@article{SommerGoetzendorferEsenetal.2021, author = {Sommer, David and G{\"o}tzendorfer, Babette and Esen, Cemal and Hellmann, Ralf}, title = {Design Rules for Hybrid Additive Manufacturing Combining Selective Laser Melting and Micromilling}, series = {Design and Post Processing for Metal Additive Manufacturing}, volume = {14}, journal = {Design and Post Processing for Metal Additive Manufacturing}, number = {19}, doi = {https://doi.org/10.3390/ma14195753}, pages = {1 -- 23}, year = {2021}, abstract = {We report on a comprehensive study to evaluate fundamental properties of a hybrid manufacturing approach, combining selective laser melting and high speed milling, and to characterize typical geometrical features and conclude on a catalogue of design rules. As for any additive manufacturing approach, the understanding of the machine properties and the process behaviour as well as such a selection guide is of upmost importance to foster the implementation of new machining concepts and support design engineers. Geometrical accuracy between digitally designed and physically realized parts made of maraging steel and dimensional limits are analyzed by stripe line projection. In particular, we identify design rules for numerous basic geometric elements like walls, cylinders, angles, inclinations, overhangs, notches, inner and outer radii of spheres, chamfers in build direction, and holes of different shape, respectively, as being manufactured by the hybrid approach and compare them to sole selective laser melting. While the cutting tool defines the manufacturability of, e.g., edges and corners, the milling itself improves the surface roughness to Ra < 2 µm. Thus, the given advantages of this hybrid process, e.g., space-resolved and custom-designed roughness and the superior geometrical accuracy are evaluated. Finally, we exemplify the potential of this particular promising hybrid approach by demonstrating an injection mold with a conformal cooling for a charge socket for an electro mobile}, subject = {Selektives Laserschmelzen}, language = {en} } @article{SommerPapeEsenetal.2022, author = {Sommer, David and Pape, Dominik and Esen, Cemal and Hellmann, Ralf}, title = {Tool Wear and Milling Characteristics for Hybrid Additive Manufacturing Combining Laser Powder Bed Fusion and In Situ High-Speed Milling}, series = {Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials}, volume = {15}, journal = {Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials}, number = {3}, doi = {https://doi.org/10.3390/ma15031236}, pages = {1 -- 13}, year = {2022}, abstract = {We report on milling and tool wear characteristics of hybrid additive manufacturing comprising laser powder bed fusion and in situ high-speed milling, a particular process in which the cutter mills inside the powder bed without any cooling lubricant being applicable. Flank wear is found to be the dominant wear characteristic with its temporal evolution over utilization period revealing the typical s-shaped dependence. The flank wear land width is measured by microscopy and correlated to the achievable surface roughness of milled 3D-printed parts, showing that for flank wear levels up to 100 μm a superior surface roughness below 3 μm is accessible for hybrid additive manufacturing. Further, based on this correlation recommended tool, life scenarios can be deduced. In addition, by optimizing the finishing tool start position and the number of afore-built layers, the milling process is improved with respect to the maximum millable angle for undercut surfaces of 3D-printed parts to 30° for the roughing process and to 40° for the entire machining process including finishing}, subject = {Hochgeschwindigkeitsfr{\"a}sen}, language = {de} } @article{KeferZettlEsenetal.2022, author = {Kefer, Stefan and Zettl, Julian and Esen, Cemal and Hellmann, Ralf}, title = {Femtosecond Laser-Based Micromachining of Rotational-Symmetric Sapphire Workpieces}, series = {Materials}, volume = {15}, journal = {Materials}, number = {18}, doi = {10.3390/ ma15186233}, pages = {6233 -- 6233}, year = {2022}, abstract = {Sapphire is a robust and wear-resistant material. However, efficient and high-quality micromachining is still a challenge. This contribution demonstrates and discusses two novels, previously unreported approaches for femtosecond laser-based micromachining of rotational-symmetric sapphire workpieces, whereas both methods are in principal hybrids of laser scanning and laser turning or laser lathe. The first process, a combination of a sequential linear hatch pattern in parallel to the workpiece's main axis with a defined incremental workpiece rotation, enables the fabrication of sapphire fibers with diameters of 50 µm over a length of 4.5 mm. Furthermore, sapphire specimens with a diameter of 25 µm over a length of 2 mm can be fabricated whereas an arithmetical mean height, i.e., Sa parameter, of 281 nm is achieved. The second process combines a constant workpiece feed and orthogonal scanning with incremental workpiece rotation. With this approach, workpiece length limitations of the first process are overcome and sapphire fibers with an average diameter of 90 µm over a length of 20 cm are manufactured. Again, the sapphire specimen exhibits a comparable surface roughness with an average Sa value of 249 nm over 20 cm. Based on the obtained results, the proposed manufacturing method paves an innovative and flexible, all laser-based way towards the fabrication or microstructuring of sapphire optical devices, and thus, a promising alternative to chemical processes.