TY - JOUR A1 - Sallum, Loriz Francisco A1 - Alves, Caroline A1 - Thielemann, Christiane A1 - Rodrigues, Francisco A. T1 - Revealing patterns in major depressive disorder with machine learning and networks JF - medrxiv N2 - Major depressive disorder (MDD) is a multifaceted condition that affects millions of people worldwide and is a leading cause of disability. There is an urgent need for an automated and objective method to detect MDD due to the limitations of traditional diagnostic approaches. In this paper, we propose a methodology based on machine and deep learning to classify patients with MDD and identify altered functional connectivity patterns from EEG data. We compare several connectivity metrics and machine learning algorithms. Complex network measures are used to identify structural brain abnormalities in MDD. Using Spearman correlation for network construction and the SVM classifier, we verify that it is possible to identify MDD patients with high accuracy, exceeding literature results. The SHAP (SHAPley Additive Explanations) summary plot highlights the importance of C4-F8 connections and also reveals dysfunction in certain brain areas and hyperconnectivity in others. Despite the lower performance of the complex network measures for the classification problem, assortativity was found to be a promising biomarker. Our findings suggest that understanding and diagnosing MDD may be aided by the use of machine learning methods and complex networks. KW - Depression KW - Elektroencephalographie KW - Maschinelles Lernen Y1 - 2024 U6 - https://doi.org/doi.org/10.1101/2024.06.07.24308619 VL - 2024 IS - 1 SP - 1 EP - 17 ER - TY - JOUR A1 - Alves, Caroline A1 - Cury, Rubens G. A1 - Roster, Kirstin A1 - Pineda, Aruane M. A1 - Rodrigues, Francisco A. A1 - Thielemann, Christiane A1 - Ciba, Manuel T1 - Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments JF - PLOS ONE N2 - Ayahuasca is a blend of Amazonian plants that has been used for traditional medicine by the inhabitants of this region for hundreds of years. Furthermore, this plant has been demon� strated to be a viable therapy for a variety of neurological and mental diseases. EEG experi� ments have found specific brain regions that changed significantly due to ayahuasca. Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain activity using machine learning and complex networks. Machine learning was applied at three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the EEG time series, and (C) the complex network measures calculated from (B). Further, at the abstraction level of (C), we developed new measures of complex networks relating to community detection. As a result, the machine learning method was able to automatically detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are more important for the detection of ayahuasca. The most activated areas were the frontal and temporal lobe, which is consistent with the literature. F3 and PO4 were the most impor� tant brain connections, a significant new discovery for psychedelic literature. This connec� tion may point to a cognitive process akin to face recognition in individuals during ayahuasca-mediated visual hallucinations. Furthermore, closeness centrality and assorta� tivity were the most important complex network measures. These two measures are also associated with diseases such as Alzheimer’s disease, indicating a possible therapeutic mechanism. Moreover, the new measures were crucial to the predictive model and sug� gested larger brain communities associated with the use of ayahuasca. This suggests that the dissemination of information in functional brain networks is slower when this drug is present. Overall, our methodology was able to automatically detect changes in brain activity during ayahuasca consumption and interpret how these psychedelics alter brain networks, as well as provide insights into their mechanisms of action KW - Ayahuasca KW - Elektroencephalographie KW - Alzheimerkrankheit KW - Gehirn Y1 - 2022 U6 - https://doi.org/https://doi.org/10.1371/journal. pone.0277257 VL - 2022 IS - 12 SP - 1 EP - 26 ER - TY - JOUR A1 - Bouillet, Thomas A1 - Ciba, Manuel A1 - Alves, Caroline A1 - Rodrigues, Francisco A. A1 - Thielemann, Christiane A1 - Colin, Morvane A1 - Buée, Luc A1 - Halliez, Sophie T1 - Revisiting the involvement of tau in complex neural network remodeling: analysis of the extracellular neuronal activity in organotypic brain slice co-cultures JF - Journal of Neural Engineering N2 - Objective: