@inproceedings{NickHockEmmerichetal.2015, author = {Nick, Christoph and Hock, Christina and Emmerich, Florian and Belle, Stefan and Thielemann, Christiane and Asmus, Tim and Loose, Thomas and Wienand, Karlheinz}, title = {Ultrathin gold as sensor platform for biomolecules}, series = {2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Changchun, China}, booktitle = {2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Changchun, China}, doi = {10.1109/3M-NANO.2015.7425462}, year = {2015}, abstract = {Due to the increasing number of diabetes patients worldwide there is an enormous need for accurate, fast and someday also continuous or even closed loop monitoring of blood glucose level. More than 50 years after Clark and Lyons proposed the first glucose enzyme electrodes this concept is still widely in use today. Most concepts use the enzyme glucose oxidase (GOx) that reacts with glucose. These reactions cause a current that is proportional to the amount of glucose present at the sensor. Thus, if the sample volume is known, the blood sugar level can be measured. Although these electrodes have been in use for so long they have the disadvantage of a limited shelf time. In this work we present an enzyme free approach for glucose detection applying ultrathin gold films. According to the basic Fuchs-Sondheimer-theory and other more sophisticated models the resistivity of ultrathin metal films is dominated by scattering effects at their surface. Chemical reactions at the metallic surface are expected to change the conductivity properties and thus these changes can be used to detect molecules. This can be done by creating a self-assembled monolayer at the gold surface. When molecules such as glucose bind to the end groups of this layer the electron scattering and thus the conductivity of the film is expected to change. Ultrathin gold films with a thickness of 6 nm show the largest relative change in resistivity and are thus the preferred film thickness for this application. These gold films show a significant change in resistance when model molecules sodium sulfide and dextran are present, whereas the resistance of a platinum reference electrode does not change significantly.}, subject = {Biosensor}, language = {en} } @misc{EmmerichCiba2017, author = {Emmerich, Florian and Ciba, Stefan}, title = {Thin-film Micro-Heater for Fusion Bonding of Teflon-FEP Foils}, series = {21th International Student Conference on Electrical Engineering POSTER 2017}, volume = {2017}, journal = {21th International Student Conference on Electrical Engineering POSTER 2017}, number = {POSTER 2017}, pages = {1 -- 5}, year = {2017}, abstract = {MEMS-based Micro-Heaters, in combination with thin-film temperature sensors, are often used for providing the necessary amount of thermal energy for sensor-applications. In this work, we propose an integrated micro-heater as actuator for fusion bonding of polymers, which can optimize the production process of electret-based micro-energy-harvesters. By adjusting the design parameters of thermoforming-molds, we can implement thin-film micro-heaters that are capable of generating temperatures of above 300°C for numerous cycles. Utilizing the integrated micro-heater allows local fusion bonding of Fluoroethylenepropylene (Teflon-FEP) foils on a micrometer-scale while reducing unnecessary thermal stress. This is beneficial for the longevity of the micro-energy-harvesters, while simultaneously improving its performance.}, subject = {Mikrosystemtechnik}, language = {en} } @misc{UhrigEmmerich2018, author = {Uhrig, Janis and Emmerich, Florian}, title = {Study on different template-based production processes for magnetic nanowires}, series = {22nd International Student Conference on Electrical Engineering POSTER 2018}, volume = {2018}, journal = {22nd International Student Conference on Electrical Engineering POSTER 2018}, number = {POSTER 2018}, pages = {1 -- 5}, year = {2018}, abstract = {Nickel-iron (NiFe) nanowires with a high contentof nickel and large aspect-ratio show promising characteris-tics for applications in modern micro-systems. In this study,nanowires with well-controlled diameter, height and compo-sition are fabricated using nanoporous poly-carbonate (PC)and anodized aluminum-oxide (AAO) membranes. Differ-ences between potentiostatic and pulsed deposition methodswere studied with regard to their flexibility and a recommen-dation for the best use of the individual types is given. Withthe application of the presented processes, future technolo-gies as magnetic energy-harvesting or nano-fluxgate sensorscan be improved.}, subject = {Nanodraht}, language = {en} } @article{EmmerichThielemann2016, author = {Emmerich, Florian and Thielemann, Christiane}, title = {Real-space measurement of potential distribution in PECVD ONO electrets by Kelvin probe force microscopy}, series = {Nanotechnology}, volume = {2016}, journal = {Nanotechnology}, number = {27}, pages = {1 -- 10}, year = {2016}, abstract = {Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.}, subject = {Kelvin-Sonde}, language = {en} } @inproceedings{DoehringProbstStollenwerketal.2017, author = {D{\"o}hring, Thorsten and Probst, Anne-Catherine and Stollenwerk, Manfred and Emmerich, Florian and Stehl{\´i}kov{\´a}, Veronika and Inneman, Adolf}, title = {Prototyping iridium coated mirrors for X-ray astronomy}, series = {Proceedings of the International Society for Optics and Photonics}, volume = {2017}, booktitle = {Proceedings of the International Society for Optics and Photonics}, number = {10235}, editor = {Hudec, Ren{\´e} and Pina, Ladislav}, publisher = {SPIE International Society for Optics and Photonics}, address = {Bellingham WA}, organization = {Hochschule Aschaffenburg}, doi = {10.1117/12.2265931}, pages = {1023504-1 -- 1023504-8}, year = {2017}, abstract = {X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth´s atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.