Mazzola, 2012; Mazzola & Giunti, 2012). 

Furthermore, we deem it relevant to state the difference between the categorisation of a dynamical system, 

whether it be conservative or dissipative in nature. Conservative dynamical systems are non-singular and yield 

no wandering sets, which means such systems do not propose frictions or dissipative mechanisms (Danilenko & 

Silva, 2009). Hence, following the Liouville’s theorem, results in the system´s respective phase space not to shrink 

over time (Danilenko & Silva, 2009). In straight contrast, a dissipative structure is characterised via anisotropy, 

namely, spontaneous occurrences of symmetry breaks, resulting in respective long-term correlation as well as 

possible chaotic structures in the dynamical system (Brogliato et al., 2007).  

Table 7: Several important mathematical theorems with a short description and reference 

Theorem Short Description Reference 

Poincaré recurrence 
Some systems after sufficiently long, but finite time, return to a state 

arbitrarily close to (continuous), or exact the same (discrete) initial states. 
Poincaré (1890) 

Poincaré Bendixson 
Statements about long time behaviour of orbits of continuous systems on 

the plane, cylinder or two-sphere. 

Coddington & Levinson 

(1955) 

Ergodic/ Birkhoff’s 

Time averages and space averages may differ, hence, if the 

transformations are ergodic with an invariant measure, the time average is 

equal to the space average in the majority of the space. 

Eckmann & Ruelle (1985) 

Liouville´s Assertion of constancy of phase space distribution, meaning, no shrinkage. Brogliato et al. (2007) 

Krylov Bogolyubov Guarantee of the existence of invariant measures for well-behaved spaces. Bogoliubov & Krylov (1937) 

Oseledets 
Multiplicative ergodic theorem provides theoretical background for 

computation of Lyapunov exponents in nonlinear dynamical systems. 
Oseledets (1968) 

Sharkovskii´s 
If a discrete dynamical system on the real line has a periodic orbit of 

period three, then periodic orbit points of every other period must exist. 
Sharkovskii (1964) 

Stable Manifold 
Existence of local diffeomorphism near a fixed point implies existence of a 

local stable centre manifold containing the said fixed point. 
Hasselblatt & Katok (2003) 

Takens 
Delay embedding gives the conditions under which a chaotic dynamical 

system can be reconstructed from a sequence of observations of the state. 
Takens (1981) 

                                                           
19 It is also possible to deduct a measure-theoretical definition in terms of the ergodic theory, which is not regarded in this study. 
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3.1.2. Orbits 

Orbits of a dynamical system are collections of points related by 𝛷௧, hence, they are subsets of the phase space 

concealed by the trajectories of the dynamical system, obliging a given set of initial conditions during the timely 

evolution of the latter system (Hasselblatt & Katok, 2003). Since each trajectory represents a unique combination 

of coordinates in phase space, intersections of orbits are not possible (Hasselblatt & Katok, 2003). Thus, orbits 

can formally be defined as follows (Hasselblatt & Katok, 2003): 

“Given a dynamical system 〈ℳ, 𝛷௧ , 𝑇〉 with ℳ being a manifold (locally resembling a Banach or Euclidean 

space), 𝑇 as time domain and 𝛷௧ as evolutionary function and 𝑈 being a neighbourhood, one can state: 

Φ: 𝑈 → ℳ where, 𝑈 ⊂ 𝑇 × ℳ with Φ(0, 𝑥) = 𝑥 ⇒ Ι(𝑥)  ≡ {𝑡 ∈ 𝑇: (𝑥, 𝑥) ∈ 𝑈}, therefore,  

𝛾௫ ≡ {Φ(𝑡, 𝑥): 𝑡 ∈ Ι(𝑥)} ⊂ ℳ is called orbit through 𝑥. 

The non-constant orbit is called closed or periodic, if 𝑡 ≠ 0 in 𝛪(𝑥), such that 𝛷(𝑡, 𝑥) = 𝑥.” 

3.1.3. Diffeomorphisms 

A diffeomorphism is an isomorphism20 of smooth (differentiable) manifolds, which can be understood as an 

invertible function, mapping one differentiable manifold to another in such a manner, that the respective function 

as well as its according inverse are smooth and be defined as (Hirsch, 1997): 

“Given two manifolds ℳ and 𝒩, a differentiable map Φ௙: ℳ → 𝒩 is called a diffeomorphism, if it is a bijection 

and its inverse Φ௙
ିଵ: 𝒩 → ℳ is differentiable. If these functions are 𝑟 times continuously differentiable, Φ௙ is 

called a 𝒞௥- diffeomorphism.” 

Two manifolds ℳ and 𝒩 are diffeomorphic (ℳ ≅ 𝒩), if Φ௙: ℳ → 𝒩 exists (Hirsch, 1997). Additionally, 

following Hirsch (1997), regarding 𝓂 as a subset of ℳ and 𝓃 as a subset of 𝒩, a function Φ௙: 𝓂 → 𝓃 is said to 

be smooth if for all points in 𝓂, a neighbourhood 𝑈 ⊆ ℳ of points exists, and a smooth function ℊ: 𝑈 → 𝒩 

subject to ℊ|௎∩ 𝓂 = Φ௙|௎∩ 𝓂
, with ℊ as an extension of Φ௙. Therefore, Φ௙ is assumed a diffeomorphism if it is 

bijective, smooth and its inverse is also smooth21 (Hirsch, 1997). 

3.1.4. Attractors 

A set of numerical values for a general assortment of initial conditions, towards which a system tends to evolve 

is called the attractor of the system (Mazzola & Giunti, 2012). Realisation of system values close enough to the 

attractor remain close, even if subjected to small perturbations or disturbances (Strogatz, 2014). 

                                                           
20 Structure-preserving mapping between two structures of the same categorisation 
21 See the Hadamard-Caccioppoli theorem. 

Electronic copy available at: https://ssrn.com/abstract=3802753



19 
 

Assuming finite-dimensional systems, the time-evolving variable22 can be delineated algebraically as an 

𝑛 −dimensional vector (Mazzola & Giunti, 2012). Thus, an attractor represents a region in 𝑛 −dimensional space 

and can depict a point, a finite set of points, a curve, a limit torus, a manifold, or an even more complicated 

ensemble exhibiting fractal structure, henceforth called strange attractor (Strogatz, 2014; Grassberger & 

Procaccia, 1983a). 

Meticulously, the phase space volumes of dissipative dynamical systems are condensed by time evolution, 

meaning, the occupied volume of a respective attractor is generally small in comparison to the phase space 

(Fernández-Rodríguez et al., 2005). Further, during contraction, the length is not mandatorily contracted in all 

directions, yet can be stretched in one and contracted in another coordinate direction (Fernández-Rodríguez et al., 

2005). This may lead to unstable motions in the final movements within the attractor, which may also be chaotic 

(Fernández-Rodríguez et al., 2005). These instabilities become evident in sensitive dependence on initial 

conditions, resulting in an exponential separation of orbits during the time evolution of the system, which were 

initially very close to each other on the respective attractor (Fernández-Rodríguez et al., 2005). Chaos theory can 

hereby provide a valid description of the respective attractors, since a trajectory of the dynamical system in the 

relevant attractor neglects specialised premises, except for the latter trajectory to remain on the attractor forward 

in time, as explicated before (Carvalho et al., 2013). To be more detailed, the subset of phase space corresponding 

towards the typical behaviour of a dissipative dynamical system is the said attractor itself (Carvalho et al., 2013). 

Withal, invariant sets and limit sets as similar conceptions to attractors need to be elaborated on. An invariant set 

evolves to itself under the systems dynamics, which allows, but does not force, it to reside inside respective 

attractors (Milnor, 1985). Contrastingly, limit sets represent states of dynamical systems after infinite time passed, 

thus, reflecting upon the long-time behaviour of the referring system (Milnor, 1985). It is noteworthy that 

attractors are themselves limit sets, despite the fact that not all limit sets have to be attractors (Milnor, 1985; 

Carvalho et al., 2013). Elucidation of strange attractors reveals the evolution of two distinct points of the said 

strange attractor, to result in exponentially diverging trajectories (Kantz & Schreiber, 2003). Furthermore, strange 

(chaotic)23 attractors include indefinitely many embedded saddle periodic orbits, which associate each saddle 

orbit with stable and unstable manifolds (Kostelich, 1997). 

 

 

                                                           
22 If the variable is scalar, the attractor is a subset of the real number line. 
23 It can be displayed that in certain types of dynamical systems, it is possible to observe attractors that are strange but not chaotic, where 
‘strange’ refers to the geometry or shape of the attracting set, while ‘chaotic’ refers to the dynamics of the orbits on the attractor (Grebogi 
et al., 1984). For a display of strange non-chaotic attractors, refer to Li et al. (2019), since we will not consider this scenario in this 
study. 
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An attractor in a mathematical sense can be evinced as follows (Grebogi et al., 1987; Milnor, 1985): 

“An attractor is a subset 𝒜 of the phase space, characterised by the following premises: 

(1) 𝒜 is forward invariant under 𝛷௧: if 𝒶 ∈ 𝒜, then 𝛷(𝑡, 𝒶) ∀ 𝑡 > 0 is also invariant. 

(2) It exists a neighbourhood of 𝒜, called basin of attraction of 𝒜, labelled as ℬ(𝒜), which consists of all points 

𝓅 that enter 𝒜 in the limit 𝑡 → ∞. 

(3) ℬ(𝒜) is the set of all points in phase space with hereinafter mentioned properties: 

a. For any open neighbourhood 𝒩 of 𝒜, there exists a positive constant 𝒯, such that 𝛷(𝑡, 𝓅) ∈ 𝒩 ∀ 𝑡 > 𝒯. 

b. It exists no non-empty subset of 𝒜, which satisfies (1) and (2). 

c. Moreover, 𝒜 is required to yield a positive measure to ensure a point not being itself an attractor.” 

Furthermore, regarding the Poincaré-Bendixon theorem, the inexistence of strange attractors for a phase space 

dimension smaller than three is constituted24 (Coddington & Levinson, 1955). 

3.1.5. Chaotic Dynamics 

Following the founding father of chaos, Edward E. Lorenz (1968), chaos is ‘when the present determines the 

future, but the approximate present does not approximately determine the future’. Hence, chaos reveals the 

apparent randomness of (chaotic) complex systems, yielding underlying patterns, interconnectedness, feedback 

loops, recurrence, self-similarity (fractality) and self-organisation capabilities (Fuh et al., 2012; Abarbenel et al., 

1993; Sornette, 2004). Therefore, three characteristics are dominant for chaotic systems, namely, (1) sensitivity 

to initial conditions, (2) topological transitivity and (3) density of periodic orbits (Hasselblatt & Katok, 2003). 

3.1.5.1. Sensitivity to initial conditions 

The process of arbitrarily close points of a dynamical system separating exponentially as they evolve over time  

is denoted as being sensitive towards initial conditions and can be formally defined25 as follows (Kato, 1993): 

“Let ℳ be the phase space for a map Φ௙
௧  , then Φ௙

௧  exhibits sensitive dependence to initial conditions if for any 

𝑥 ∈ ℳ and 𝛿 > 0, there exist any 𝑦 ∈ ℳ with distance 𝑑(∙,∙) such that 0 < 𝑑(𝑥, 𝑦) < 𝛿 and such that 

𝑑 ቀΦ௙
௧(𝑥), Φ௙

௧ (𝑦)ቁ > 𝑒ఈ௧𝑑(𝑥, 𝑦) for some positive 𝛼; requiring the existence of a positive Lyapunov exponent.” 

 

 

                                                           
24 To be very precise, it is sufficient to determine a dimension of 2 + 𝜀 (Kantz & Schreiber, 2003). 
25 Please note the following definition to be metrical in nature, not topological. 
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3.1.5.2. Topological transitivity 

Following Hasselblatt and Katok (2003), topological transitivity is definable as follows26: 

“A map Φ௙
௧ : ℳ → ℳ is determined to be topological transitive if for any pair of open sets 𝑈, 𝑉 ⊂ ℳ, there exists 

a 𝑘 > 0 such that Φ௙
௧ (𝑈) ∩ 𝑉 ≠ ∅, representing the weak-version of topological mixing27. This implies the 

decomposition impossibility of the system in two respective open sets.” 

3.1.5.3. Density of periodic orbits 

Periodic orbits approach every point in the phase space arbitrarily close, which is reflected by the Sharkovskii´s 

theorem (Alligood et al., 2009). 

3.2. Chaos Measures  

3.2.1. Lyapunov Exponents 

In Section 3.1.5.1, we stated the exponential divergence of nearby trajectories in chaotic dynamical systems. 

Overall, a slow divergence as in periodic systems is not deemed problematic, yet, exponentially fast separation is 

an indication of chaotic motion (Kantz & Schreiber, 2003). A proper measure of exponential divergence of 

neighbouring trajectories is the Lyapunov exponent, which calculates the average of exponential convergence or 

divergence of trajectories, which are near each other in phase space (Kantz & Schreiber, 2003). Lyapunov 

exponents offer information about the orbits moving apart (or closer together) on the attractor over the evolution 

of time (Fernández-Rodríguez et al., 2005). Additionally, it is possible to evaluate them as the rate of stretching 

or shrinkage of various sub-volumes of phase space, which is discussed extensively in the academic literature, 

wielding several methods of calculating Lyapunov exponents for unknown dynamical systems (Fernández-

Rodríguez et al., 2005). Therefore, Lyapunov exponents display a measure of chaotic strength within a given 

dynamical system (Kantz & Schreiber, 2003). 

Following Gençay and Dechert (1992, 1996) and Dechert and Gençay (2000), Lyapunov estimators derived from 

observed dynamics can be regarded as topological invariant, meaning a global averaged perspective over a 

possibly unstable or volatile system28 (Kantz & Schreiber, 2003).In the academic literature, several publications 

apply Lyapunov exponents to discern chaotic dynamics in financial time series since a positive Lyapunov 

exponent is seen as an indication of chaos (e.g., Bajo-Rubio et al., 1992) (Fernández-Rodríguez et al., 2005).  

 

                                                           
26 For further clarification, please refer to the Birkhoff transitivity theorem. 
27 A system evolves over time, so that any given region or open set of its phase space eventually overlaps with any other given region. 
28 We will neglect a discussion of local Lyapunov exponents in this study since interpretation of the same is difficult and ambiguous. 
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It is possible to define a variety of Lyapunov exponents (e.g., Lyapunov spectrum), whose count equals the 

dimensions of the phase space, yet, one of the most important ones is the maximum (or the largest) Lyapunov 

exponent, whose inverse is the Lyapunov time, which indicates the time until the system emerges into chaos 

(Kantz & Schreiber, 2003; Shevchenko, 2018). 