Tau ablation has a protective effect in epilepsy due to inhibition of the hyperexcitability/hypersynchrony. Protection may also occur in transgenic models of Alzheimer's disease by reducing the epileptic activity and normalizing the excitation/inhibition imbalance. However, it is difficult to determine the exact functions of tau, because tau knockout (tauKO) brain networks exhibit elusive phenotypes. In this study, we aimed to further explore the physiological role of tau using brain network remodeling. Approach: The effect of tau ablation was investigated in hippocampal-entorhinal slice co-cultures during network remodeling. We recorded the spontaneous extracellular neuronal activity over two weeks in single-slice cultures and co-cultures from control and tauKO mice. We compared the burst parameters and applied concepts and analytical tools intended for the analysis of the network synchrony and connectivity. Main results: Comparison of the control and tauKO co-cultures revealed that tau ablation had an anti-synchrony effect on the hippocampal-entorhinal two-slice networks at late stages of culture, in line with the literature. Differences were also found between the single-slice and co-culture conditions, which indicated that tau ablation had differential effects at the sub-network scale. For instance, tau ablation was found to have an anti-synchrony effect on the co-cultured hippocampal slices throughout the culture, possibly due to a reduction in the excitation/inhibition ratio. Conversely, tau ablation led to increased synchrony in the entorhinal slices at early stages of the co-culture, possibly due to homogenization of the connectivity distribution. Significance: The new methodology presented here proved useful for investigating the role of tau in the remodeling of complex brain-derived neural networks. The results confirm previous findings and hypotheses concerning the effects of tau ablation on neural networks. Moreover, the results suggest, for the first time, that tau has multifaceted roles that vary in different brain sub-networks. KW - Neuronales Netz KW - Alzheimerkrankheit KW - Gehirn KW - Schnittpräparat Y1 - 2022 U6 - https://doi.org/DOI 10.1088/1741-2552/aca261 VL - 2022 IS - November SP - 1 EP - 2 ER - TY - JOUR A1 - Alves, Caroline A1 - Pineda, Aruane M. A1 - Roster, Kirstin A1 - Thielemann, Christiane A1 - Rodrigues, Francisco A. T1 - EEG functional connectivity and deep learning for automatic diagnosis of brain disorders: Alzheimer’s disease and schizophrenia JF - Journal of Physics: complexity N2 - Mental disorders are among the leading causes of disability worldwide. The first step in treating these conditions is to obtain an accurate diagnosis. Machine learning algorithms can provide a possible solution to this problem, as we describe in this work. We present a method for the automatic diagnosis of mental disorders based on the matrix of connections obtained from EEG time series and deep learning. We show that our approach can classify patients with Alzheimer’s disease and schizophrenia with a high level of accuracy. The comparison with the traditional cases, that use raw EEG time series, shows that our method provides the highest precision. Therefore, the application of deep neural networks on data from brain connections is a very promising method for the diagnosis of neurological disorders. KW - complex networks KW - Machine learning KW - Hirnfunktionsstörung KW - Alzheimerkrankheit KW - Schizophrenie KW - Elektroencephalographie Y1 - 2022 U6 - https://doi.org/DOI 10.1088/2632-072X/ac5f8d VL - 2022 IS - 3 SP - 1 EP - 13 ER - TY - JOUR A1 - Alves, Caroline A1 - Toutain, Thaise A1 - Aguiar, Patricia A1 - Pineda, Aruane M. A1 - Roster, Kirstin A1 - Thielemann, Christiane A1 - Porto, Joel A1 - Rodrigues, Francisco A. T1 - Diagnosis of autism spectrum disorder based on functional brain networks and machine learning JF - Scientific Reports N2 - Autism is a multifaceted neurodevelopmental condition whose accurate diagnosis may be challenging because the associated symptoms and severity vary considerably. The wrong diagnosis can affect families and the educational system, raising the risk of depression, eating disorders, and self-harm. Recently, many works have proposed new methods for the diagnosis of autism based on machine learning and brain data. However, these works focus on only one pairwise statistical metric, ignoring the brain network organization. In this paper, we propose a method for the automatic