}, subject = {Iridium}, language = {en} } @inproceedings{EmmerichThielemann2015, author = {Emmerich, Florian and Thielemann, Christiane}, title = {Patterning of PMMA by gold-nanoparticle initiated localized decomposition}, series = {2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Changchun, China}, booktitle = {2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Changchun, China}, doi = {10.1109/3M-NANO.2015.7425480}, year = {2015}, abstract = {The need for manipulating matter at its smallest scale has been a hot topic in research for the last decades. As the final goal of arranging single atoms has been achieved, research focuses on two targets: firstly, improving the capabilities of existing technologies towards nanometer resolution and secondly, finding new methods for producing nanostructures in a fast and easy way. Here, we present a new maskless method for sub-micro-patterning of poly(methyl methacrylate) (PMMA) thin films. By applying atomic-force-microscope (AFM) assisted nano-xerography, electric charges were locally injected with an AFM-tip into PMMA. The resulting electrostatic patterns attracted charged gold-nanoparticles, which were selectively deposited onto the PMMA layers with lateral dimensions below 200 nm. In a second step, heat treatment at 275 °C initiated a selective decomposition of the PMMA layer, only observed in PMMA-areas covered with nanoparticles, whereas uncovered areas were not modified by the heat treatment. Analyzing the grooves with the AFM, we found that lines with a width in the sub-micrometer range to several micrometers have successfully been realized. We propose this new and promising method to manufacture nano-grooves used as masking for lift-off processes, for functionalization of underlying areas, or for micro-contact-printing.}, subject = {Polymethylmethacrylate}, language = {en} } @article{EmmerichThielemann2017, author = {Emmerich, Florian and Thielemann, Christiane}, title = {Optimizing dimensions of unipolar Teflon-FEP piezoelectrets with micro-system-technology}, series = {Journal of Physics: Conference Series}, volume = {2018}, journal = {Journal of Physics: Conference Series}, number = {1052}, pages = {1 -- 4}, year = {2017}, abstract = {In this work we present a new micro-system-technology based production process for unipolar ferroelectrets. Theoretical analysis of the influence of the air-gap size on the electric field distribution as well as on the induced charge on the electrodes shows superior performance of unipolar piezoelectrets with small air-gaps. For the production of these small air-gaps we developed a new design using a photoresist thermoforming master, an integrated micro-heater and shadow masks for metallization. Unipolar piezoelectrets produced with this technology exhibit increased d33-coefficients compared to designs in previous publications. These piezoelectrets are highly preferable for energy-harvesting applications, as they promise high electric power output.}, subject = {Mikrosystemtechnik}, language = {en} } @inproceedings{EmmerichThielemann2011, author = {Emmerich, Florian and Thielemann, Christiane}, title = {Observation of Thermal Discharge in Nanopatterned Electrets by Kelvin-Probe-Microscopy}, series = {14th International Symposium on Elecrets, 2011, Montpellier, France}, booktitle = {14th International Symposium on Elecrets, 2011, Montpellier, France}, isbn = {978-1-4577-1023-0}, issn = {2153-3253}, pages = {149 -- 150}, year = {2011}, subject = {Elektret}, language = {en} } @article{FlachsEmmerichRothetal.2019, author = {Flachs, Dennis and Emmerich, Florian and Roth, Gian-Luca and Hellmann, Ralf and Thielemann, Christiane}, title = {Laser-bonding of FEP/FEP interfaces for a flexiblemanufacturing process of ferroelectrets}, series = {Journal of Physics: Conference Series}, volume = {1407}, journal = {Journal of Physics: Conference Series}, number = {012107}, doi = {10.1088/1742-6596/1407/1/012107}, pages = {1 -- 5}, year = {2019}, abstract = {This paper presents an optimized laser-bonding process for piezoelectric energy-harvesters based on thin fluorinated-ethylene-propylene (FEP) foils, using an ultra-short-pulse(USP) laser. Due to the minimized thermal stress in the material during bonding, achieved bypulse durations of few picoseconds, we created seams down to 40μm width without generatingholes in the 12.5μm thick FEP-foils. Using a galvanometer scanning system allowed for fastbonding-speed up to several centimeters per second, making the process also suitable for largestructures and areas. The achieved bond strength of the seams under influence of shearingstress was examined using tensile testing, which showed a sufficient strength of about 25 \% of the maximum strength of an unbonded, single layer of FEP.}, subject = {Ultrakurzzeitlaser}, language = {en} } @article{ProbstStollenwerkEmmerichetal.2017, author = {Probst, Anne-Catherine and Stollenwerk, Manfred and Emmerich, Florian and B{\"u}ttner, Andre and Zeising, Sebastian and Stadtm{\"u}ller, Johannes and Riethm{\"u}ller, Franziska and Stehlikova, Veronika and Mingwu, Wen and Proserpio, Laura and Damm, Christine and Rellinghaus, Bernd and D{\"o}hring, Thorsten}, title = {Influence of sputtering pressure on the nanostructure and the X-ray reflectivity of iridium coatings}, series = {Surface and Coatings Technology}, volume = {2017}, journal = {Surface and Coatings Technology}, number = {343}, issn = {0257-8972}, pages = {101 -- 107}, year = {2017}, abstract = {Reflective mirror coatings made of iridium are used in X-ray telescopes of the Chandra X-ray Observatory (CXO) launched in 1999 by the National Aeronautics and Space Administration (NASA) to investigate astronomical sources at photon energies below 10. keV. These coatings were produced in a DC magnetron sputtering process and have so far proven their suitability for space-based applications. We are considering in the present paper the processing of thin iridium films for lightweight telescopes using the radio frequency magnetron sputtering technique with an oblique angle deposition. The coating development presented here is focused on the influence of total sputtering pressure on film properties as well as on its impact on the mirror's performance. Characterisation methods such as X-ray diffractometry, X-ray reflectometry, atomic force microscopy and transmission electron microscopy have been used. Correlations between morphology, density, surface micro-roughness, crystal structure of the iridium layer and the expected reflectivity of the X-ray mirror are described and discussed.}, subject = {Iridium}, language = {en} }