3.2.1.1. Maximum Lyapunov Exponent and Lyapunov Time 

The maximum Lyapunov exponent 𝜆 can be defined as follows (Kantz & Schreiber, 2003): 

“Let 𝓅ଵ and  𝓅ଶ be two points in phase space with distance 𝑑(𝓅ଵ, 𝓅ଶ) = ‖𝓅ଵ − 𝓅ଶ‖ = 𝛿଴ ≪ 1. Denote by 𝛿∆௧, 

the time distance between two trajectories emerging from these points, namely, 𝑑(𝓅ଵା∆௧, 𝓅ଶା∆௧) =

‖𝓅ଵା∆௧ − 𝓅ଶା∆௧‖ = 𝛿∆௧. Then 𝜆 is determined by 𝛿∆௧ ≃ 𝛿଴𝑒ఒ∆௧ with 𝛿∆௧ ≪ 1 and ∆𝑡 ≫ 1.” 

Exponential divergence of close trajectories resulting in chaotic motion is indicated if 𝜆 > 0; it is noteworthy that 

the separation cannot exceed the extents of the respective attractor (Wolf et al., 1985). Further, if negative 

Lyapunov exponents are found in a dissipative system, it shows the existence of an according stable fixed point 

(Kantz & Schreiber, 2003). In the case of a limit cycle, 𝜆 = 0 and is labelled marginally stable, as displayed in 

Table 8 (Park & Whang, 2012). 

Table 8: Value range of maximum Lyapunov exponents, analogue to Kantz and Schreiber (2003) 

Value of 𝝀 Interpretation of resulting motion 

𝜆 < 0 Stable fixed point 

𝜆 = 0 Stable limit cycle 

0 < 𝜆 < ∞ Chaos 

𝜆 = ∞ Noise 

 

Moreover, Lyapunov exponents are invariant while smooth and capable of delineation of long-term system 

behaviour (Abarbanel et al., 1991). Further, smooth invertible re-parametrisation of phase space can alter only 

the distance ratios by a finite factor (Kantz & Schreiber, 2003). As explicated, a positive Lyapunov exponent 

stands for a potent testimony of chaos, which raises the interest of many scholars and practitioners to apply the 

conceptions on empirical time series or other scalar data and measurement sets (Abraham et al., 2004). In order 

to follow an estimate of Lyapunov exponents from a time series, an algorithm introduced by Rosenstein et al. 

(1993) is mostly executed, since it directly tests the exponential divergence of close trajectories. 

We will follow this algorithm in our empirical setting due to the determination of applicability as well as the 

assumption of the Lyapunov exponent to represent the local divergence rates over the complete time series, which 

is due to its invariance property (Rosenstein et al., 1993). 
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The procedure can be displayed as follows (Rosenstein et al., 1993; Kantz & Schreiber, 2003): 

(1) Select a point 𝓅଴ belonging to the time series under consideration, while additionally selecting relevant 

neighbouring points with a distance smaller than a threshold value 𝜖. 

(2) Determine the average over the neighbour distances to the reference part of the trajectory as a function of 

relative time. 

(3) The logarithm of the average distance at time ∆𝑡 represents an effective expansion rate over ∆𝑡. 

(4) Repetition of (1) to (3) for different settings of 𝓅଴ will diminish possible fluctuations of (3), due to averaging. 

(5) Compute the equation: 𝑆(∆𝑡) =
ଵ

்
∑ ln ቀ

ଵ

|𝒰(𝓹బ)|
∑ |𝓅଴ା∆௧ − 𝓅௧ା∆௧|𝓅೟∈𝒰(𝓹బ) ቁ்

௧ୀଵ , while 𝓹଴ represent reference 

points, displayed as embedding vector, 𝒰(𝓹଴) is the respective neighbourhood of 𝓹଴ and 𝓅௧ା∆௧ exists outside 

the time span covered by 𝓹଴. This is due to unknown values of the embedding dimension as well as the 

optimal distance 𝜖. 

To sum up, Rosenstein et al. (1993) assume the initial divergence to increase at the exponential rate dictated by 

the maximum Lyapunov exponent of the reconstructed state space of a time series (see Zeng et al., 1991), which 

is categorised as a direct method (Fernández-Rodríguez et al., 2005). Direct methods immediately agitate the time 

series data in an attempt to calculate the maximum Lyapunov estimates and are not determined ex ante, in order 

to distinguish dynamical effect natures (e.g., stochasticity versus chaoticity) (Damming & Mitschke, 1993). 

Hence, direct methods build upon the thought of chaos being capable of displaying a connection between 

determinism and randomness (Whang & Linton, 1999). The stated direct approach results in drawbacks in terms 

of financial time series analysis, since mostly nonlinear stochastic processes (e.g., GARCH) are applied instead 

of chaotic models (Fernández-Rodríguez et al., 2005). Contrastingly, indirect or Jacobian methods apply the data 

in estimates of Jacobian matrices in order to determine the conditional expectation values of the respective 

processes (Fernández-Rodríguez et al., 2005). 

As has already been mentioned, the Lyapunov exponents29 carry inverse time units called Lyapunov times and 

provide conventional time scales for the divergence or convergence of nearby trajectories, interpretable as time 

passing until the system diverges into chaos and is no longer predictable (Shevchenko, 2018). 

 

 

                                                           
29  Following Whang and Linton (1999) and Tong (1990), Lyapunov exponents are interpretable within standard nonlinear time series 
analysis as measure of local stability, independent of the chaotic framework. 
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3.2.1.2. Lyapunov Spectrum 

As stated before, the presence of close vectors in a phase space results in the diversion of two respective 

trajectories at exponential rate, whose time evolution is observable as linearised dynamics in a tangent space30 

and can be described as follows (Kantz & Schreiber, 2003; Sano & Sawada, 1985; Darbyshire & Broomhead, 

1996): 

“Assume 𝝑௧ and 𝜸௧ to be two infinitesimally close trajectories in a 𝑚 −dimensional phase space and the 

dynamical system under consideration to reflect a map, while the time evolution of their distance is described by 

𝜸௧ାଵ − 𝝑௧ାଵ = 𝓕(𝜸௧) − 𝓕(𝝑௧) = 𝑱௧(𝜸௧ − 𝝑௧) + 𝑂(‖𝜸௧ − 𝝑௧‖ଶ), where 𝓕(𝝑௧) expands around 𝜸௧ and 

𝑱௧ = 𝑱(𝝑௧) is the 𝑚 × 𝑚 Jacobian matrix of 𝓕 at 𝝑௧. Further, assuming a marginal perturbation 𝛿௧ = 𝜸௧ − 𝝑௧, 

the modulus one time step later is determinable. Let 𝓮௜ be an eigenvector of 𝑱 and assume Λ௜ its eigenvalue. 

Decomposition of 𝛿௧ into the before mentioned vectors with respective coefficient 𝛽௜, results in 𝛿௧ାଵ = ∑  𝛽௜Λ௜ 𝓮௜. 

In the case of 𝛿௧ being parallel to one realisation of 𝓮௜, it is either stretched or compressed by the factor Λ௜.” 

Moreover, it is possible to deduct m unique local stretching factors and a respective decomposition of phase space 

into m linear subspaces. Proper averages over these different local stretching factors are insinuated via the 

Lyapunov exponents for each of the respective subspaces, which can be stated as follows (Kantz & Schreiber, 

2003): 

“The Lyapunov exponents are determined by 𝜆௜ = lim
்→ஶ

ଵ

ଶ்
lnቚΛ௜

(்)
ቚ, where Λ௜ is defined as Λ௜

(்)
β௜

(்).”31 

In order to determine whether a dynamical system is conservative or dissipative (possibly chaotic), the sum of the 

Lyapunov exponents has to be negative (∑ 𝜆௜ < 0) (Park et al., 2012). 

3.2.2. Correlation Dimension 

Strange attractors, as stated in Section 3.1.4, are specified by a fractal structure, which, after further thought, 

indicates the self-similarity of the strange attractor as a geometrical object (Brandstater & Swinney, 1987; 

Grassberger & Procaccia, 1983). Additionally, we dissected the insight of a dissipative chaotic system to deflate 

to the sub-volumes of its respective attractors (Fraser & Swinney, 1986). Therefore, it is a valid inclusion to state 

that one may apply fractal dimensionality measures to determine the dimension of a respective strange attractor, 

representing a dissipative chaotic nonlinear dynamical system properly (Cecen & Erkal, 1996; Altan et al., 2019).  

 

                                                           
30 Following Lee (2009), it is possible to attach to every point of a smooth manifold a respective tangent space (a real vector space), 
which contains the possible directions in which one can tangentially pass through the respective point. 
31 This is a result from conducting the Oseledets theorem. 
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Indubitably, the application of a classical box-counting or Hausdorff-dimensional measure is a valid approach 

towards the delineation of the fractal dimension of a respective set; yet, in the academic literature, another widely 

dispensed measure has been established, namely, the correlation dimension, which is mostly determined to 

estimate the chaotic behaviour within simple time series datasets (Cecen & Erkal, 1996; Kostelich, 1997). 

Following Grassberger and Procaccia (1983), the correlation dimension can be determined by applying a 

correlation sum scheme, which is defined as follows (Cecen & Erkal, 1996): 

“Let 𝓹௡ be a collection of points in a given vector space as well as a fraction of possible pairs of points, which 

are closer than a given threshold distance 𝜀, represented as a particular norm, depicted as: 

𝐶(𝜀) =
ଶ

ே(ேିଵ)
∑ ∑ Θ൫𝜀 − ฮ𝓹௜ − 𝓹௝ฮ൯ே

௃ୀ௜ାଵ
ே
௜ୀଵ , where Θ is the Heaviside step function, Θ(𝓹) = 0 if 𝓹 ≤ 0 and 

Θ(𝓹) = 1 for 𝓹 > 0.” 

The correlation sum merely numbers the point pairs ൫𝓹௜ , 𝓹௝൯ with a distance smaller than the threshold 𝜀 (Kantz 

& Schreiber, 2003). Hence, the correlation dimension is definable as follows (Kantz & Schreiber, 2003): 

“Assume the limit of an infinite set of data points (𝑁 → ∞), while for marginal 𝜀, the correlation sum 𝐶 is 

expected to scale according to a respective power law, namely, 𝐶(𝜀) ∝ 𝜀஽ , thus the correlation dimension 𝐷 can 

be derived by 𝑑(𝑁, 𝜀) =
ఋ ୪୬ ஼(ே,ఌ)

ఋ ୪୬ ఌ
, henceforth, stating 𝐷 = lim

ఌ→଴
lim

ே→ஶ
 𝑑(𝑁, 𝜀). It is noteworthy, that 𝐷 is invariant, 

whilst 𝐶(𝜀) is not.” 

Following Ramsey et al. (1990), correlation dimension estimates with limited datasets reveal misleading results, 

notably returning artificially smaller correlation dimension estimates. Further, it is assumed that the correlation 

dimension for a white-noise process is infinite (Altan et al., 2019). The application of the correlation dimension 

is exemplified in Panas and Ninni (2000), Adrangi et al. (2001) as well as in Moshiri and Foroutan (2006), who 

analysed respective commodity future series. 

3.2.3. Space–Time Separation 

While conducting nonlinear time series analysis, the existence of non-zero autocorrelations is problematic in 

terms of reconstruction endeavours (e.g., estimation of correlation dimension), since trajectory vectors are closely 

located in the referring phase space, due to continuously evolving time known as temporal correlations (Kantz & 

Schreiber, 2003). In terms of determining the ‘scaling region’ of the correlation sums, several authors within the 

academic literature satisfied the analysis by fitting a straight line segment to the respective graphic 

representations, thus failed to notion details about the shapes of the region curves (Kantz & Schreiber, 2003). 
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Since the correlation sum is lacking invariance, it falls prey to effects caused by the above-mentioned temporal 

correlations, causing dynamical correlated time series data to violate the estimation requirements (Kantz & 

Schreiber, 2003). If those temporal correlations are significant in magnitude, a proper analysis is rendered invalid 

(Kantz & Schreiber, 2003). 

Henceforth, following Provenzale et al. (1992), the detection of temporal correlations by applying estimates of 

correlation time 𝑡௠௜௡ results in the display of a time separation plot. It is assumed that pairs of points in the phase 

space do not solely depend on 𝜀, but on elapsed time between measurements (Provenzale et al., 1992). To render 

these dependencies visible, the plot displays time separation ∆𝑡 versus spatial distance 𝜀 (Provenzale et al., 1992). 

The contour curves of the plot have to saturate, since in contrast, 1 𝑓⁄ −Brownian-noise with low frequency power 

does not, resulting in all points in the dataset to be temporally correlated, denying a valid reconstruction of the 

systems attractor (Kantz & Schreiber, 2003). 

3.2.4. Sample Entropy 

Another measure, attributing to the determination of the self-similarity property, which is also stated for strange 

attractors, is the sample entropy (Richman & Moorman, 2000). The sample entropy is defined as the negative 

logarithm of conditional probability of two respective trajectories (sets of points) to remain similar at the next 

embedding point, excluding self-matches, henceforth resulting in a lower entropy value to be indicated with 

higher self-similarity (Richman & Moorman, 2000; Costa et al., 2005): 

“Let 𝑚 be an embedding dimension, 𝑟 a tolerance parameter and 𝑁 = {𝓅ଵ, 𝓅ଶ, … , 𝓅ே} the amount of data points. 

Thus, define a template vector of length 𝑚, such that 𝒫௠(𝑖) = {𝓅௜ , 𝓅௜ାଵ, 𝓅௜ାଶ, … , 𝓅௜ା௠ିଵ} and 𝑑൫𝒫௠(𝑖), 𝒫௠(𝑗)൯ 

with 𝑖 ≠ 𝑗 to be the Chebyshev-distance. Therefore, the sample entropy is displayed as 𝑆𝑎𝑚𝑝𝐸𝑛 = − log 𝐴 𝐵⁄ , 

with 𝐴 equal to the number of template vector pairs with 𝑑൫𝒫௠ାଵ(𝑖), 𝒫௠ାଵ(𝑗)൯ < 𝑟 and B equal to the number 

of template vector pairs with 𝑑൫𝒫௠(𝑖), 𝒫௠(𝑗)൯ < 𝑟.” 