diagnosis of autism based on functional brain imaging data recorded from 500 subjects, where 242 present autism spectrum disorder considering the regions of interest throughout Bootstrap Analysis of Stable Cluster map. Our method can distinguish the control group from autism spectrum disorder patients with high accuracy. Indeed the best performance provides an AUC near 1.0, which is higher than that found in the literature. We verify that the left ventral posterior cingulate cortex region is less connected to an area in the cerebellum of patients with this neurodevelopment disorder, which agrees with previous studies. The functional brain networks of autism spectrum disorder patients show more segregation, less distribution of information across the network, and less connectivity compared to the control cases. Our workflow provides medical interpretability and can be used on other fMRI and EEG data, including small data sets. KW - Maschinelles Lernen KW - Gehirn KW - Neuronales Netz KW - Autismus Y1 - 2023 UR - https://rdcu.be/dcwIP U6 - https://doi.org/https://doi.org/10.1038/s41598-023-34650-6 VL - 2023 IS - 13/8072 SP - 1 EP - 20 ER - TY - JOUR A1 - Alves, Caroline A1 - Toutain, Thaise A1 - Porto, Joel A1 - Aguiar, Patricia A1 - de Sena, Eduardo A1 - Rodrigues, Francisco A. A1 - Pineda, Aruane M. A1 - Thielemann, Christiane T1 - Analysis of functional connectivity using machine learning and deep learning in different data modalities from individuals with schizophrenia JF - Journal of Neural Engineering N2 - Objective. Schizophrenia (SCZ) is a severe mental disorder associated with persistent or recurrent psychosis, hallucinations, delusions, and thought disorders that affect approximately 26 million people worldwide, according to the World Health Organization. Several studies encompass machine learning (ML) and deep learning algorithms to automate the diagnosis of this mental disorder. Others study SCZ brain networks to get new insights into the dynamics of information processing in individuals suffering from the condition. In this paper, we offer a rigorous approach with ML and deep learning techniques for evaluating connectivity matrices and measures of complex networks to establish an automated diagnosis and comprehend the topology and dynamics of brain networks in SCZ individuals. Approach. For this purpose, we employed an functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) dataset. In addition, we combined EEG measures, i.e. Hjorth mobility and complexity, with complex network measurements to be analyzed in our model for the first time in the literature. Main results. When comparing the SCZ group to the control group, we found a high positive correlation between the left superior parietal lobe and the left motor cortex and a positive correlation between the left dorsal posterior cingulate cortex and the left primary motor. Regarding complex network measures, the diameter, which corresponds to the longest shortest path length in a network, may be regarded as a biomarker because it is the most crucial measure in different data modalities. Furthermore, the SCZ brain networks exhibit less segregation and a lower distribution of information. As a result, EEG measures outperformed complex networks in capturing the brain alterations associated with SCZ. Significance. Our model achieved an area under receiver operating characteristic curve (AUC) of 100% and an accuracy of 98.5% for the fMRI, an AUC of 95%, and an accuracy of 95.4% for the EEG data set. These are excellent classification results. Furthermore, we investigated the impact of specific brain connections and network measures on these results, which helped us better describe changes in the diseased brain. KW - Maschinelles Lernen KW - Schizophrenie KW - Deep learning Y1 - 2023 U6 - https://doi.org/10.1088/1741-2552/acf734 VL - 2023 IS - 20/5 SP - 0 EP - 0 ER - TY - JOUR A1 - Alves, Caroline A1 - Ciba, Manuel A1 - de O Toutain, Thaise GL A1 - Moura Porto, Joel Augusto A1 - de Sena, Eduardo Pondé A1 - Thielemann, Christiane A1 - Rodrigues, Francisco A T1 - On the advances in machine learning and complex network measures to an EEG dataset from DMT experiments JF - Journal of Physics: Complexity N2 - There is a growing interest in the medical use of psychedelic substances, as preliminary studies using them for psychiatric disorders have shown positive results. In particular, one of these substances is N, N-dimethyltryptamine (DMT), an agonist serotonergic psychedelic that