TY - JOUR A1 - Probst, Anne-Catherine A1 - Stollenwerk, Manfred A1 - Emmerich, Florian A1 - Büttner, Andre A1 - Zeising, Sebastian A1 - Stadtmüller, Johannes A1 - Riethmüller, Franziska A1 - Stehlikova, Veronika A1 - Mingwu, Wen A1 - Proserpio, Laura A1 - Damm, Christine A1 - Rellinghaus, Bernd A1 - Döhring, Thorsten T1 - Influence of sputtering pressure on the nanostructure and the X-ray reflectivity of iridium coatings JF - Surface and Coatings Technology N2 - Reflective mirror coatings made of iridium are used in X-ray telescopes of the Chandra X-ray Observatory (CXO) launched in 1999 by the National Aeronautics and Space Administration (NASA) to investigate astronomical sources at photon energies below 10. keV. These coatings were produced in a DC magnetron sputtering process and have so far proven their suitability for space-based applications. We are considering in the present paper the processing of thin iridium films for lightweight telescopes using the radio frequency magnetron sputtering technique with an oblique angle deposition. The coating development presented here is focused on the influence of total sputtering pressure on film properties as well as on its impact on the mirror's performance. Characterisation methods such as X-ray diffractometry, X-ray reflectometry, atomic force microscopy and transmission electron microscopy have been used. Correlations between morphology, density, surface micro-roughness, crystal structure of the iridium layer and the expected reflectivity of the X-ray mirror are described and discussed. KW - Iridium KW - sputtering KW - microstructure KW - coating KW - X-ray KW - Iridium KW - Röntgenteleskop Y1 - 2017 UR - https://doi.org/10.1016/j.surfcoat.2017.10.062 SN - 0257-8972 VL - 2017 IS - 343 SP - 101 EP - 107 ER -