TY - CHAP A1 - Raiyn, Jamal A1 - Weidl, Galia T1 - Improving Autonomous Vehicle Reasoning with Non-Monotonic Logic: Advancing Safety and Performance in Complex Environments T2 - IEEE International Smart Cities Conference (ISC2) KW - ITS (Intelligent Transportation Systems) KW - Artificial Intelligence KW - Künstliche Intelligenz KW - Autonomes Fahrzeug Y1 - 2023 UR - https://www.researchgate.net/publication/375128760_Improving_Autonomous_Vehicle_Reasoning_with_Non-Monotonic_Logic_Advancing_Safety_and_Performance_in_Complex_Environments U6 - https://doi.org/10.1109/ISC257844.2023.10293463 ER - TY - CHAP A1 - Valencia, Yeimy A1 - Normann, Marc A1 - Sapsai, Iryna A1 - Abke, Jörg A1 - Madsen, Anders L. A1 - Weidl, Galia T1 - Learning Style Classification by Using Bayesian Networks Based on the Index of Learning Style T2 - ECSEE '23: Proceedings of the 5th European Conference on Software Engineering Education, June 2023 KW - Lernstil KW - Fragebogen Y1 - 2023 U6 - https://doi.org/10.1145/3593663.3593685 SP - 73 EP - 82 ER - TY - CHAP A1 - Weidl, Galia A1 - Raiyn, Jamal A1 - Berres, Stefan T1 - Does a livable city profit from a shared CCAM Shuttle Bus on demand? T2 - International Symposium on Transportation Data & Modelling (ISTDM2023), June 2023 N2 - Livable cities measure quality-of-life factors such as transportation, convenience of daily life, education, and a safe and stable built and natural environment. Livability of a city includes also some social and psychological factors, like emotion and perception. How do we realize the advantages of new technology under mixed traffic conditions, while observing all daily requirements on safety, convenience and high education needs? KW - ITS (Intelligent Transportation Systems) KW - Artificial Intelligence KW - Stadtentwicklung KW - Stadtplanung KW - Digitalisierung Y1 - 2023 UR - https://www.researchgate.net/publication/370492569_Does_a_livable_city_profit_from_a_shared_CCAM_Shuttle_Bus_on_demand#fullTextFileContent ER - TY - CHAP A1 - Chaar, Mohamad Mofeed A1 - Weidl, Galia A1 - Raiyn, Jamal T1 - Analyse the effect of fog on the perception T2 - Conference: International Symposium on Transportation Data & Modelling (ISTDM 2023) KW - ITS (Intelligent Transportation Systems) KW - Artificial Intelligence KW - Autonomes Fahrzeug KW - Fahrerassistenzsystem KW - Nebel Y1 - 2023 UR - https://www.researchgate.net/publication/369484982_Analyse_the_effect_of_fog_on_the_perception#fullTextFileContent ER - TY - CHAP A1 - Raiyn, Jamal A1 - Weidl, Galia T1 - Naturalistic Driving Studies Data Analysis Based on a Convolutional Neural Network T2 - VEHITS 2023: 9th International Conference on Vehicle Technology and Intelligent Transport Systems N2 - The new generation of autonomous vehicles (AVs) are being designed to act autonomously and collect travel data based on various smart devices and sensors. The goal is to enable AVs to operate under their own power. Naturalistic driving studies (NDSs) collect data continuously from real traffic activities, in order not to miss any safety-critical event. In NDSs of AVs, however, the data they collect is influenced by various sources that degrade their forecasting accuracy. A convolutional neural network (CNN) is proposed to process a large amount of traffic data in different formats. A CNN can detect anomalies in traffic data that negatively affect traffic efficiency and identify the source of data anomalies, which can help reduce traffic congestion and vehicular queuing. KW - Autonomes Fahrzeug KW - Künstliche Intelligenz Y1 - 2023 UR - https://www.researchgate.net/publication/368332673_Naturalistic_Driving_Studies_Data_Analysis_Based_on_a_Convolutional_Neural_Network#fullTextFileContent U6 - https://doi.org/10.5220/0011839600003479 ER - TY - CHAP A1 - Jarosch, Oliver A1 - Naujoks, Frederik A1 - Wandtner, Bernhard A1 - Gold, Christian A1 - Marberger, Claus A1 - Weidl, Galia A1 - Schrauf, Michael T1 - The Impact of Non-Driving Related Tasks on Take-over Performance in Conditionally Automated Driving – A Review of the Empirical Evidence T2 - 9. Tagung Automatisiertes Fahren, München, Partner TÜV Süd, November 2019 N2 - Conditional automated driving (CAD) systems (SAE level 3) will soon be introduced to the public market. This automation level is designed to take care of all aspects of the dynamic driving task in specific application areas and does not require the driver to continuously monitor the system performance. However, in contrast to higher levels of automation the "fallback-ready" user always has to be able to regain control if requested by the system. As CAD allows the driver to engage in non-driving-related tasks (NDRTs) past human factors research has looked at their effects on takeover time and quality especially in short-term takeover situations. In order to understand how takeover performance is impacted by different NDRTs, this paper summarizes and compares available results according to the NDRT's impact on the sensoric, motoric and cognitive transition. In addition, aspects of arousal and motivation are considered. Due to the heterogeneity of the empirical work and the available data practically relevant effects can only be attested for NDRTs that cause severe discrepancies between the current driver state and the requirements of the takeover task, such as sensoric and motoric unavailability. The paper concludes by discussing methodological issues and recommending the development of standardized methods for the future. KW - ITS (Intelligent Transportation Systems) KW - Artificial Intelligence KW - Fahrerassistenzsystem KW - Autonomes Fahrzeug Y1 - 2019 UR - https://www.researchgate.net/publication/338644809_The_Impact_of_Non-Driving_Related_Tasks_on_Take-over_Performance_in_Conditionally_Automated_Driving_-_A_Review_of_the_Empirical_Evidence#fullTextFileContent ER - TY - CHAP A1 - Weidl, Galia A1 - Madsen, Anders L. A1 - Tereshchenko, Viacheslav A1 - Zhang, Wei A1 - Stevens Ruixi, Wang A1 - Kasper, Dietmar T1 - Situation Awareness and Early Recognition of Traffic Maneuvers T2 - Proceedings of The 9th EUROSIM Congress on Modelling and Simulation, EUROSIM 2016, The 57th SIMS Conference on Simulation and Modelling SIMS 2016 N2 - We outline the challenges of situation awareness with early and accurate recognition of traffic maneuvers and how to assess them. This includes also an overview of the available data and derived situation features,handling of data uncertainties, modelling and the approach for maneuver recognition. An efficient and effective solution, meeting the automotive requirements, is successfully deployed and tested on a prototype car. Test driving results show that earlier recognition of intended maneuver is feasible on average 1 second (and up to 6.72 s) before the actual lane-marking crossing. The even earlier maneuver recognition is dependent on the earlier recognition of surrounding vehicles. KW - ITS (Intelligent Transportation Systems) KW - Artificial Intelligence KW - Fahrerassistenzsystem Y1 - 2018 UR - https://www.researchgate.net/publication/329785176_Situation_Awareness_and_Early_Recognition_of_Traffic_Maneuvers#fullTextFileContent U6 - https://doi.org/10.3384/ecp171428 ER - TY - JOUR A1 - Weidl, Galia A1 - Madsen, Anders L. A1 - Wang, Stevens Ruixi A1 - Kaspar, Dietmar A1 - Karlsen, Martin T1 - Early and Accurate Recognition of Highway Traffic Maneuvers Considering Real-World Application : A Novel Framework Using Bayesian Networks JF - IEEE Intelligent Transportation Systems Magazine N2 - This paper presents a novel application of artificial cognitive systems to traffic scene understanding and early recognition of highway maneuvers. This is achieved by use of Bayesian networks for knowledge representation, to mimic the human reasoning on situation analysis and to manage inherited uncertainties in the automotive domain, that requires efficient and effective analysis of high volume and frequency data streams. The maneuver recognition uses features, analyzing the observed vehicles behavior and available free space on the target lane. Dynamic Bayesian networks (DBN) capture the motion of the own and surrounding vehicles as a dynamic process, following the trend development of lateral motion features. The static and dynamic models for maneuver recognition are statistically evaluated with real highway driving data sequences. The DBN demonstrates earlier recognition (∼ 1.1 seconds) and higher accuracy (1.12% error rate) with more stable performance than the static models. The system is deployed on an experimental vehicle, where a Divide-and-conquer approach to inference in object-oriented Bayesian networks is introduced and its implementation is shown to require computation time of 0.15 milliseconds and ROM memory ∼ 10 2 kilobytes. The promising performance evaluation results are confirmed by test drives in real highway traffic. KW - ITS (Intelligent Transportation Systems) KW - Artificial Intelligence KW - Fahrerassistenzsystem KW - Künstliche Intelligenz Y1 - 2018 UR - https://www.researchgate.net/publication/323453898_Early_and_Accurate_Recognition_of_Highway_Traffic_Maneuvers_Considering_Real-World_Application_A_Novel_Framework_Using_Bayesian_Networks#fullTextFileContent U6 - https://doi.org/10.1109/MITS.2018.2842049 VL - 2018 IS - 10/3 SP - 146 EP - 158 ER - TY - CHAP A1 - Weidl, Galia A1 - Madsen, Anders L. A1 - Tereshchenko, Viacheslav A1 - Kaspar, Dietmar A1 - Breuel, Gabi T1 - Early Recognition of Maneuvers in Highway Traffic T2 - European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, July 2015 N2 - This paper presents an application of Bayesian networks where early recognition of traffic maneuver intention is achieved using features of lane change, representing the relative dynamics between vehicles on the same lane and the free space to neighbor vehicles back and front on the target lane. The classifiers have been deployed on the automotive target platform, which has severe constraints on time and space performance of the system. The test driving has been performed with encouraging results. Even earlier recognition is possible by considering the trend development of features, characterizing the dynamic driving process. The preliminary test results confirm feasibility. KW - Fahrerassistenzsystem Y1 - 2015 UR - https://www.researchgate.net/publication/300646375_Early_Recognition_of_Maneuvers_in_Highway_Traffic#fullTextFileContent U6 - https://doi.org/10.1007/978-3-319-20807-7_48 ER - TY - CHAP A1 - Weidl, Galia T1 - Freiraumbewertung für Spurwechselmanöver mit Bayes-Netzen T2 - 7. VDI/VDE Fachtagung AUTOREG Auf dem Weg zum automatisierten Fahren N2 - Kurzfassung Diese Arbeit stellt ein robustes wissensbasiertes Verfahren zur Lückenbewertung für Spur-wechselmanöver vor. Zur Modellierung wurden dynamische Bayes-Netzwerke eingesetzt und mit Hilfe von Lernalgorithmen die Erkennungsleistung verbessert. Die Testergebnisse zeigen eine sehr hohe Trefferquote. KW - ITS (Intelligent Transportation Systems) KW - Artificial Intelligence KW - Fahrerassistenzsystem Y1 - 2015 UR - https://www.researchgate.net/publication/279886700_Freiraumbewertung_fur_Spurwechselmanover_mit_Bayes-Netzen#fullTextFileContent ER -