can induce profound alterations in the state of consciousness. In this work, we use an exploratory tool to reveal DMT-induced changes in brain activity using EEG data and provide new insights into the mechanisms of action of this psychedelic substance. We used a two-class classification based on (A) the connectivity matrix or (B) complex network measures derived from it as input to a support vector machine. We found that both approaches could detect changes in the brain's automatic activity, with case (B) showing the highest AUC (89%), indicating that complex network measurements best capture the brain changes that occur due to DMT use. In the second step, we ranked the features that contributed the most to this result. For case (A), we found that differences in the high alpha, low beta, and delta frequency bands were most important in distinguishing between the state before and after DMT inhalation, which is consistent with the results described in the literature. Further, the connection between the temporal (TP8) and central cortex (C3) and between the precentral gyrus (FC5) and the lateral occipital cortex (P8) contributed most to the classification result. The connection between regions TP8 and C3 has been found in the literature associated with finger movements that might have occurred during DMT consumption. However, the connection between cortical areas FC5 and P8 has not been found in the literature and is presumably related to the volunteers' emotional, visual, sensory, perceptual, and mystical experiences during DMT consumption. For case (B), closeness centrality was the most crucial complex network measure. Furthermore, we discovered larger communities and longer average path lengths when DMT was used and the converse when not, showing that the balance between functional segregation and integration had been disrupted. These findings support the idea that cortical brain activity becomes more entropic under psychedelics. Overall, a robust computational workflow has been developed here with interpretability of how DMT (or other psychedelics) modify brain networks and insights into their mechanism of action. Finally, the same methodology applied here may help interpret EEG time series from patients who consumed other psychedelic drugs. KW - Neuronales Netz KW - Halluzinogen Y1 - 2024 U6 - https://doi.org/10.1088/2632-072X/ad1c68 VL - 2024 IS - 1 SP - 1 EP - 2 ER - TY - JOUR A1 - Pineda, Aruane M. A1 - Alves, Caroline L. A1 - Möckel, Michael A1 - de O Toutain, Thaise G. L. A1 - Moura Porto, Joel Augusto A1 - Rodrigues, Francisco A. T1 - Analysis of quantile graphs in EGC data from elderly and young individuals using machine learning and deep learning JF - Journal of Complex Networks N2 - Heart disease, also known as cardiovascular disease, encompasses a variety of heart conditions that can result in sudden death for many people. Examples include high blood pressure, ischaemia, irregular heartbeats and pericardial effusion. Electrocardiogram (ECG) signal analysis is frequently used to diagnose heart diseases, providing crucial information on how the heart functions. To analyse ECG signals, quantile graphs (QGs) is a method that maps a time series into a network based on the time-series fluctuation proprieties. Here, we demonstrate that the QG methodology can differentiate younger and older patients. Furthermore, we construct networks from the QG method and use machine-learning algorithms to perform the automatic diagnosis, obtaining high accuracy. Indeed, we verify that this method can automatically detect changes in the ECG of elderly and young subjects, with the highest classification performance for the adjacency matrix with a mean area under the receiver operating characteristic curve close to one. The findings reported here confirm the QG method’s utility in deciphering intricate, nonlinear signals like those produced by patient ECGs. Furthermore, we find a more significant, more connected and lower distribution of information networks associated with the networks from ECG data of the elderly compared with younger subjects. Finally, this methodology can be applied to other ECG data related to other diseases, such as ischaemia. KW - Maschinelles Lernen KW - Elektrokardiogramm KW - Älterer Mensch KW - Heranwachsender Y1 - 2023 UR - https://academic.oup.com/comnet/article-abstract/11/5/cnad030/7260365?redirectedFrom=fulltext U6 - https://doi.org/https://doi.org/10.1093/comnet/cnad030 VL - 2023 IS - 11/5 SP - * EP - * ER -