}, subject = {Femtosekundenlaser}, language = {en} } @article{BischoffMueckeRothetal.2022, author = {Bischoff, Kay and M{\"u}cke, Dominik and Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {UV-Femtosecond-Laser Structuring of Cyclic Olefin Copolymer}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {14}, doi = {https://doi.org/10.3390/polym14142962}, pages = {2962 -- 2962}, year = {2022}, abstract = {We report on the laser ablation of cyclic olefin copolymer using an amplified ultrashort pulsed laser in the ultraviolet spectral range. In addition to a high ablation depth per laser-structured layer up to 74 μm at a fluence of 22 J cm-2, an excellent mean roughness 𝑅𝑎 of laser-patterned surfaces down to 0.5 μm is demonstrated. Furthermore, with increasing fluence, increasing ablation efficiencies up to 2.5 mm3 W-1 min-1 are determined. Regarding the quality of the ablation, we observed steep ablation flanks and low debris formation, though for fluences above 10.5 J cm-2 the formation of troughs was observed, being attributed to multiple reflections on the ablation flanks. For comparison, laser ablation was performed under identical conditions with an infrared laser wavelength. The results highlight that UV ablation exhibits significant advantages in terms of ablation efficiency, surface roughness and quality. Moreover, our results show that a larger UV focus spot accelerates the ablation process with comparable quality, paving the way for high-power UV ultrashort pulsed lasers towards an efficient and qualitative tool for the laser machining of cyclic olefin copolymer. The production of complex microfluidics further underlines the suitability of this type of laser.}, subject = {Femtosekundenlaser}, language = {en} } @article{BischoffEsenHellmann2023, author = {Bischoff, Kay and Esen, Cemal and Hellmann, Ralf}, title = {Preparation of Dispersed Copper(II) Oxide Nanosuspensions as Precursor for Femtosecond Reductive Laser Sintering by High-Energy Ball Milling}, series = {Nanomaterials}, volume = {13}, journal = {Nanomaterials}, number = {19}, doi = {https://doi.org/10.3390/nano13192693}, pages = {2693 -- 2693}, year = {2023}, abstract = {This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a measurement methodology. Aside from the established method of scanning electron microscopy for imaging individual dried particles, this work applies the holistic and statistically more significant laser diffraction in combination with dynamic image analysis in wet dispersion. In addition to direct ultrasonic homogenization, high-energy ball milling is introduced for RLS, to produce stable nanosuspensions with a high fine fraction, and, above all, the absence of oversize particles. Whereas ultrasonic dispersion stagnates at particle sizes between 500 nm and 20 μm, even after 8 h, milled suspension contains a high proportion of finest particles with diameters below 100 nm, no agglomerates larger than 1 μm and a trimodal particle size distribution with the median at 50 nm already, after 100 min of milling. The precursor layers produced by doctor blade coating are examined for their quality by laser scanning microscopy. The surface roughness of such a dry film can be reduced from 1.26 μm to 88 nm by milling. Finally, the novel precursor is used for femtosecond RLS, to produce homogeneous, high-quality copper layers with a sheet resistance of 0.28 Ω/sq and a copper mass concentration of 94.2\%.}, subject = {Laserstrahlsintern}, language = {en} } @article{FranzYangMicheletal.2023, author = {Franz, Daniel and Yang, Yongting and Michel, Luis and Esen, Cemal and Hellmann, Ralf}, title = {Evaluation of an ultrashort pulsed laser robot system for flexible and large-area micromachining}, series = {Journal of Laser Applications}, volume = {35}, journal = {Journal of Laser Applications}, number = {4}, pages = {042057 -- 042065}, year = {2023}, abstract = {We report for the first time on the realization, characterization and application of an ultrashort pulsed laser robot system for flexible and large-area 2D and 3D laser micromachining with 6 articulated axes. To characterize the dynamic positioning of the laser beam during and after axes movement, CMOS image sensors were integrated into the beam path. A method introduced for the alignment of the optical axes allows a reduction of the deviations in laser beam positioning to less than 141.8 ± 92.9 μm within a 110° rotation range of axis 4. In addition, a high laser beam positioning repeatability of less than 102.2 μm is demonstrated over a total period of 14 h for a movement of axis 5 within a range of 0° to 90°. Initial laser cutting, laser structuring and laser marking applications on automotive dashboards and glass substrates are presented for flexible and large area 2D and 3D manufacturing. By applying a special laser cutting strategy for processing AF 32 eco thin glass, high cutting quality is achieved with a taper of up to 96.3\% without the generation of cracks, demonstrating the innovative potential of the high-precision laser robot system. Nonetheless, different identified inherent influences of each axis 1-5 during robot axis movement demand for an innovative beam stabilization concept to achieve high precision in laser beam positioning.