The sample entropy is bounded between zero and a positive value (Richman & Moorman, 2000). 

3.2.5. Hurst Exponent 

Dependencies within time series can also be elucidated using the Hurst exponent 𝐻, which in fractal geometry 

reveals long-range dependence and the existence of trends by measuring the characteristic of a data set (Hurst, 

1951; Berghorn, 2015). Furthermore, the properties of the time series can be classified with 0 ≤ 𝐻 < 0.5 to be 

mean reverting, with 𝐻 = 0.5 to be purely random in nature and with 0.5 < 𝐻 ≤ 1 to display a power law and 

respective persistency, resulting in fractal structures within the data (Opong et al., 1999; Berghorn, 2015).  
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The fractal dimension can be determined by 𝐷 = 2 − 𝐻 (Mandelbrot, 2004). The Hurst exponent is defined as 

(Mandelbrot, 2004; Qian & Rasheed, 2004): 

“The asymptotic patterns of the rescaled range statistic as a function of time span of a time series results in 𝐻 to 

be displayed as: 𝔼(𝑅(𝑛) 𝑆(𝑛)⁄ ) = 𝐶𝑛ு while 𝑛 → ∞, with 𝑅(𝑛) to be the range of the first 𝑛 cumulative 

deviations from the mean, 𝑆(𝑛) the series (sum) of the first n standard deviations, 𝔼(∙) the expected value, 𝑛 the 

time span of the observations and 𝐶 a constant.” 

3.2.6. DFA 

Similar to the Hurst exponent, the detrended fluctuation analysis (DFA) analyses a time series with respect to its 

self-affine properties, especially recommendable if the time series yields non-stationarities (Peng et al., 1994).  

It is related to spectral techniques (e.g., Fourier transform) and is defined as (Peng et al., 1994; Hardstone et al., 

2012): 

“Let 𝑥௧ be a time series with length 𝑁, where 𝑡 ∈ ℕ and integrate it into an unbounded process 𝑋௧ of form 

𝑋௧ = ∑ (𝑥௜ − 〈𝑥〉)௧
௜ୀଵ , with 〈𝑥〉 denoting the mean value. Further, 𝑋௧ is divided into time windows of length 𝑛, 

before a local least-squares straight-line fit (local trend) is calculated by minimisation. Now let 𝑌௧ be the 

calculated piecewise series of straight-line fits, which results in the fluctuation 𝐹(𝑛) = ඥ1 𝑁⁄ ∑ (𝑋௧ − 𝑌௧)ଶே
௧ୀଵ .” 

To apply this procedure, the window sizes are altered and drafted by a log-log visualisation of 𝐹(𝑛) versus 𝑛 

(Peng et al., 1994). A straight line on this graph indicates statistical self-affinity by 𝐹(𝑛) ∝ 𝑛ఈ, with 𝛼 depicting 

the scaling exponent (Peng et al., 1994; Hardstone et al., 2012). The interpretation of the scaling coefficient is 

shown in Table 9 (Peng et al., 1994; Hardstone et al., 2012). 

Table 9: Interpretation of Scaling Coefficient of the DFA 

Value of Scaling Coefficient Interpretation Value of Scaling Coefficient Interpretation 

𝛼 < 0.5 Anti-correlation 𝛼 ≃ 1 1 𝑓⁄ −Noise 

𝛼 ≃ 0.5 White noise 𝛼 > 1 Non-stationarity 

𝛼 > 0.5 Correlation 𝛼 ≃ 3 2⁄  Brownian Noise 
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3.3. Chaos Tests 

3.3.1. Standard Statistics 

In order to dissect the financial time series properly, we need to ensure that the previously mentioned 

characteristics, namely, the existence of stationarity, nonlinearity as well as freedom of noise, are guaranteed for 

our empirical analysis. Therefore, we will apply standardised statistical tests to validate the mentioned properties. 

To test whether the financial time series is stationary, we will conduct two statistical tests, namely, the ADF 

(Augmented Dickey-Fuller) test with the Null hypothesis, that the variable yields a unit root and is non-stationary 

(e.g., MacKinnon, 1994) and the KPSS (Kwiatkowski–Phillips–Schmidt–Shin)-test, where Null hypothesis states 

the opposite, i.e., that the variable is stationary (e.g., Kwiatkowski et al., 1992). Furthermore, we intend to 

determine the distributional characteristics of the financial time series by executing the Kolmogorov–Smirnov 

(KS) test for a Gaussian distribution, which Null hypothesis states Gaussianity, respectively (e.g., Massey Jr., 

2012). 

3.3.2. BDS Test 

In order to determine chaotic motion in financial markets, scholars executed the BDS test (e.g., Opong et al., 

1999), however, have recognised the omnipotence of detection of nonlinearity, yet, inability to differentiate 

between stochastic and chaotic dynamics (BenSaïda & Litimi, 2013). The study by Yousefpoor et al. (2008) 

explicates inconclusive results32 in terms of the BDS test, even if other methods should, in theory, be able to 

distinguish between stochasticity versus chaoticity (e.g., generalised BDS statistics of Matilla-García and Marín 

(2010), based on the Grassberger-Procaccia 1983s correlation integral). Nevertheless, the BDS test developed by 

Brock et al. (1987) and generalised by Savit and Green (1991) as well as Wu et al. (1993) is aimed exactly at the 

previously mentioned distinction, still, state a powerful tool for the detection of nonlinearities within a (financial) 

time series (Cecen & Erkal, 1996). Therefore, we will apply the BDS test only for the general detection of 

nonlinearities within our datasets and relinquish it in terms of differentiation of chaos versus randomness. The 

BDS-test is defined as follows (Cecen & Erkal, 1996): 

“The BDS-statistic is based on the correlation integral (see 3.2.2) 𝐶(𝜀), a time series {𝑋௧} with 𝑡 ∈ {1,2, … , 𝑇} 

and represents a random sample of ~iid observations with 𝐶௡(𝜀) = 𝐶ଵ(𝜀)௡. By estimation of 𝐶ଵ(𝜀) and 𝐶௡(𝜀) by 

sample values 𝐶ଵ,்(𝜀) and 𝐶௡,்(𝜀), the BDS-statistic can be written as 𝐵௡,்(𝜀) = √𝑇
஼೙,೅(ఌ)ି஼భ,೅(ఌ)

ఙ೙,೅(ఌ)
, where 𝜎௡,்(𝜀) 

denotes the estimate of the asymptotic standard error of the numerator. The 𝐻଴ assumes the ~iid property.” 

Brock et al. (1987) contributed to the literature by proving that 𝐵௡,்(𝜀)~𝑁(0,1). 

                                                           
32 For a mathematical discussion on the robustness of nonlinearity and chaos tests in terms of measurement errors, inference methods 
and sample size, please refer to Barnett et al. (1995). 
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3.3.3. Bask–Gençay Test with Bootstrapping Method 

So far, we have deduced that the BDS test is not capable of determining the nature of the ‘tested-for’ nonlinearity, 

while the introduced Lyapunov exponent (see 3.2.1.1) can return positive (chaoticity-inducing) values for non-

chaotic systems but yields inconclusiveness as well (Fernández-Rodríguez et al., 2005). Scholars commented on 

the insufficiency of the Lyapunov exponent due to the lack of a distributional theory by providing respective 

hypothesis testing using Lyapunov exponents33 (Fernández-Rodríguez et al., 2005). Therefore, following Gençay 

(1996), a methodology to compute empirical distributions of Lyapunov exponents via blockwise bootstrap 

technique represents a formal test34 of the hypothesis that the Lyapunov exponent reflects upon chaotic dynamics 

(Ziehmann et al., 1999). In particular, the test proposed by Gençay (1996) is applicable to Lyapunov exponents, 

which are slightly above zero within a small sample (Bask & Gençay, 1998). 

Since we are dealing with such a dataset, we will apply this framework for our empirical analysis. The 

bootstrapping and test method is defined as follows (Ziehmann et al., 1999; Gençay, 1996): 

“Assume a sequence of weakly dependent, stationary stochastic variables {𝑋ଵ, 𝑋ଶ, … , 𝑋்}, and let {𝑥ଵ, 𝑥ଶ, … , 𝑥்} 

be a realisation of this process. In order to construct the distribution of the maximum Lyapunov exponent, a 

moving blockwise bootstrapping method is applied. Therefore, let 𝔅௧
ௗ = {𝑥௧, 𝑥௧ାଵ, … , 𝑥௧ାௗିଵ} be a moving block 

of d consecutive observations, where 𝑡 ≤ 𝑇 − 𝑑 + 1. For a series, consisting of 𝑇 elements, a set of blocks 

൛𝔅ଵ
ௗ , 𝔅ଶ

ௗ, … , 𝔅்ିௗାଵ
ௗ ൟ with length 𝑑 is determined. For a replacement of 𝑘 = 𝑖𝑛𝑡(𝑇 𝑑⁄ ), a bootstrap sample 

൛𝔅௜భ

ௗ , 𝔅௜మ

ௗ , … , 𝔅௜ೖ

ௗ ൟ is created. For each subfamily of 𝑘 blocks, the maximum Lyapunov exponent can be determined 

as stated in Section 3.2.1.1, resulting in an empirical distribution. 

In order to test for chaos, state a one-sided alternative hypothesis, such that the 97.5% confidence interval 𝑞ଽ଻.ହ% 

is constructed by calculating the critical value 𝜆መଵ − 𝑞ଽ଻.ହ%, resulting from 𝔼௤൫𝑃ൣ൫𝜆መଵ − 𝜆ଵ൯ ≤ 𝑞ଽ଻.ହ%൧൯ = 0.975, 

where 𝜆መଵ is an estimate of the maximum Lyapunov exponent and  𝑞ଽ଻.ହ% is the quantile for the empirical 

distribution determined by 𝜆መଵ − 𝜆ଵ. Therefore, the Null hypothesis represents non-chaotic dynamics by 𝜆 = 0. 

If the term 𝜆መଵ − 𝑞ଽ଻.ହ% > 0, the Null hypothesis is rejected, leading to chaotic dynamics.” 

 

 

                                                           
33 For a mathematical discussion, please refer to Shintani and Linton (2004). 
34 Another method is based on the Nadaraya–Watson kernel estimator of the Lyapunov exponent, following Park and Whang (2012). 
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3.3.4. Influence of Noise and Wavelet Filter 

Before we can elaborate on the time series, it is a necessity to display the influence of noise on the intended 

methods with which we aim to analyse the data. Further, we want to show the methodology, namely wavelets, 

and its importance, with which we intend to denoise our datasets before beginning formal analysis attempts. 

3.3.4.1. Influence of Noise 

In terms of investigation of dynamical systems, datasets originate mostly out of physics or meteorological sciences 

and are purer and cleaner in nature (BenSaïda, 2014). In financial sciences (e.g., stock markets, which are 

complex, noisy dynamical systems with non-stationary, partly chaotic35 data series), data is subject to 

measurement errors and microstructure noise (BenSaïda, 2014; Bao & Yang, 2008). 

Further, following Aguirre and Billings (1995), the strong impact of noise on the identification process of chaotic 

dynamics is verified. In particular, if the noise level is beyond a predefined threshold value, the accurate 

estimation of dynamically valid models (e.g., polynomial models) renders itself almost impossible (Aguirre & 

Billings, 1995). This leads to the preclusion of identifications even with excellent models, which results in 

substantial noise reduction as best solution proposition (Aguirre & Billings, 1995). 

The noise contaminating evolutionary dynamics is labelled dynamical noise, which can either be additive or 

multiplicative in nature, thus disrupting dynamics on different, relatively small scales (Altan et al., 2019; Çoban 

& Büyüklü, 2009). Chaos tests presented in existing literature require noise-free datasets, since noise (e.g., 

measurement errors) will cause respective test rejections (BenSaïda & Litimi, 2013). Further, noise influences the 

correlation dimension measure of chaotic attractors in dynamical systems, which, following the Grassberg-

Procaccia algorithm, results in an increase of dimensional estimates36 as well as of the respective systems’ 

Lyapunov exponents (Altan et al., 2019; Argyris & Andreadis, 1998). Moreover, dynamical noise is capable of 

altering the dynamics of low-dimensional chaotic systems, resulting in high sensitivity towards noise intensity if 

chaos tests are applied (Serletis et al., 2007). 

Therefore, within academic literature, a detailed empirical investigation aimed towards understanding how the 

addition of white and coloured noise to chaotic time series modifies the topology and structure of underlying 

attractors emerged (Jacob et al., 2016). Further, it is possible to identify noise levels by applying measures taken 

out of recurrence plot analysis37 to the latter time series since recurrence networks measure noise with surrogate 

data tests (Jacob et al., 2018). 

                                                           
35 See Peters (1994). 
36 See Badii & Politi (1985) and Badii et al., (1988). 
37 The noise influence can entail choosing larger thresholds in the recurrence analysis since it can distort existing structures (e.g., Mindlin 
& Gilmore, 1992; Koebbe & Mayer-Kress, 1992; Zbilut & Webber Jr., 1992) (Marwan, Romano, Thiel, & Kurths, 2007). 
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3.3.4.2. Wavelet Filter 

In such noise-induced scenarios, it is advised to reduce the noise to a level that is acceptable, which can be 

achieved via projective filtering methodologies to remove noise contaminants (Aguirre & Billings, 1995; Çoban 

& Büyüklü, 2009). Noise reduction suggestions imply the implementation of non-linear filtering schemes, 

enabling the generation of noise-reduced datasets, which sophisticated models can then be applied to (Aguirre & 

Billings, 1995). The structure of filters is of secondary nature, as long as the following guidelines for the selection 

of filter algorithms are adhered to: (1) the filters are mandatorily unbiased and (2) the residual variance of the 

filters levels the noise variance accordingly38 (Aguirre & Billings, 1995). Investigations of the dependence 

structure and predictability for economic systems on different time scales revealed the favourability of the wavelet 

multiresolution analysis39 in the recent past (Bekiros & Marcellino, 2013; Mitra, 2006). Wavelet characteristics 

are appealing for the analysis of non-stationary, transient or singular signals and are suitable for denoising efforts 

as stated in the work by Gençay et al. (2001) (Mitra, 2006; Song et al., 2016). In contrast to the Fourier 

transformations’ trigonometric functions, wavelets are defined over a finite domain and are localised both in time 

and in scale (frequency) domain40 (Berghorn, 2015). 

