@inproceedings{DoehringProbstEmmerichetal.2017, author = {D{\"o}hring, Thorsten and Probst, Anne-Catherine and Emmerich, Florian and Stollenwerk, Manfred and Stehlikova, Veronika and Friedrich, Peter and Damm, Christine}, title = {Development of iridium coated X-ray mirrors for astronomical applications}, series = {Proceedings of the International Society for Optics and Photonics (SPIE)}, volume = {2017}, booktitle = {Proceedings of the International Society for Optics and Photonics (SPIE)}, number = {10399}, publisher = {SPIE}, doi = {10.1117/12.2273988}, pages = {103991C-1 -- 103991C-8}, year = {2017}, abstract = {Future space-based X-ray observatories need to be very lightweight for launcher mass constraints. Therefore they will use a reduced mirror thickness, which results in the additional requirement of low coating stress to avoid deformation of the initial precisely shaped mirror substrates. Due to their excellent reflection properties iridium coatings are sometimes applied for grazing incidence mirrors in astronomical X-ray telescopes. At Aschaffenburg University of Applied Sciences the coating of thin iridium films by an RF-magnetron sputtering technique is under development. The work is embedded in collaborations with the Max-Planck-Institute for Extraterrestrial Physics in Germany, the Czech Technical University in Prague, the Osservatorio Astronomico di Brera in Italy, the German Leibniz Institute for Solid State and Materials Research in Dresden, and the French Institute Fresnel. Sputtering with different parameters leads to iridium films with different properties. The current work is focused on the microstructure of the iridium coatings to study the influence of the substrate and of the argon gas pressure on the thin film growing process. Correlations between coating density, surface micro-roughness, the crystalline structure of the iridium layers, and the expected reflectivity of the X-ray mirror as well as coating stress effects are presented and discussed. The final goal of the project is to integrate the produced prototype mirrors into an X-ray telescope module. On a longer timescale measurements of the mirror modules optical performance are planned at the X-ray test facility PANTER.}, subject = {Iridium}, language = {en} } @inproceedings{DoehringProbstStollenwerketal.2017, author = {D{\"o}hring, Thorsten and Probst, Anne-Catherine and Stollenwerk, Manfred and Emmerich, Florian and Stehl{\´i}kov{\´a}, Veronika and Inneman, Adolf}, title = {Prototyping iridium coated mirrors for X-ray astronomy}, series = {Proceedings of the International Society for Optics and Photonics}, volume = {2017}, booktitle = {Proceedings of the International Society for Optics and Photonics}, number = {10235}, editor = {Hudec, Ren{\´e} and Pina, Ladislav}, publisher = {SPIE International Society for Optics and Photonics}, address = {Bellingham WA}, organization = {Hochschule Aschaffenburg}, doi = {10.1117/12.2265931}, pages = {1023504-1 -- 1023504-8}, year = {2017}, abstract = {X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth´s atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.}, subject = {Iridium}, language = {en} }