}, subject = {Ultrakurzzeitlaser}, language = {en} } @inproceedings{FranzMueckeKunzetal.2023, author = {Franz, Daniel and M{\"u}cke, Dominik and Kunz, Tim and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {UV picosecond laser drilling of ABF film material for printed circuit boards using laser burst mode and beam shaping}, series = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, booktitle = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, year = {2023}, abstract = {We report on an experimental study of laser microvia percussion drilling of Ajinomoto build-up film (ABF) material using an ultrashort pulsed laser in the ultraviolet region. In order to optimize the drilling quality in terms of the fabricated taper and microvia diameter, the MHz burst mode is used in combination with both a Gaussian and a top-hat laser intensity distribution. To evaluate the influence of the top-hat beam shape on defocusing, microvias were drilled at different z-positions in the range of 200 μm evenly distributed around the focal plane. The drilling quality was evaluated by laser scanning microscopy and metallography. When using a top-hat beam shape, a reduced taper of down to 26.8 \% on average is achieved compared to a Gaussian beam. For the application of 3 intra-burst pulses, we find an improvement of the taper by 11.6\% compared to the single pulse mode due to the increasing heat accumulation. Using a top-hat beam shape in combination with the MHz burst mode, an 18.2 \% reduction in laser drilling time for a microvia with a similar taper is remarkable, demonstrating the high potential for scaling throughput in electronics manufacturing.}, subject = {Pikosekundenbereich}, language = {en} } @article{BischoffKeferWienkeetal.2023, author = {Bischoff, Kay and Kefer, Stefan and Wienke, Alexander and Overmeyer, Ludger and Kaierle, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Integration of Bragg gratings in aerosol-jetted polymer optical waveguides for strain monitoring capabilities}, series = {Optics Letters}, volume = {48}, journal = {Optics Letters}, number = {7}, doi = {https://doi.org/10.1364/OL.481801}, pages = {1778 -- 1781}, year = {2023}, abstract = {We demonstrate and discuss the integration of Bragg gratings in aerosol-jetted polymer optical waveguides, produced in the optical assembly and connection technology for component-integrated bus systems (OPTAVER) process. By using a femtosecond laser and adaptive beam shaping, an elliptical focal voxel generates different types of single pulse modification by nonlinear absorption in the waveguide material, which are arranged periodically to form Bragg gratings. Integration of a single grating structure or, alternatively, an array of Bragg grating structures in the multimode waveguide yields a pronounced reflection signal with typical multimodal properties, i.e., a number of reflection peaks with non-Gaussian shapes. However, the main wavelength of reflection, located around 1555 nm, is evaluable by means of an appropriate smoothing algorithm. When loaded by mechanical bending, a pronounced Bragg wavelength shift of this reflected peak up to 160 pm is detected. This demonstrates that the additively manufactured waveguides can be used not only for signal transmission but also as a sensor.}, subject = {Bragg-Reflektor}, language = {de} } @inproceedings{BischoffMueckeEsenetal.2023, author = {Bischoff, Kay and M{\"u}cke, Dominik and Esen, Cemal and Hellmann, Ralf}, title = {UV-Femtosecond-Laser Structuring of Silicon Carbide}, series = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, booktitle = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, year = {2023}, abstract = {We report on ultraviolet ultrashort pulsed laser processing of silicon carbide. Laser ablated cavities are evaluated with respect to their ablation rates, surface roughness and overall quality by varying the laser pulse fluence. Using this type of laser, high edge quality and surface roughness down to 107 nm can be achieved with an ablation efficiency of up to 0.228 mm 3 W -1 min -1. Functional surfaces are produced by generating laser induced periodic surface structures. The comparison with infrared wavelength underlines the advantages of the ultraviolet wavelength for laser micro machining this material. Significant differences with respect to the measured ablation depths and roughness as well as generated micro-and nanostructures appear. While infrared ablation is dominated by a chipping mechanism above a critical fluence of 9.93 Jcm -2 , higher ablation rates are observed with strong quality losses at the same time. In comparison to the infrared emission wavelength, in general , a significantly higher processing quality is achieved with the ultraviolet emission wavelength. In addition, the influence of spot size and repetition rate in UV processing is investigated. By increasing these parameters, a process acceleration without quality losses is enabled. The generation of a sophisticated microstructure exemplifies the advantages of processing silicon carbide with the UV laser reported here.