Analysing time scales encompasses estimates of linear, nonlinear and spectral dependencies of wavelet 

components combined with respective out-of-sample predictability (Bekiros & Marcellino, 2013). In terms of 

definition of the analytical expression, the Haar wavelet is the simplest representation of a wavelet function41, 

which, therefore, represents an effective method for approximating solutions of ordinary and partial differential 

equations. These equations are applied to econometric relationships between money, output and price for the 

Indian economy by Mitra (2006) (Arbabi et al., 2017). Following Garcin and Guégan (2016), filtering wavelet 

coefficients enables the construction of valid estimates from noisy data, especially if the noise influence is linear 

as stated in Donoho and Johnstone (1995),  resulting in an optimal filter design by wavelet shrinkage. 

3.3.5. Surrogate Datasets 

Financial systems can be reflected upon as a possible extension of nonlinear-deterministic dynamics, whose states 

are deterministic but return random-like computations (Çoban & Büyüklü, 2009). At times, difficulties emerge 

when assessing the algorithmic results in actually measuring fractal or dynamic properties of the underlying 

system or whether simple artificial, finite spectral properties occur in a predefined time series42 (Kostelich, 1997).  

                                                           
38 We can confirm both for our sampled datasets. 
39 For an in-depth elaboration on nonlinear evolution operators in context with wavelets, refer to Chuong (2005), while a basic guide to 
wavelets for economists can be found in Crowley (2007). 
40 For a mathematical discussion of wavelets, refer to Stark (2005). 
41 For new algorithms, applying Haar wavelets for the numerical solution of nonlinear systems (e.g., Fredholm and Volterro integral 
equations), see Aziz & Siraj-ul-Islam (2013), for the solution of a class of (partial) delay differential equations, see Aziz & Amin (2016) 
and for three-dimensional elliptic partial differential equations, see Aziz et al. (2017). 
42 The question is discussed in Theiler et al. (1992). 
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To propose a valid solution, it is advised to test for the time series to follow a linear model, which will then be 

tested against a predefined nonlinear observable (Kantz & Schreiber, 2003). Nevertheless, in practical cases (e.g., 

financial market time series), no theory for the observables distribution for linear stochastic processes is given 

(Kantz & Schreiber, 2003). This distribution is estimated via the method of surrogate data, stating several 

hypotheses to be tested upon (Kantz & Schreiber, 2003). The basic idea entails creating random datasets that 

preserve parts of the original properties (Kostelich, 1997; Suzuki et al., 2007). This can be achieved via random 

shuffles in the original time series, causing the new data sets to yield the same distribution of values as the original 

set, but in a different order (Kostelich, 1997). 

In an ideal scenario, a clear distinction between the dimension estimates for embeddings of the randomised 

datasets and those of the original time series should be visible (Kostelich, 1997). Therefore, a Null hypothesis of 

interest considers the data originating from a stationary linear stochastic process with Gaussian inputs along with 

the free parameters of the mean, variance and autocorrelation functions, or equivalently, the power spectrum 

(Kantz & Schreiber, 2003). This can be achieved by applying different phases of the data sets’ and surrogate data 

sets’ respective Fourier transformations, holding the amplitudes constant (Kantz & Schreiber, 2003). 

Fourier transformation surrogate coefficients are, therefore, characterised by the same magnitudes, but random 

phases, corresponding to the original series power spectrum, but without the property of determinism (Suzuki et 

al., 2007). We will apply these kinds of surrogates in our sample and label them as Fourier transform surrogate 

datasets (ft). 

Nevertheless, ft is only applicable if the data follows a Gaussian distribution, but to display the output of a 

stationary Gaussian linear process distorted by monotonic, instantaneous, time-independent measurements 

functions properly, requires some adjustments (Kantz & Schreiber, 2003). Inverting and rescaling these 

measurement functions result in amplitude adjusted Fourier transform surrogate datasets (aaft), which can result 

in false rejections if strong correlations are paired with nonlinear distortion (Kantz & Schreiber, 2003). This can 

be solved by applying an iterative filtering scheme43, resulting in iterative amplitude adjusted Fourier transform 

surrogate data sets (iaaft) (Kantz & Schreiber, 2003). Further, we will conduct our analysis with ft, aaft and iaaft 

surrogates. 

 

 

                                                           
43 A simple implementation similar to a Wiener filter combined with another rescaling operation should suffice. 
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3.4. Phase Space Reconstruction 

In order to apply all of the aforementioned methods in reality, it is necessary we mention that the idea of providing 

experimentalists with theoretical settings has already been discussed by Kosterlich (1997). In practical 

applications, the major challenge is the conduction of analysis on finite time series, instead of ideally theoretical 

noise-free infinities, which resulted in the methodology of embeddings or phase space reconstruction (Garland et 

al., 2016). Embedding refers to the mathematical process by which a representation of a systems attractor can be 

reconstructed from time series (set of scalar measurements) since its dimensional preserving (Kostelich, 1997). 

Common procedure is to apply time-delay reconstructions with a variety of embedding dimensions (Cao L. , 

1997). In this sense, the delay time 𝜏 is defined as the time span between two respective neighbouring sample 

points used for the attractor reconstruction, while the embedding dimension 𝑚44 represents the dimension of the 

phase space used for the reconstruction (Rüdisüli et al., 2013). 

Reconstructing the trajectories of a time series in a phase space with embedding dimension 𝑚 results in several 

issues regarding other measures, like the Lyapunov exponent, as it cannot be assumed to be invariant in terms of 

initial condition dependency and sample size (Fernández-Rodríguez et al., 2005). Further, relevant questions 

about the correct specification of the time delay 𝜏 are discussed within the literature. Following Broomhead and 

King (1986), the delay time can be based on the autocorrelation function, which we too will follow for our 

respective empirical analysis45. 

In addition, Casdagli (1991) discusses measures of distortion and noise, while Fraser and Swinney (1986) 

determine the time delay based on mutual information. Other potential drawbacks include the insufficient count 

of observations in the sample, which will increase in difficulty the higher the dimension of the reconstructed phase 

space, and noise has the capabilities to obscure fractal structures or render the analysis invalid, as already 

discussed in section 3.3.4.1 (Brandstater & Swinney, 1987). If the data is not filtered beforehand46, one can follow 

Albano et al. (1988), stating the possibility of filtered embeddings to reduce noise and obtain valid dimensional 

estimates. Further, we will discuss two applied embedding methods, namely, Takens’ time delay embedding and 

spectral embedding with Laplacian Eigenmaps (Takens, 1981; Song et al., 2016). 

 

                                                           
44 We already implicitly mentioned the embedding dimension before without explicating it. 
45 The approach via autocorrelation has to be treated with care since infinite input response filters can introduce distortions, leading to 
deviations within the dimensional estimates, debated by Badii and Politi (1985). We decided upon wavelet-filters, since, for e.g., the 
application of nonlinear median-filters introduced further distortions, leading to enhanced autocorrelations, while rendering 
reconstructions invalid in terms of correlation dimensional estimates, even if the noise was reduced successfully. 
46 Contrary to our case 
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3.4.1. Takens’ Time Delay Embedding Theorem 

The reconstruction theorem given by Takens explicates the existence of a transformation between the original 

and reconstructed phase spaces with vector functions (Çoban & Büyüklü, 2009). Further, this implicates property 

preservation under reconstruction, meaning that the characteristics of the dynamical systems do not alter under 

the application of smooth coordinate changes (i.e., diffeomorphisms [see 3.1.3]), yet the preservation of original 

geometrical structures of phase space is not implicated either (Strogatz, 2014; Harikrishnan et al., 2017; Hirsch, 

1997). Takens theorem states the following (Takens, 1981; Adachi, 1993): 

“Assume the phase space of a given dynamical system to represent a 𝑣 −dimensional manifold ℳwith smooth 

map Φ௧: ℳ → ℳ. Further, let the dynamics Φ௧ yield a strange attractor 𝒜 with box-counting dimension 𝑑𝒜 . 

Following the strong Whitney’s embedding theorem, any smooth real 𝑘 −dimensional manifold, required to be 

Hausdorff- and second-countable, can be smoothly embedded in ℝଶ௞ , if 𝑘 > 0. This reflects the optimal linear 

bound on the smallest-dimensional Euclidean space that all 𝑘 −dimensional manifolds embed in, as the real 

projective spaces of dimension 𝑘 cannot be embedded into real (2𝑘 − 1) space, if 𝑚 is a power of two. 

Hence, 𝒜 can be embedded in a 𝑚 −dimensional Euclidean space with 𝑚 > 2𝑑𝒜 , if there exists a 

diffeomorphism Φ௙: 𝒜 → ℝ௠, such that the derivative of  Φ௙ has full rank.  

Therefore, Φ்(𝑥) = ቀ𝛼(𝑥), 𝛼൫Φ௧(𝑥)൯, … , 𝛼൫Φ௧
௠ିଵ(𝑥)൯ቁ is an embedding of the strange attractor 𝒜. Moreover, 

the phase space can be reconstructed by 𝑥⃑(𝑡) = {𝑥(𝑡), 𝑥(𝑡 + 𝜏), … , 𝑥(𝑡 + (𝑚 − 1)𝜏}.” 

3.4.2. Spectral Embedding 

For our dataset, we follow a novel embedding technique using manifold embedding and Laplacian Eigenmaps as 

proposed by Song et al. (2016) by applying a spectral embedding algorithm. Therefore, it is assumed that the 

strange (chaotic) attractor of financial time series to lie on a low-dimensional manifold, which is embedded into 

a high-dimensional Euclidean phase space (Song et al., 2016). Further, it is premised that the topological structure 

of the financial system in phase space can be displayed by few independent degrees of freedom embedded in a 

low-dimensional nonlinear manifold, visible by calculation of nonlinear dimensionality reduction algorithms 

(Lewandowski et al., 2014). 

In order to conduct a successful mapping and extraction of the hidden strange attractor of the financial chaotic 

system, Laplacian Eigenmaps are determined, since in practise it is not possible to measure components of an 

unknown high-dimensional vector space (Belkin & Niyogi, 2003). In this study, we apply spectral embedding, 

which forms an affinity matrix based on a nearest neighbour algorithm and a principal component analysis given 

by the specified function and applies spectral decomposition to the corresponding graph Laplacian.  
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The resulting transformation is given by the value of the eigenvectors for each data point (Belkin & Niyogi, 2003). 

Nevertheless, the Laplacian Eigenmaps are determined as stated above and defined as follows (Song et al., 2016; 

Kim et al., 1999): 

“Suppose ℝ஽ to be a Euclidean space and the Laplacian Eigenmaps are defined as ℒ
∆
→ 𝒟 − 𝒲, with 𝒲 as 

adjacency matrix of the edge weights and 𝒟 as diagonal matrix with 𝒟௜௜ = ∑ 𝜔௜௝௝ . The constructions are executed 

as follows: 

(1) Construct the adjacency distance between 𝑥௜ and 𝑥௝ with 𝑥௜, 𝑥௝ ∈ ℝ஽ through determination of ฮ𝑥௜ − 𝑥௝ฮ
ଶ

<

𝜀, with 𝜀 ∈ ℝ. Assume the norm to be Euclidean. 

(2) Determine the weights of the adjacency matrix 𝒲 by heat kernel, setting weights to 𝜔௜௝ = 𝑒ି ฮ௫೔ି௫ೕฮ
మ

௜ൗ . 

(3) Compute Eigenmaps under the assumption that the graph is connected and conduct a mapping into a lower 

𝑑 −dimensional space with 𝑦ଵ, 𝑦ଶ, … , 𝑦௞ ∈ ℝௗ. The embedding is provided by the 𝑘 × 𝑑 matrix 

Φ = { Φଵ,  Φଶ, … ,  Φௗ}. 

(4) The objective function can be equated as ∑ ฮΦ(௜) − Φ(௝)ฮ𝜔௜௝ = (Φ்ℒΦ)் = ℒΦ௜,௝ , where Φ(௜) represents 

the d-dimensional indication of the 𝑖 −th vertex.” 

3.5. Recurrence Quantification Analysis 

We want to achieve a full encompassing analysis of the dynamics of a financial system; therefore, we additionally 

employ a recurrence quantification analysis (RQA) based upon a recurrence plot analysis (RP) introduced by 

Eckmann et al. (1987), which originates from a topological approach in the study of nonlinear complex dynamics 

(Barkoulas et al., 2012). Chaos analysis based upon RQA and RP embrace the benefit of the topological approach, 

contrasting the metric methodologies, by preserving the time-ordering information content of the regarded data 

series as well as the spatial structure (Barkoulas et al., 2012).  

RQA aims towards detecting fundamental characteristics of a dynamical system, namely, the recurrence of states, 

resulting in a potent chaos detection method, since it is robust in terms of data limitations (e.g., sample size, 

noise), vastly inhibited in financial data sets (Rohde et al., 2008). Therefore, we assume three main characteristics 

of chaotic (financial) time series, namely, (1) the existence of a low-dimensional attractor of the respective 

dynamical system, (2) present dependence on initial conditions (see 3.1.5.1) and (3) manifestation of recurrence 

property (Barkoulas et al., 2012). Additionally, applying a RP, contrasting metric-based chaos tests, the 

topological approach renders the degree of complexity within the system visible, since it reflects the recurrence 

characteristics (e.g., the fractal structure) of the respective trajectories (Barkoulas et al., 2012).  
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The execution of RQA and RP47 also displays the transitions within the dynamical system of time series, 

respectively48 (Marwan & Kurths, 2005). The major task of this analysis is to determine the linkage between 

recurrences with dynamical invariants and unstable periodic orbits, since it is assumed that recurrences49 contain 

all relevant information regarding the dynamical behaviour of the system (Marwan et al., 2002). The RP can be 

displayed as follows (Eckmann et al., 1987; Marwan et al., 2007): 

“Assume a reconstructed trajectory 𝑥⃑௜ ∈ ℝௗ  in phase space. Hence, the recurrence plot graphically represents 

the recurrence matrix, expressed by ℛ௜,௝(𝜀) = Θ൫𝜀 − ฮ𝑥⃑௜ − 𝑥⃑௝ฮ൯, with 𝑖, 𝑗 = 1, . . , 𝑇, where 𝑇 represents 

respective time steps of 𝑥⃑௜, 𝜀 a threshold value, Θ is the Heaviside step function, Θ(𝑥) = 0 if 𝑥 ≤ 0 and Θ(𝑥) = 1 

for 𝑥 > 0 and ‖∙‖ is a norm50. For 𝜀 −recurrent states (i.e., states in 𝜀 −neighbourhood) 𝑥⃑௜ ≈ 𝑥⃑௝ ⇔ 𝓡௜,௝ ≡ 1.” 

