@inproceedings{PomahacHudecDoehring2023, author = {Pomahac, Vit and Hudec, Rene and D{\"o}hring, Thorsten}, title = {CubeSat tandem flight for asteroid surveillance}, series = {SPIE Proceedings}, volume = {2023}, booktitle = {SPIE Proceedings}, number = {12576}, publisher = {SPIE}, organization = {CVUT Prague}, doi = {doi: 10.1117/12.2672396}, pages = {125760H-1 -- 125760H-5}, year = {2023}, abstract = {Conventional mining might not be sufficient to support the growth of humankind which is heavily dependent upon rare materials in technical applications. Asteroid mining might be an answer, with Near-Earth objects (NEOs) being the first targets. However, the first step in the asteroid mining cascade is to probe reachable asteroids. Moreover, to identify the best candidates for further activities hundreds to thousands of asteroids must be screened. The fast progressing development of CubeSats might allow the space community to do the initial in-situ screening in a minimalistical and economical manner. Additionally, formation flying might enable the miniaturization of optical payloads for asteroid composition analysis in CubeSats. The recent developments in formation flying are summarised in this study and the possibility of utilizing formation flying CubeSats for asteroid surveillance explored.}, subject = {Planetoid}, language = {en} } @misc{HudecPomahacDoehringetal.2023, author = {Hudec, Ren{\´e} and Pomahac, Vit and D{\"o}hring, Thorsten and Stanik, Eva and Klaus, Schilling}, title = {Space Telescopes based on Satellite Tandem Flights}, series = {DGaO Jahrstagung}, volume = {2023}, journal = {DGaO Jahrstagung}, publisher = {DGaO}, organization = {Technische Hochschule Aschaffenburg}, pages = {1 -- 1}, year = {2023}, abstract = {Due to the recent progress in satellite control engineering, tandem flight arrangements of mini-satellites are currently in discussion and under consideration for future space missions. CubeSat technologies offer an interesting possibility for space-born telescope payloads based on this approach. In such a scenario, two small satellites will fly at a constant distance of a few meters up to 100 meters. Thereby, the front satellite will carry the telescope optics and the second satellite the detector system. Related formation flight requirements were addressed in the NetSat-Mission, composed of four 3U-CubeSats, launched 2020. Space technology challenges concern in particular orbit control by an appropriate propulsion system as well as precision attitude pointing towards the joint target, and could be transferred from the NetSat-mission to the proposed Tandem Mission. This will allow space-based telescopes with a long focal length even placed on board of small or miniature CubeSat-type satellites. Cost effective Kirkpatrick-Baez type X-ray telescopes represent an important application here as they have longer focal lengths compared to previous astronomical observatories using Wolter I type X-ray mirrors.}, subject = {R{\"o}ntgenteleskop}, language = {en} } @inproceedings{HudecPomahačStaniketal.2023, author = {Hudec, Rene and Pomahač, Vit and Stanik, Eva and D{\"o}hring, Thorsten and Schilling, Klaus}, title = {Space Telescopes based on Satellite Tandem Flights}, series = {DGaO Proceedings}, volume = {2023}, booktitle = {DGaO Proceedings}, issn = {1614-8436}, pages = {2}, year = {2023}, abstract = {Progress in satellite control engineering enables tandem flight arrangements of mini-satellites in future space missions. Cost effective CubeSat technologies offer an interesting possibility for space-born telescope payloads. Two small satellites will carry the telescope optics and the detector system, respectively. Related formation flight requirements could be transferred from the NetSat-Mission.}, subject = {R{\"o}ntgenteleskop}, language = {en} }