The RP is obtained by graphically displaying the recurrence matrix 𝓡௜,௝ in a binary colouring of choice (Rohde 

et al., 2008). Further, the RP is symmetric and has a line of identity as main diagonal, which, following Eckmann 

et al. (1987), is proportional to the maximum Lyapunov exponent (Marwan et al., 2007). 

Special attention should be reserved for the choice of the parameter setting of 𝜀, since if it is chosen too small, no 

recurrence points occur, whilst in the opposite case, almost every sample point is defined as a recurrence point 

(Marwan et al., 2007). At first, the minimum should be 𝜀 > 5𝜎఍ , where 𝜎఍  represents the standard deviation of 

the sample noise51, while following the several indications literature has provided (Marwan et al., 2007). 

Following Mindlin and Gilmore (1992), a small percent of phase space diameter is sufficient, and while following 

Zbilut et al. (2002), we state the search for scaling regions in point density functions. Nevertheless, following 

Koebbe and Mayer-Kress (1992), as well as Zbilut and Webber Jr. (1992), the value of 𝜀 should not exceed 10%. 

Hence, for our sample we apply the standard algorithm setting of 10%.  

A graphical interpretation guideline for the visualisation of the RP is provided by Marwan et al. (2007) and 

included within Appendix A1 of our study. Upon thoroughly investigating a RP-plot, results were obtained in a 

structural as a display of single-dots, diagonal lines and vertical (horizontal) lines (Rohde et al., 2008). The length 

of a diagonal line represents the duration of similar local evolutions of phase space trajectories, while a vertical 

(horizontal) line marks the time durations in which a state does not change and is trapped, and are called 

intermittency or laminar states (Marwan et al., 2002).  

                                                           
47 The recurrence and return times with respect to their statistics have been studied by Hirata et al. (1999) and Penné et al. (1999) and 
linked to other fundamental characteristics of dynamical systems (e.g., Pesin’s dimension by Afraimovich (1997)), point-wise local 
dimension by Afraimovich et al. (2000) or the Hausdorff dimension by Barreira and Saussol (2001). Further, multifractal properties 
have been investigated by Hadyn et al. (2002) and Saussol and Wu (2003). 
48 For an RP approach with matrix eigenvalues, see Yang and Shang (2018). 
49 Based upon the Poincaré recurrence theorem 
50 Mostly, the Euclidean (𝐿2)−, 𝐿1 − or the 𝐿 − 𝑖𝑛𝑓-norm is applied. 
51 In our case 𝜀 ≈ 0.06. 
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To estimate respective invariants of the system, one should exclude the identity line as well as apply the respective 

Theiler-windows into the computation if the data is non-stationary52 (Theiler, 1986). We will apply the following 

RQA-measures, as displayed in Table 10 (Marwan et al., 2007). 

Table 10: Overview of RQA-measures, with measure names, equations and short-descriptions. 

RQA-Measure Equation Description 

Recurrence Rate (𝑅𝑅) 𝑅𝑅(𝜀) =
1

𝑇ଶ
෍ ℛ௜,௝(𝜀)

்

௜,௝ୀଵ

 
𝑅𝑅 is a measure of the density of 

recurrence points in the RP. 

Measures based on diagonal lines 𝒍 with minimum length 𝒍𝒎𝒊𝒏 53 

Determinism (𝐷𝐸𝑇) 𝐷𝐸𝑇 =
∑ 𝑙 𝑃(𝑙)்

௟ୀ௟೘೔೙

∑ 𝑙 𝑃(𝑙)்
௟ୀଵ

 
𝐷𝐸𝑇 is a measure of the predictability 

(determinism) of the system. 

Average Diagonal Line Length  (𝐿) 𝐿 =
∑ 𝑙 𝑃(𝑙)்

௟ୀ௟೘೔೙

∑ 𝑃(𝑙)்
௟ୀ௟೘೔೙

 
𝐿 represents the mean prediction time of the 

system. 

Longest Diagonal Line (𝐿௠௔௫) 

Divergence (𝐷𝐼𝑉) 
𝐿௠௔௫ = max({𝑙௜}௜ୀଵ

் ); 𝐷𝐼𝑉 = 1
𝐿௠௔௫

ൗ  
𝐿௠௔௫  is the longest diagonal found in the 

RP. 

Shannon Entropy (𝐸𝑁𝑇𝑅) 𝐸𝑁𝑇𝑅 = − ෍  𝑝(𝑙)

்

௟ୀ௟೘

ln 𝑝(𝑙) 
𝐸𝑁𝑇𝑅 reflects the complexity of the RP, 

small 𝐸𝑁𝑇𝑅 equals small complexity. 

Trend (𝑇𝑅𝐸𝑁𝐷) 𝑇𝑅𝐸𝑁𝐷 =
∑ ൫𝑖 − 𝑁෱ 2⁄ ൯(𝑅𝑅௜ − 〈𝑅𝑅௜〉)ே෱

௜ୀଵ

∑ ൫𝑖 − 𝑁෱ 2⁄ ൯
ଶே෱

௜ୀଵ

 
𝑇𝑅𝐸𝑁𝐷 provides information about non-

stationarities within the RP. 

Ratio (𝑅𝐴𝑇𝐼𝑂) 𝑅𝐴𝑇𝐼𝑂 = 𝑁ଶ
∑ 𝑙 𝑃(𝑙)்

௟ୀ௟೘೔೙

(∑ 𝑙 𝑃(𝑙)்
௟ୀଵ )ଶ

 
𝑅𝐴𝑇𝐼𝑂 is defined as ratio between 𝐷𝐸𝑇 

and 𝑅𝑅. 

Measures based on vertical lines 𝒗 with minimum length 𝒗𝒎𝒊𝒏 

Laminarity (𝐿𝐴𝑀) 𝐿𝐴𝑀 =
∑ 𝑣 𝑃(𝑣)்

௩ୀ௩೘೔೙

∑ 𝑣 𝑃(𝑣)்
௩ୀଵ

 
𝐿𝐴𝑀 represents the occurrence of laminar 

states. 

Trapped Time (𝑇𝑇) 𝑇𝑇 =
∑ 𝑣 𝑃(𝑣)்

௩ୀ௩೘೔೙

∑ 𝑃(𝑣)்
௩ୀ௩೘೔೙

 
𝑇𝑇 indicates the average length of vertical 

lines; time at a state. 

Longest Vertical Line (𝑉௠௔௫) 𝑉௠௔௫ = max({𝑣௜}௜ୀଵ
் ) 𝑉௠௔௫ is the longest vertical found in the RP. 

* 𝑃(𝑙) is a histogram; 𝑝(𝑙) = 𝑃(𝑙) 𝑇⁄ ; 𝑁෱ the maximal number of diagonals parallel to the main diagonal. 

 

 

 

                                                           
52 We do not apply Theiler-windows; however, we exclude the main diagonal from the analysis. 
53 In Appendix A2, we present graphics for varying choices of 𝑙௠௜௡ (and 𝑣௠௜௡). 
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4. Data Description 

4.1. S&P 500 Returns & Surrogate Data Sets 

We analyse the daily adjusted-closing prices of the S&P 500 index, extracted from Yahoo Finance for the years 

2000–2020. Financial literature states that historical price-series are non-stationary, which could lead to severe 

problems with the applications of chaotic measures and tests. Therefore, we will compute logarithmic differences 

of the daily adjusted-closing prices, resulting in log-returns (BenSaïda, 2014). In order to reduce the noise level 

of the return series, we apply a discrete Haar wavelet cascadic filter bank with 12 levels, executing the softened 

wavelet-shrinkage algorithm as described in Chang et al. (2000) and as depicted in Figure 6. Furthermore, we 

calculate ft, aaft and iaaft surrogate data sets based on the aforementioned wavelet-filtered S&P 500 returns. 

 

Figure 6: Daily S&P 500 logarithmic return series (blue) versus wavelet-filtered daily S&P 500 return series (orange) ranging from 2000 to 2020. 

4.2. Brownian Motion Returns 

Alongside the three surrogate data sets (ft, aaft and iaaft), we will apply a pure stochastic system realisation to 

ensure the proper specification of our S&P 500 return sample. Therefore, we will generate a realisation of a 

geometric Brownian motion or Wiener process 𝑆௧, whose length equals the length of our S&P 500 series 

(Oksendal, 2013): 

(1) 𝑆௧ =  𝛼𝑒
൬ఓି

഑మ

మ
൰௧ାఙௐ೟   with 𝛼 = 0.2;  𝜇 = 0.4; 𝜎 = 0.32; 𝑡 = 1 and 𝑊௧  being a Brownian Motion 

For this realisation, we will compute the logarithmic return series, as stated before, to ensure comparability 

between the S&P 500 returns and the stochastic system-realisation change rates, as depicted in Figure 7.  
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Figure 7: Realisation of Brownian Motion returns based on the S&P 500 return series length. 

4.3. Lorenz System Realisation 

In accordance with the pure stochastic system, we further implement a well-studied pure deterministic and chaotic 

system, namely the Lorenz system, with as many data points as the length of the S&P 500 series and with the 

following specification, as depicted in Figure 8 (Lorenz, 1963): 

(2)  𝑥ௗ = 𝑠(𝑦 − 𝑥) 

𝑦ௗ = 𝑟𝑥 − 𝑦 − 𝑥𝑧  with 𝑠 = 10; 𝑟 = 28;   𝑏 = 2.667 and 𝑑𝑡 = 0.01 

𝑧ௗ = 𝑥𝑦 − 𝑏𝑧  

Please note that 𝑥ௗ, 𝑦ௗ  and 𝑧ௗ are the values of the Lorenz attractor’s partial derivatives at the 𝑥, 𝑦 and 𝑧 points 

in three-dimensional space, respectively, while 𝑠, 𝑟 and 𝑏 are the parameters defining the Lorenz attractor. 
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Figure 8: Lorenz System, represented by example attractor realisation for s = 10, r = 28 and b = 2.667. 

 

5. Empirical Results 

5.1. Statistical Tests 

We now present the results of our empirical analysis, implementing the concepts stated in the theoretical section 

using self-written Python code54. We begin by testing the wavelet filtered S&P 500 returns, the surrogate data 

sets (ft, aaft and iaaft) as well as the Brownian motion realisation and the Lorenz system realisation in hindsight 

of stationarity by applying the ADF- and KPSS-test, as stated in Table 11. Regarding the 𝑝 −values, we can 

confirm for 1% significance level, that the series are stationary, with the exception of the Lorenz system. 

Regarding the KPSS-test, we apply the setting “c” to test stationarity around a constant and “ct” to test for 

stationarity around a trend, while using two lag-algorithms, namely the “auto” as stated in Hobijn and Frances 

(1998) and “legacy” proposed by Schwert (1989), for each noted setting. 

Furthermore, we test the distribution of the respective data series with a KS-test in terms of Gaussian distribution. 

Respective 𝑝 −values, assuming a 1% significance level, indicate non-Gaussianity within the respective 

distributions, as displayed in Table 11. Continuing our analysis, we calculate the BDS-test for 20 different 

embedding dimensions, to test for nonlinearity, as stated in Table 12. Please note, as indicated in section 3.3.2, 

we will only interpret the results as an indication of nonlinearity and omit the consideration of the pertaining 

underlying nature for now. The results show nonlinearity within the S&P 500 returns and the Lorenz system.  

                                                           
54 Parallel to commonly known libraries (e.g., NumPy, pandas and Matplotlib), we implemented the nonlinear dynamics packages 
Nolista and Nolds. 
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The results of the Brownian motion realisation depend on the respective embedding dimension, albeit for 

reasonable dimensions assumed to be linear. 

Table 11: Empirical results of the S&P 500 returns, surrogate data sets (ft, aaft, iaaft), Brownian motion realisation (BM) and the Lorenz system 
realisation (LS) for the ADF-, KPSS- and KS-test (𝑝 −values), “-” indicates zero value.  

Test S&P 500 returns ft aaft iaaft BM LS 

ADF - - - - - 0.0175 

KPSS (c, auto) 0.0397 0.1 0.01 0.1 0.1 0.01 

KPSS (c, legacy) 0.0396 0.1 0.0185 0.1 0.1 0.01 

KPSS (ct, auto) 0.1 0.1 0.01 0.1 0.1 0.01 

KPSS (ct, legacy) 0.1 0.1 0.01 0.1 0.1 0.01 

KS - - - - - - 

 

Table 12: BDS-test results (𝑝 −values) for S&P 500 returns, surrogate data sets (ft, aaft, and iaaft), Brownian motion realisation (BM) and the Lorenz 
system realisation (LS) for different embedding dimensions. “-” indicates zero-value. 

Embedding Dimension S&P 500 returns ft aaft iaaft BM LS 

1 

- 

0.7097 0.9472 0.6691 0.0701 

- 

2 0.7042 0.9073 0.6186 0.0541 

3 0.7176 0.9037 0.6219 0.0425 

4 0.7378 0.9031 0.6054 0.0332 

5 0.7564 0.9152 0.5724 0.0244 

6 0.7588 0.9094 0.5424 0.0172 

7 0.7602 0.9041 0.5232 0.0112 

8 0.7597 0.8977 0.4972 0.0061 

9 0.7505 0.8827 0.4708 0.0036 

10 0.7498 0.8701 0.4553 0.0019 

11 0.7485 0.8625 0.4394 0.0008 

12 0.7601 0.8632 0.4235 0.0003 

13 0.7782 0.8782 0.4035 0.0001 

14 0.7974 0.8917 0.3962 

- 

15 0.8041 0.9041 0.3879 

16 0.8071 0.9081 0.3677 

17 0.8041 0.9102 0.3553 

18 0.8103 0.9066 0.3462 

19 0.8163 0.9041 0.3348 

20 0.8316 0.9013 0.3209 

Result Nonlinear Linear Depending Nonlinear 
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To sum up, our S&P 500 wavelet-filtered return set is noise reduced, yields stationarity characteristics, is non-

Gaussian distributed and is significantly nonlinear, which concludes the prerequisites for conducting the referring 

of further chaotic measures. The surrogates are stationary and linear. 

5.2. Chaos Measures & Chaos Tests 

5.2.1. Space Time Separation 

In order to deduce further chaotic tests and measures (e.g., correlation sums), we will consider the possibility of 

temporal correlations within our sampled data sets. We note that, with regard to the space-time separation plots 

displayed in Figure 9, for the S&P 500 returns, slight temporal correlations are present within the signal; 

nonetheless, they are not oscillating or unsettling in an analysis-destroying manner.  

 

Figure 9: Space Time Separation Plots with (a) wavelet-filtered S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)–(f) 
surrogates: (d) ft, (e) aaft and (f) iaaft. For the S&P 500 wavelet-filtered return series, the figure (a) states some low levels of temporal correlation. 
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5.2.2. Chaos Measures 

We will continue with the empirical analysis by applying the discussed correlation sum scheme (see 3.2.2), stated 

in Figure 10, which is calculated for 19 respective embedding dimensions. Visually, a scaling region is 

determinable for the S&P 500 returns and the Lorenz system; however, we introduce a new method for 

quantitatively ensuring the visual impression. In order to determine a line, i.e., the scaling region in the respective 

correlation sum plot, we calculate the rate of changes of the correlation sums themselves and test them via a 

Student’s 𝑡 −test to be statistically different from zero, as shown in Figure 11. The results indicate the existence 

of a scaling region for the S&P 500 returns and the Lorenz system. Further, regarding the S&P 500 returns, it is 

imminent to state that five is the first minimum embedding dimension, which shows all 𝑝 −values to be significant 

with 1% confidence, which we will therefore assume in further chaos calculations. Regarding the other data sets, 

no clear scaling region is detectable. The correlation dimension of the S&P 500 returns (0.8551) indicates low-

dimensional fractal structures and saturates for varying embedding dimensions. The same behaviour is 

determinable for the Lorenz system, as stated in Figure 12. The other data sets do not show signs of saturation at 

a given dimensional estimate55. Further, regarding Figure 13, we can clearly recognise the differences between 

the S&P 500 return series and the respective surrogate data sets, since their respective dimensional estimates 

differ notably.  

Moreover, we calculate the sample entropy, the Hurst exponent and the respective fractal dimensional estimate, 

the DFA alpha exponent, the maximum Lyapunov exponent, the Lyapunov time and the Lyapunov spectrum, as 

stated in Table 13.  

With regard to the S&P 500 returns, the sample entropy is small (0.3213), indicating a high-level of self-similarity 

within the data that resembles the Lorenz system (0.1536), in contrast to the other data sets (𝑆𝑎𝑚𝑝𝐸𝑛 > 1). This 

is covered by a Hurst exponent of 0.5557 for the S&P 500 returns and 0.8575 for the Lorenz system, which can 

be interpreted as persistent, self-similar (or fractal) behaviour, resulting in trends56 within the data. The surrogates 

follow the structure of the S&P 500 returns, therefore, yielding Hurst exponents above 0.5. Further, estimating 

𝐷 = 2 − 𝐻 results in a dimensional estimate for the S&P 500 returns of 1.4443 and for the Lorenz system 1.4911. 

For ft (0.0641) and the Brownian motion (0.0028), a low correlation dimension is noted, while aaft (2.7402) 

and iaaft (2.7401) result in higher estimates, which is an artefact due to the spectral nature of the surrogates. 

Correlation is also testified by the DFA alpha value for the S&P 500 returns with 0.5188 and 1.5642 for the 

Lorenz system, yielding non-stationarity. By disregarding ft (0.4734) stating uncorrelated data, the other data 

sets indicate correlations (0.5 ≤ 𝛼 < 1).  

                                                           
55 Please note that a drop to zero for the given embedding dimensions does not represent a valid saturation. 
56 Please note that we do not refer to seasonal trends. For an in-depth discussion, refer to Berghorn (2015). 
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Elaborating on the S&P 500 dynamical properties, we confirm a positive maximum Lyapunov exponent of 

0.0296, resulting in exponentially diverging trajectories over time evolution and a negative Lyapunov spectrum 

sum (−0.5182). Together, these indicate that the system is of a dissipative nature. Furthermore, we determine the 

Lyapunov time57 of the S&P 500 returns to be 33.7837. Similar results occur for the Lorenz system. Hence, we 

can assume that the S&P 500 return system will deflate into a low-dimensional phase space sub-volume, namely 

an attractor, whose possible existence we will elucidate in section 5.3.  

 

Figure 10: Log-log plot for correlation sums versus diameter for different embedding dimensions with (a) wavelet-filtered S&P 500 returns, (b) 
Lorenz system, (c) Brownian motion returns and (d)–(f) surrogates: (d) ft, (e) aaft and (f) iaaft.  

                                                           
57 Depending on the point of view, the Lyapunov time can be seen either in standard time [s] or in the time-units of the data series. 
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Figure 11: 𝑝 −values for changes in correlation sums for different diameter (𝑡 −test for the change to be zero) for different embedding dimensions 
with (a) wavelet-filtered S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)–(f) surrogates: (d) ft, (e) aaft and (f) iaaft. 
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Figure 12: Correlation dimensions for different embedding dimensions with (a) wavelet-filtered S&P 500 returns, (b) Lorenz system, (c) Brownian 
motion returns and (d)–(f) surrogates: (d) ft, (e) aaft and (f) iaaft. 

 

 

Figure 13: Correlation dimension of S&P 500 return series (y-axis) versus correlation dimensions of surrogate data (x-axis) for different embedding 
dimensions: (grey) diagonal indicates exact resemblance, (a) ft, (b) aaft and (c) iaaft. 
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Table 13: Chaos measure results for S&P 500 returns, surrogate data sets (ft, aaft, iaaft), Brownian motion realisation (BM) and the Lorenz system 
realisation (LS). 

Chaos Measure S&P 500 ft aaft iaaft BM LS 

Sample Entropy 0.3213 2.1611 1.1126 1.0772 2.0977 0.1536 

Correlation 

Dimension58 
0.8551 0.0641 2.7402 2.7041 0.0821 1.4911 

Maximum Lyapunov 

Exponent 
0.0296 -0.0005 0.0006 0.0045 0.0028 0.0144 

Lyapunov Time 33.7837 (2,000) (1,666.6666) (222.2222) (357.1428) 69.4444 

Lyapunov Spectrum 

[1.7461, 

0.2231,-

0.2955, -

0.6226, -

1.5685 ] 

[0.5663, 

0.2521, 0.0339, 

-0.2094, -

0.6767] 

[0.0876, 

0.31039, 

0.0594, -

0.1987, -

0.6641] 

[0.8443, 

0.3195, 0.0496, 

-0.2027, -

0.6575] 

[0.5636, 

0.2474, 0.0341, 

-0.1952, -

0.6487] 

[0.0177, 

0.0109, -

0.0037,  

-0.0487, 

 -0.1176] 

Lyapunov Sum -0.5182 -0.0238 0.3836 0.3532 0.0012 -0.1413 

Hurst Exponent 0.5557 0.5606 0.6833 0.5557 0.5506 0.8575 

Hurst Dimensional 

Estimate 
1.4443 1.4394 1.3167 1.4443 1.4494 1.1425 

DFA Alpha Exponent 0.51883 0.4734 0.6324 0.5451 0.5286 1.5642 

 

5.2.3. Bask-Gençay Test 

Since for the S&P 500 return series, the maximum Lyapunov exponent is small above zero and the methodology 

suffered the critique of non-existent distributional theory in order to conduct respective hypothesis testing, we 

employ the Bask-Gençay test, as described in 3.3.3 by conducting the test with 50,000 bootstrapping steps for 

19 respective embedding dimensions, stated in Table 14. The results of the Bask-Gençay test indicate, that for 

the embedding dimension of five, the Null hypothesis of ~𝑖𝑖𝑑 properties cannot be uphold, therefore, stating 

chaotic dynamics for the S&P 500 returns. The Lorenz system is chaotic, up to an unrealistic assumption for the 

embedding dimensions. The same can be stated for the stochastic nature of the other data sets vice versa. 

Table 14: Bask-Gençay test for S&P 500 returns, surrogate data sets (ft, aaft, iaaft), Brownian motion realisation (BM) and the Lorenz system 
realisation (LS), for different embedding dimensions and 50,000 bootstrapping steps. 

Embedding Dimension S&P 500 ft aaft iaaft BM LS 

2 -0.0153 -0.0024 -0.0103 0.0011 0.0003 0.0117 

3 -0.0105 -0.0024 -0.0084 -0.0005 0.0007 0.0163 

4 -0.0056 -0.025 -0.0072 0.0004 -0.0002 0.0183 

 

                                                           
58 Following Ramsey et al. (1990), correlation dimension estimates with limited data sets reveal misleading results, notably returning 
artificially smaller correlation dimension estimates. 
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Embedding Dimension S&P 500 ft aaft iaaft BM LS 

5 0.0069 -0.0031 -0.0045 -0.0005 0.0008 0.0232 

6 0.0041 -0.0041 -0.0055 0.0002 0.0002 0.0218 

7 0.0002 -0.0044 -0.0061 0.0022 -0.0015 0.0224 

8 -0.0042 -0.0033 -0.0073 0.0021 -0.0006 0.0227 

9 0.0111 -0.0036 -0.0078 0.0003 -0.0007 0.0197 

10 0.0205 -0.0201 -0.0114 -0.0318 0.0017 0.0088 

11 0.0321 -0.0178 -0.0165 -0.0226 -0.0401 -0.0209 

12 0.0546 -0.0025 0.0271 -0.0011 -0.0297 -0.0258 

13 0.0418 0.0101 0.0382 0.0094 -0.0091 -0.0241 

14 0.0438 0.0178 0.0199 0.0012 -0.0044 -0.0211 

15 0.0479 0.0176 0.0342 0.0006 -0.0001 -0.0238 

16 0.0385 0.0163 0.0255 0.0021 -0.0011 -0.0235 

17 0.0491 0.0151 0.0254 0.0004 -0.0009 -0.0251 

18 0.0372 0.0134 0.0233 -0.0021 -0.0026 -0.0246 

19 0.0361 0.0114 0.0223 -0.0042 -0.0043 -0.0252 

20 0.0328 0.0104 0.0196 -0.0067 -0.006 -0.0266 

 

5.3. Phase Space Reconstruction 

In order to show the chaotic dynamics of the wavelet-filtered S&P 500 return series visually, we will reconstruct 

the strange attractor by implementing the delay-time reconstruction of Takens (1981) and display a spectral 

embedding as described by Song et al. (2016). As described in section 3.4.1, we will determine the delay time 𝜏 

by regarding respective autocorrelation functions as stated in Figure 14. We decide upon the value 𝜏 = 20 as 

suitable choice for our reconstruction purposes. For the spectral embedding a 𝑘 −nearest neighbour algorithm is 

implemented, paired with a principal component analysis, before calculating Laplacian Eigenmaps for respective 

eigenvalues, yielding component numbers equal to the chosen embedding dimension, namely five. For the 

determination of 𝑘, we apply the following rule 𝑘 = 0.01𝑇 + 1.5𝜏, thus stating 83 respective neighbours. 

We present the reconstructed dynamics based on Takens delay embedding in Figure 15, while the computation 

results of the spectral embedding are shown in Figure 16 and the Poincaré sections in Figure 17. Moreover, the 

attractor of the Lorenz system is already displayed in Figure 8; yet, we will propose the spectral embedding results 

also in Figure 16. Additionally, in order to provide a sufficient differentiation between pure chaos, pure stochastics 

and our financial sample, we further state in Figure 16 the spectral embedding of the Brownian motion returns59. 

We see that the financial strange attractor resembles neither sole stochastic, nor pure deterministic chaotic Lorenz 

system visualisations. A formal discussion of this indication is provided after the conduction of the RQA. 

                                                           
59 Please note the surrogates to resemble qualitatively the Brownian motion reconstructions. Thus, we will neglect their display. 
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Figure 14: Autocorrelation function with 100 lags for the wavelet-filtered S&P 500 return series. 

 

 

Figure 15: Takens Embedding approach with time-delay of 𝜏 = 20 for wavelet-filtered S&P 500 returns. 
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Figure 16: Graphical spectral embedding results for (a)-(c) S&P 500 wavelet-filtered returns (different angles), (d) and (e) Lorenz system (different 
angles) and (f) Brownian motion returns (qualitatively resembling the surrogates ft, aaft, iaaft).  

 

 

Figure 17: Poincaré sections of the spectral embedding results for the S&P 500 wavelet-filtered returns. 
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To sum up this section, we state that the S&P 500 wavelet-filtered daily return series is stationary, non-Gaussian 

distributed and nonlinear. Further, its dynamics reveal themselves to be chaotic and the system to be dissipative, 

following the maximum Lyapunov exponent (backed by the Bask-Gençay test) and the Lyapunov spectrum sum. 

Additionally, the series is hyperchaotic due to the existence of two positive Lyapunov exponents in the spectrum. 

Further, following the Hurst exponent, fractal trends are presents in the signal. Given saturating correlation 

dimensions and a scaling region in the correlation sum scheme, indicates the existence of a strange chaotic 

attractor, which we show by Takens approach as well as by applying spectral embedding, respectively. 

5.4. Recurrence Quantification Analysis 

In the previous section, we did not elaborate on the deeper nature of the dynamics, since the S&P 500 return 

system neither resembles a pure stochastic nor a purely deterministic system. Therefore, we will now present the 

results of the RQA for all data sets. The RQA is appealing due to its focus on the recurrence properties, meaning 

it is somewhat independent from the other analysis methods presented so far. Afterwards, we will elaborate on 

the respective interpretation. We begin with the visual RP analysis, as stated in section 3.5, which clearly 

illustrates the inherent differences between our data sets under regard visually, and is displayed in Figure 18. 

 

Figure 18: RPs for 𝜀 = 0, with (a) wavelet-filtered S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)–(f) surrogates: (d) ft, (e) 
aaft and (f) iaaft. 
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We quantify these visual indications by applying the RQA measures as presented in section 3.5. Hence, we will 

first present single-valued measures in Table 15, which do not depend on a choice of a minimum diagonal or 

vertical length, before displaying for a selected length, namely 𝑙௠௜௡ = 𝑣௠௜௡ = 6, the other RQA measure results 

in Table 16. To be more detailed, we present the graphical developments over different choices of the minimum 

lengths in Appendix A2.  

We focus in the following description on the differences of the S&P 500 return series versus the other data sets, 

respectively, to gain a deeper insight into the true underlying nature of the dynamics (ignoring the chaoticity we 

showed previously). In the case of single-valued RQA measures, no trend is visible (out of the Brownian motion 

returns with 0.0176). To elucidate further on the recurrence rate, we cannot state any notable differences between 

all data sets. In terms of maximum diagonal length, indicating similar local evolutions of phase space trajectories, 

we note two main disparities, namely (1) the S&P 500 returns show around 90% larger diagonal length maxima 

than the surrogate data sets and the Brownian motion return realisation and (2) the S&P 500 returns maximal 

diagonal length is around 95% smaller than the pure deterministic Lorenz system. With the exception of the 

Lorenz system, the same differences are reflected by the divergence measure.  

Elaborating on the maximal vertical line length, indicating the time duration in which a state does not change and 

is trapped, in contrast to the diagonals, the picture changes notably with regard to the Lorenz system. As with the 

diagonal maxima, the vertical maxima of the surrogate data sets as well as the Brownian motion return realisation 

are around 90% smaller than the according S&P 500 return series. In contrast, the Lorenz system diverges from 

the S&P 500 returns with an approximately 38% smaller vertical maximum.  

Table 15: Single-value RQA measure results for S&P 500 returns, surrogate data sets (ft, aaft, iaaft), Brownian motion realisation (BM) and the Lorenz 
system realisation (LS). “-” represents zero-value, while (∙) states the percentage difference (in decimals) to the S&P 500 returns, if no zero-value is 
present. 

Measure 
S&P 500 

returns 
ft aaft iaaft BM LS 

𝑇𝑅𝐸𝑁𝐷 - - - - 0.0176 - 

𝑅𝑅 0.1998 
0.1998 

(-) 

0.1998 

(-) 

0.1998 

(-) 

0.1998 

(-) 

0.1981 

(0.0085) 

𝐿௠௔௫  104 
10 

(-0.9038) 

11 

(-0.8942) 

10 

(-0.9038) 

11 

(-0.8942) 

2218 

(0.9531) 

𝐷𝐼𝑉 0.0096 
0.1 

(0.904) 

0.0909 

(0.8943) 

0.1 

(0.904) 

0.0909 

(0.8943) 

0.0004 

(-0.9583) 

𝑉௠௔௫  108 
8 

(-0.9259) 

11 

(-0.8981) 

11 

(-0.8981) 

12 

(-0.8888) 

66 

(-0.3888) 
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Continuing the analysis, we reflect upon the RQA measures, which are dependent on the various minima choices 

for the referring diagonal and vertical lengths. Elaborating on the Shannon entropy, displaying the complexity of 

the systems being regarded, we state that the S&P 500 returns are around 93% more complex than the surrogate 

data sets and the Brownian motion realisation, while the Lorenz systems is over 30% more complex than the S&P 

500 returns. Further, the determinism measure indicates the predictability of the data sets, stating the S&P 500 

returns to be over 99% more predictable than the surrogate data sets and the Brownian motion realisation.  

Moreover, we note that the S&P 500 return series also yields a predictability that is over 40% higher than the 

pure chaotic Lorenz system. Regarding the ratio of the systems, we only see differences with regard to the S&P 

500 returns versus the Lorenz system, which displays a 99% higher ratio and indicates transitions in the Lorenz 

dynamics, with constant determinism as noted in Marwan and Kurths (2005). An elucidation of averaged diagonal 

lengths reveals that the S&P 500 returns yield around 85% longer diagonals on average than the surrogate data 

sets and the Brownian motion realisations, and over 92% shorter diagonals on average than the Lorenz system. 

Reviewing the vertical lengths, we state the laminarity as a measure of the occurrence of laminar states in the 

respective systems. We see that the S&P 500 returns yield over 97 − 99% more laminarity than the other data 

sets. Referring to the averaged vertical length, namely the trapped time indicating the time passed at one respective 

system state, we note the S&P 500 series to be trapped over around 90 − 97% longer than the respective 

surrogates, while remaining at a given state around 117% longer than the Lorenz system, accordingly.  

Table 16: RQA measure results with 𝑙௠௜௡ = 𝑣௠௜௡ = 6 for S&P 500 returns, surrogate data sets (ft, aaft, iaaft), Brownian motion realisation (BM) and 
the Lorenz system realisation (LS). “-” represents zero-value, while (∙) states the percentage difference (in decimals) to the S&P 500 returns, if no zero-
value is present. 

Measure 
S&P 500 

returns 
ft aaft iaaft BM LS 

𝐸𝑁𝑇𝑅 17.4418 
1.1925 

(-0.9316) 

1.2036 

(-0.9309) 

1.1631 

(-0.9333) 

1.5561 

(-0.9107) 

25.2621 

(0.3095) 

𝐷𝐸𝑇 0.4286 
0.0017 

(-0.9961) 

0.0016 

(-0.9962) 

0.0018 

(-0.9958) 

0.0021 

(-0.9951) 

0.2497 

(-0.4174) 

𝑅𝐴𝑇𝐼𝑂 0.0008 - - - - 
0.2361 

(0.9966) 

𝐿 8.6197 
1.2268 

(-0.8576) 

1.3213 

(-0.8467) 

1.1869 

(-0.8623) 

1.3463 

(-0.8438) 

117.2926 

(0.9265) 

𝐿𝐴𝑀 0.6146 
0.0025 

(-0.9959) 

0.0199 

(-0.9676) 

0.0166 

(-0.9729) 

0.0028 

(-0.9954) 

0.0064 

(-0.9895) 

𝑇𝑇 3.2282 
0.3514 

(-0.8911) 

0.1249 

(-0.9613) 

0.1046 

(-0.9675) 

0.0874 

(-0.9729) 

-0.5625 

(-1.1742) 
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5.5. Conclusion of the Empirical Analysis 

In sections 5.1–5.4, we present the empirical results of our newly proposed combinatory framework to determine 

the true nature of the underlying dynamics of the daily S&P 500 wavelet-filtered return series versus surrogate 

data sets, a Brownian motion return realisation and a Lorenz system realisation. We will now recapitulate the 

results before critically discussing the implications in hindsight of forecasting and chaos control. First, we ensure, 

via calculation of log-returns, that the S&P 500 series is stationary, while applying a level 12 cascadic Haar 

wavelet filter bank to secure an acceptable noise level. The stationarity is tested by implementing ADF- and 

KPSS-tests, which confirm stationarity for the S&P 500 returns. Furthermore, we conduct a KS-test in order to 

testify the distributional characteristics of the data sets, resulting in the S&P 500 returns to follow a non-Gaussian 

distribution. Moreover, we determine nonlinearity within the S&P 500 returns by conducting a BDS-test, as well. 

To prevent the impossibility of referring phase space reconstruction schemes, we elaborate on the existence of 

temporal correlations within the data sets, assuming the presence of light temporal correlations that we premise 

to be non-analysis destroying. 

In order to pinpoint a suitable embedding dimension for the reconstruction schemes, we provide a respective 

correlation sum approach, yielding a scaling region within the S&P 500 return series that is confirmed via a 

change-significance test. In addition, we see for several choices of the embedding dimension that the according 

correlation dimension saturates at a given level. We state clear differences between the S&P 500 return series 

versus the surrogate data sets as well as the Brownian motion return series with regards to reconstructability. 

Additionally, we display the dimensional dissimilarities graphically. Moreover, we calculate several chaotic 

measures, namely the sample entropy, maximum Lyapunov exponent, Lyapunov time, Lyapunov spectrum, 

Lyapunov sum, Hurst exponent, Hurst dimensional estimate and the DFA alpha exponent to elucidate the 

distinctions between the data sets. The S&P 500 return series shows high-levels of self-similarity regarding the 

sample entropy and Hurst exponent, accompanied by correlations indicated by the DFA alpha value. This results 

in fractal structures, which are backed up by the fractal dimension evinced by the Hurst dimensional estimate as 

well as the correlation dimension itself. In addition, hyperchaotic behaviour implied by two positive Lyapunov 

exponents in the spectrum and a positive maximum Lyapunov exponent can be seen. Together with a negative 

Lyapunov sum, we identify the S&P 500 series as a dissipative system with chaotic behaviour after the very short 

Lyapunov time expires. To increase the credibility of the maximum Lyapunov exponent results, we determine its 

significance by the Bask-Gençay test with 50,000 bootstrapping steps for several embedding dimensions. We 

confirm significance and present the strange (chaotic) attractor for the S&P 500 returns via the Takens delay-time 

embedding as well as with a spectral embedding approach.  
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Furthermore, we exhibit the significant distinction between the S&P 500 return series and a pure stochastic, pure 

deterministic as well as its surrogate data series by conducting an almost independent RQA. The main indications 

demonstrate that the S&P 500 return series produces significantly higher deterministic properties than the 

surrogate as well as pure stochastic data sets. However, does not provide sufficient results to be classified as a 

pure deterministic system such as the Lorenz system realisation being regarded. Moreover, the S&P 500 return 

series manifests more laminar and trapped states than the other data sets, which reveals that its identification as a 

pure stochastic system is an invalid premise too. 

Therefore, we follow the argumentation of Kyrtsou et al. (2004) and Holyst and Urbanowicz (2001), and we 

determine that the S&P 500 return series is an almost equally divided combination between stochastic and 

deterministic chaos. 

6. Conclusion, Discussion and Implications 

6.1. Concluding Summary 

For the field of nonlinear dynamics, as well as the field of nonlinear financial analysis, we present an 

encompassing body of literature by presenting a bibliometric analysis, paired with a successive citation network 

analysis, displaying the respective research streams, their interconnections, vividly important publications of the 

field as well as a respective dispersion of related research streams. We observe the dispersion or divergence of 

the latter fields due to methodological choices within the referring analysis, leading to a separation of knowledge 

in future research attempts due to the creation of so-called research isles that are mostly independent from each 

other.  

Further, we present and elaborate on the ongoing controversy of whether the dynamics of a financial system is 

stochastic or deterministic (chaotic) with regard to its underlying evolutionary process, stating the necessity of 

providing a sufficient framework in order to obtain clear, interpretable as well as comparable results. Moreover, 

in addition to the stated controversy, the publications related to financial data analysis in terms of nonlinear 

dynamics do not present a complete framework and the respective methods are scattered throughout the literature, 

rendering their unification and comparability inconclusive as well. In combination with the problems inherent 

within the nonlinear dynamical analysis itself, this is assumed to contribute negatively towards the solution of the 

aforementioned controversy. 

We aim at recreating severed bridges and recombining the separated streams of research by providing a novel 

combinatory-methodology framework approach by combining relevant tests, measures and methods premised to 

achieve a conclusive analysis.  
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Therefore, we elaborate on the essences of theory in more detail than stated within other publications in order to 

create comparability and transparency in hindsight of our empirical analysis, which strictly follows the theoretical 

premises presented. Such a deeper elucidation of theory should also build a basis for future empirical analysis 

within the respective field in hindsight of financial data analysis. 

Therefore, we conduct a respective analysis of the daily wavelet-filtered (denoised) S&P 500 returns (2000–2020) 

and compare it with respective surrogate data sets (ft, aaft and iaaft) as well as a Brownian motion return 

realisation and a Lorenz system realisation through the application of the aforementioned combinatory-

methodology approach. Our findings indicate that the S&P 500 returns display hyperchaotic behaviour, which is 

almost equally divided into deterministic and stochastic chaos. Additionally, we derive a graphical representation 

of its strange chaotic attractor. Furthermore, we elaborate on the implications of this finding, namely that the 

predictability of it is only possible on short-time scales up to the expiration of the Lyapunov time, rendering 

financial forecasts exceeding this time-period impossible and futile. In order to forecast the time period before 

the S&P 500 returns descend into chaos, all initially mentioned stylised facts and other characteristics need to be 

accounted for, meaning that for this slight time window, all knowledge gathered in the academic literature about 

financial and risk modelling is relevant and applicable for respective implementations. 

6.2. Limitations and Prospects of the Study 

Within this study, we present a novel and powerful combinatory-methodology approach to determine chaotic 

dynamics in financial time series more effectively, enabling other scholars to avoid inconclusive or stained results 

due to misspecifications or partly missing methods, and as a reaction to Kantz & Schreiber (2003). Further, we 

state a vast body of literature as our reference, while, at the same time, conducting state-of-the-art analysis in 

order to contribute towards conclusive future results. Nevertheless, without misconduct, we also need to elaborate 

on potential shortcomings. At first, we want to discuss the critique of BenSaïda (2014) as well as that of Sandubete 

and Escot (2020), elucidating on the differences regarding sampling frequency and choice of time scale.  

Even if we intentionally pick daily return series to demonstrate the possibility of conducting successful analysis 

with this time scale, we do not elaborate on the sub-dynamics on different time scales of the S&P 500 return series 

being studied. Therefore, we cannot exclude the possibility of diverging dynamics on different time scales 

referring to this specific system, or other time series in general. Furthermore, we neglect the development of a 

statistical significance test in order to determine the stated temporal correlations to be analysis destroying or 

acceptable. Additionally, we do not implement neural network classification, forecasting or respective chaos 

control algorithms ourselves in order to gain deeper insights into the time series being regarded. 
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Moreover, we only state the diverging streams of research without providing an in-depth analysis of the reasons 

and periods of this separation. In addition, we neither present the implications of the methods within each of the 

displayed research communities in hindsight of nonlinear dynamics nor do we analyse potential guidance for 

future unification of these fields. Finally, we do not elaborate deeper on possible combinations of state-of-the-art 

financial modelling attempts with previously determined nonlinear dynamical analysis approaches and their 

interaction with stated communities of research.  

6.3. Theoretical Implications 

Following the course of this study, we display an encompassing variety of methods to determine the true nature 

of the dynamics of a financial time series, i.e., the S&P 500 daily returns. In order to conduct the analysis, several 

mathematical prerequisites, as described in section 3, must be fulfilled. Among those requirements, we adopt a 

mostly60 topological stance based on diffeomorphisms (see 3.1.3) in order to aim for a relevant reconstruction. 

Following Takens (1981) as well as Hirsch (1997), the computation of phase space topology of a dynamical 

system (e.g., a financial market) from a scalar data set (e.g., time series) prerequisites an accurate methodology 

in order to achieve a successful reconstruction.  

Nonetheless, reconstruction processes involve a diversity of free parameters and the computation of according 

homology61 for a large number of scenarios, which reveals to be demanding at the very least (Garland et al., 

2016). For reconstruction by delay-embeddings (i.e., Takens’s approach), a full diffeomorphic reconstruction is 

a mathematical underlying assumption (Garland et al., 2016). Nevertheless, following Edelsbrunner et al. (2000) 

and Robins (2002), the homology of data-driven underlying invariant sets contaminated by noise is resolvable by 

witness complexes, resulting in a respective reconstruction, even if the reconstruction dimension is below the 

threshold for assurance of topological conjugacy between the true and reconstructed dynamics, as specified by 

the embedding theorems. Following Garland et al. (2016), this insight reveals a computationally less demanding 

method62, since reconstruction requirements for homology are less strict. In other words, reconstructing homology 

requires only homeomorphisms in contrast to the pertaining diffeomorphisms prerequisite by traditional 

embedding theorems, such as those we apply in this study. 

Apart from the computational scarcity of the homology approach, the traditional reconstruction of a time series 

is very complex, since free parameter choices need to be conducted for an incomplete single trajectory of the 

system only represented via the latter time series (Garland et al., 2016). 

                                                           
60 With the exception of some minor metrical definitions.  
61 General association of sequences of algebraic objects (e.g., groups) to other mathematical objects (e.g., topological spaces). 
62 In computational topology, the Conley-index of isolating neighbourhoods is applied to study dynamical invariants (Garland et al., 
2016). 
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Further, it is not covered by the respective parameter decision-making guidance of traditional embedding 

theorems (e.g., Takens’s delay-time embedding) whatsoever (Garland et al., 2016). Moreover, following Garland 

et al. (2016), a reduced invariant reconstruction method is sufficient in order to extract the topological structures 

of interest, in contrast to the delay-embedding premises of Takens (1981), Packard et al. (1980) and Sauer et al. 

(1991), which state equality of the reconstructed attractor and the original attractor only in the case of 

diffeomorphism. In addition, dimensionality of the real system, represented via a finite time series, is unknown 

and the determination of an according embedding dimension63 is not without critical hindrances, as stated in 

section 3.4.  

Following the homology approach would also render the dissection of a valid 𝜏 redundant, since important 

attractor-properties (e.g., transitivity, continuity, recurrence and entropy) are topological in nature and therefore 

extractable via homeomorphisms (Mischaikow et al., 1999). Further theoretical ambitions can be directed towards 

applying astrophysical conceptions on scalar time series data in order to dissect adiabatic energy diffusion for a 

respective financial system (Jarzynski, 1994). Following Jarzynski’s (1994) elaboration on the possibility of 

determining the chaotic evolution and diffusion times within the respective financial system yields severe 

implications on forecasting and control capabilities.  

From an empirical point of view, the academic literature mostly only considers one time scale (e.g., daily series) 

within their respective studies. This, according to Sandubete and Escot (2020), may represent a sampling interval 

that is too long for financial time series. This is also covered by BenSaïda (2014), who states that different 

dynamics apply for different time scales of financial data being regarded. Hence, an intra-day frequency data set 

may propose varying results than daily data sets. The choice of a sufficient sampling interval and the regard of all 

relevant time scales at once may render the referring loss of information less dire, as well as partly solve the 

inconclusiveness in the stated literature (see 2.3) (Sandubete & Escot, 2020). 

6.4. Forecasting Implications 

To recapitulate, Çoban and Büyüklü (2009) state that chaotic dynamics display deterministic yet unpredictable 

patterns. After the expiration of the Lyapunov time, no further prediction of the system is possible even if the 

computational capacities are increased (Shevchenko, 2018). Therefore, since we reveal sufficient empirical 

indications of chaoticity in the S&P 500 return series, we deem it an utmost necessity to elaborate on the 

implications of findings in the academic literature (see 2.3), stating financial time series to be of a chaotic nature 

as a result.  

 

                                                           
63 For further details, please refer to Kennel et al. (1992). 

Electronic copy available at: https://ssrn.com/abstract=3802753



59 
 

In section 5.5, we show the existence of two positive Lyapunov exponents, indicating hyperchaotic behaviour 

that may result in crises and breakdowns. Following Kozłowska et al. (2016), evidence of determination of 

warning indicators based on catastrophic bifurcation points for unpredictable financial systems are presented. 

These bifurcations lead to volatility clusters under a timely evolution, displaying critical dynamics caused by 

small perturbations to evoke drastic consequences (Gaunersdorfer et al., 2008). Such regime shifts occur as 

intricate, complex occurrences caused by the aforementioned catastrophic bifurcations; hence, they represent 

tipping points or sudden shifts into a crisis (Kozłowska, et al., 2016). According to Matia and Yamasaki (2005), 

the bifurcation points are artificial and caused by the distributions of trade sizes to follow specified power laws, 

whose exponents originate from Lévy stable domains. Nevertheless, regarding the financial crisis of 2008, critical 

indications in terms of bifurcation points include the notable months ahead of the crisis’s occurrence (Kozłowska, 

et al., 2016). 

Pivoting towards the predictability of a financial system itself, nearest neighbour algorithms are stated to produce 

acceptable results for chaotic systems (e.g., in the case of a one-neighbour algorithm, it takes the past, whose 

resemblance with today’s system state is the highest and assumes it for the future) (Guégan & Leroux, 2009). 

However, regarding the severity of chaoticity in financial systems in terms of forecasting, Matilla-García and 

Marín’s (2010) work reveals a lack of varying testing procedures to test for complex chaotic processes. In recent 

years, neural network technologies due to high computational capabilities are on the rise (e.g., Tkac & Verner, 

2016). However, early attempts to challenge chaotic behaviour with neural networks can be found in the work of 

Chapeau-Blondeau (1993). Further, implementing standard deep neural networks can be used to simulate and 

determine several time series, which are chaotic in nature (Boullé et al., 2020). A referring generalisation by 

convolutional neural networks without batch normalisation layers outperforms respective state-of-the-art neural 

networks for time series classifications in hindsight of chaos determination attempts (Boullé et al., 2020).  

A convolutional neural network with large kernel size (LKCNN) is capable of assimilating the chaotic 

characteristics of a dynamical system and classifying respective time series  with high accuracy (Boullé et al., 

2020). Furthermore, recurrent reinforcement learning (RRL) techniques, alongside staked deep dynamical 

recurrent reinforcement learning (SDDRRL), can be applied to control chaos in portfolio optimisations64 

(Aboussalah & Lee, 2020). For the processing of digital currencies, Altan et al. (2019) implement a hybrid 

solution with respect to reduction of negative eventualities. However, chaotic nature combined with measurement 

limitations of the initial state and sensitive dependence constitute an undeniable upper bound on the forecasting 

abilities for such systems, even if the respective models are sufficient as stated before, thus allowing predictions 

only on short time-scales (Barkoulas et al., 2012). 

                                                           
64 See the rolling horizon mean-variance-optimisation (MVO), the rolling horizon risk-parity model and the uniform buy-and-hold 
(UBAH) index. Kolm et al. (2014) grant a sophisticated overview of portfolio optimisation literature. 

Electronic copy available at: https://ssrn.com/abstract=3802753



60 
 

Cecen and Erkal (1996) already take on the short-term predictability as well as its consequences, and state the 

applicability of nonlinear deterministic functions as possible solution for the assumption of low-dimensional 

chaos in foreign exchange markets. Exceeding the aim of so-called simple classifications, Chai and Lim (2016) 

propose a neural network solution with weighted fuzzy membership functions in order to predict business cycles. 

By empirically deducting Bayesian regression with normal as well as double-exponential priors, which are highly 

correlated with principal component forecasts, DeMol and Reichlin (2016) show promising results working with 

time series data. Lahmiri and Bekiros (2019) implement novel ideas with a cryptocurrency forecasting approach 

with deep learning chaotic neural networks, while chaos-based models with kernel predictors (i.e., support vector 

machines) to reduce prediction errors in chaotic time series are executed by Huang et al. (2010).  

Another data-driven approach to challenge the predictability of chaos is exhibited in Guo et al.’s (2008) work as 

they bring up chaos-evolutionary-programming algorithms (CEPA), merging a modified chaotic optimisation 

algorithm (COA) with a modified evolutionary- programming algorithm (EPA). Procedures that are considered 

to be more exotic exploit chaotic particle swarm optimisations for data clustering, as presented in Chuang et al. 

(2011), while a more basic attempt by identifying intrinsic characteristics of high-dimensional financial data with 

kernel entropy manifold learning can be seen in Huang and Kou (2014, 2017). Another powerful method of 

determination of chaotic time series is called power spectral analysis. Following Brandstater and Swinney (1987), 

chaotic time series are characterised by broadband spectra and, according to Fenstermacher et al. (1979), these 

spectra are intrinsic for either chaotic or stochastic time series, accordingly Therefore, Cao et al. (1995) go on to 

state the superiority of wavelet neural networks (WNNs) to forecast chaotic time series, which is enhanced by 

ensemble empirical mode decomposition (EEMD) into WNNs with random time (WNNRT) in the hybrid 

prediction model for commodity and energy prices by Yang and Wang (2021). A sophisticated overview of 

econophysically concepts can be found in Chakraborti et al. (2011). 

6.5. Chaos Control 

Parallel to the thought of accepting chaoticity and aiming towards classifications and so-called before-chaos 

predictions as stated in the previous section, following Grebogi and Lai (1997), early impactful reviews about the 

idea of controlling chaotic dynamics exist. We state examples of control algorithms and schemes in Table 17. 

Since chaotic responses increase uncertainty in financial systems, control schemes, synchronisation models65 or 

suppression algorithms applied to hyperchaotic economical systems66 may yield the respective resolutions 

(Jahanshahi et al., 2019, 2019a, 2019b).  

                                                           
65 See Zaho et al. (2011). 
66 For more on multifractals and their scaling laws, refer to Paladin and Vulpiani (1987). 
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We will not elaborate further on this subject due to the scope of this study, yet we state that the field of chaos 

control for financial markets is still under-represented and can produce interesting future prospects.  

Table 17: Overview of chaos control possibilities. 

Author Short Description 

Hajiiloon et al. (2018) 
Chaos control algorithm for unknown discrete time chaotic 

system employed to reconstruct delayed phase space. 

Tirandaz et al. (2018); Fuh et al. (2012) Feedback linearisation. 

Shukla & Sharma (2017); Yu et al. (2017) Backstepping method. 

Jahanshahi et al. (2019a); 

Mahmoodabadi & Jahanshahi (2016) 
Intelligent control. 

Jahanshahi et al. (2019b); Jahanshahi (2018) Adaptive control. 

Tsai et al. (2018); Jahanshahi et al. (2018a) Nonlinear sliding mode control. 

Holyst & Urbanowicz (2000); Vargas et al. (2015); 

Jararmi et al. (2017); Dadras & Momeni (2010); 

Wang et al. (2012) 

Behavioural control of hyperchaotic financial systems. 

Khan & Bhat (2017) Control input limitations and external disturbances. 

Du et al. (2010) Chaos stabilisation by phase space compression. 

 

6.6. Frontiers and Future Remarks 

During the literature analysis, as well as during the empirical determination of our results, we recognise several 

frontiers of research in terms of financial nonlinear dynamical analysis and chaos research. To mention a few, we 

would like to note potential possibilities of enhancement in the academic literature in terms of testing the “micro-

foundations of across scale-causal heterogeneity” as the basis for trader behaviour, as stated in Bekiros and 

Marcellino (2013). Further, we see potential in the application of wavelet neural network solutions (e.g., Lahmiri 

& Bekiros, 2019) as well as in the implementation of neural networks for the determination of embedding 

dimensions, as presented in Maus and Sprott (2011). Moreover, regarding other fields of research, namely 

quantum finance, which extends the formalism of quantum mathematics into the regime of quantitative (financial) 

modelling, we see promising implications (e.g., representing financial instruments by non-normalisable state 

vectors, which are elements of time dependent Hilbert spaces), as presented in Baaquie and Belal (2013).  

We will leave the determination of sub-dynamics on differing time scales, the deduction of methodology for the 

application of adiabatic and diffusion chaos measures for time series data and elaborations on the stability 

dynamics of the chaos measures themselves to future research and hint at interests in the potential impacts of our 

findings on financial reports and banking regulation.  
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Appendix 

A1. Interpretation of RP structures 

Table 18: Typical patterns in RPs and their meanings. Taken from Marwan et al., (2007, p.251). 

Pattern Meaning 

Homogeneity The process is stationary 

Fading to the upper left 

and lower right corners 
Non-stationary data; the process contains a trend or a drift 

Disruptions (white bands) Non-stationary data; some states are rare or far from the normal; transitions may have occurred 

Periodic/quasi-periodic 

patterns 

Cyclicities in the process; the distance between periodic patterns (e.g. lines) corresponds to the 

period; different distances between long diagonal lines reveal quasi-periodic processes 

Single isolated points 
Strong fluctuation in the process; if only single isolated points occur, the process may be an 

uncorrelated random or even anti-correlated process 

Diagonal lines (parallel to 

the LOI) 

The evolution of states is similar at different epochs; the process could be deterministic; if these 

diagonal lines occur beside single isolated points, the process could be chaotic (if these diagonal lines 

are periodic, unstable periodic orbits can be observed) 

Diagonal lines (orthogonal 

to the LOI) 

The evolution of states is similar at different times but with reverse time; sometimes this is an 

indication for an insufficient embedding 

Vertical and horizontal 

lines/clusters 
Some states do not change or change slowly for some time; indication for laminar states 

Long bowed line 

structures 

The evolution of states is similar at different epochs but with different velocity; the dynamics of the 

system could be changing 
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A2. Graphical results for different RQA measures depending on minimal length selections 

 

 

Figure 19: Determinism for different minimum lengths with (a) S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)–(f) 
surrogate data sets: (d) ft, (e) aaft and (f) iaaft. 
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Figure 20: Averaged Diagonal Length for different minimum lengths with (a) S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and 
(d)–(f) surrogate data sets: (d) ft, (e) aaft and (f) iaaft. 
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Figure 21: Ratio for different minimum lengths with (a) S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)–(f) surrogate data 
sets: (d) ft, (e) aaft and (f) iaaft. 
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Figure 22: Shannon entropy for different minimum lengths with (a) S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)–(f) 
surrogate data sets: (d) ft, (e) aaft and (f) iaaft. 
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Figure 23: Laminarity for different minimum lengths with (a) S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)-(f) surrogate 
data sets: (d) ft, (e) aaft and (f) iaaft. 
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Figure 24: Trapped Time for different minimum lengths with (a) S&P 500 returns, (b) Lorenz system, (c) Brownian motion returns and (d)-(f) 
surrogate data sets: (d) ft, (e) aaft and (f) iaaft. 
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