}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{BischoffEsenHellmann2023, author = {Bischoff, Kay and Esen, Cemal and Hellmann, Ralf}, title = {Acceleration of Femtosecond Reductive Laser Sintering of Copper(II) Oxide for Conductive Copper Patterns on Cyclic Olefin Copolymers}, series = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, booktitle = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, year = {2023}, abstract = {We report on the acceleration of femtosecond reductive laser sintering of copper (II) oxide on the surface of transparent cyclic olefin copolymers (COC) by varying the focus size to generate metallic copper (Cu) layers. By using different focusing conditions, different process speeds are achieved, and the structural accuracies are controlled. The formation of Cu lines is observed for different focus sizes at various scan speeds, which is attributed to laser exposure duration and chemical reaction time. The formed lines are categorized and measured by optical microscopy and provide the basis for two-dimensional Cu surfaces. By hatching, high quality conductive films are produced with an increased focus diameter of up to 400 µm at a scan speed of 400 mm/s and a hatch distance of 250 µm resulting in a multiple increased process speed by a factor of thirteen compared to previous research. Using 4-tip measurement , a low sheet resistance of 0.165 Ω/sq was validated on these Cu films, which have an atomic Cu content of 89.5\%.}, subject = {Femtosekundenlaser}, language = {en} } @article{RothRungEsenetal.2020, author = {Roth, Gian-Luca and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Microchannels inside bulk PMMA generated by femtosecond laser using adaptive beam shaping}, series = {Optics Express}, volume = {28}, journal = {Optics Express}, number = {4}, pages = {5801 -- 5811}, year = {2020}, abstract = {In this contribution, we report on the generation of internal microchannels with basically unlimited channel length inside of PMMA bulk material by femtosecond laser. A precisely controllable and stable circular channel cross section is obtained by using a spatial light modulator to compensate the writing depth depending spherical aberration. Furthermore, the generation of a rotatable elliptical input beam by adaptive optics ensures a fitting of the beam shaping to the writing direction. In this study, we report on both, the effect of the ellipticity of the input beam and the effect of a correction of the spherical aberration on the circularity of the resulting internal microchannels. Moreover, we demonstrate the application of this writing technique by creating microfluidic testing structures inside of a transparent standard polymer.}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{KeferZettlSchmaussetal.2023, author = {Kefer, Stefan and Zettl, Julian and Schmauss, Bernhard and Esen, Cemal and Hellmann, Ralf}, title = {High-Precision Micromachining of Sapphire Towards Optical Waveguiding Structures using Femtosecond Lasers}, series = {Laser-based Micro- and Nanoprocessing XVII}, booktitle = {Laser-based Micro- and Nanoprocessing XVII}, editor = {Kling, Rainer and Pfleging, Wilhelm and Watanabe, Akira}, isbn = {9781510659230}, doi = {10.1117/12.2648758}, pages = {3 -- 11}, year = {2023}, abstract = {While sapphire is one of the most durable materials, its properties entail that high-precision machining, especially in the sub-millimeter regime, is still challenging. This contribution demonstrates and discusses novel femtosecond laser-based micromachining approaches for the fabrication of rotational-symmetric sapphire workpieces, specifically the generation of optical fibers by means of laser lathe of sapphire rods and the practical realization of windmill fibers. In addition, volume refractive index modification in planar sapphire substrates is presented to induce photonic crystal waveguides. The micromachined structures are comprehensively examined with respect to geometric fidelity, surface roughness, refractive index modification, and potential optical waveguiding properties. All micromachining approaches are done by means of frequency-doubled or frequency-tripled femtosecond laser radiation. Different laser optical setups including laser scanning head, spatial beam profilers including a spatial light modulator and axial rotatory movement of the specimen are employed for micro structuring and in-depth refractive index modifications. In particular for laser lathe, a sophisticated scanning pattern, in combination with an incremental axial rotatory movement of the specimen, allows for the precise diameter reduction of sapphire rods with 250 µm diameter to fibers with outer diameters of 25 µm. By supporting the workpiece with a V-groove fixture, multi-mode fibers with lengths up to 20 cm can be processed with an average surface roughness of 250 nm. Additionally, an adapted ablation scanning sequence enables the first practical demonstration of sapphire windmill fibers. Furthermore, using a spatial light modulator allows for the adaption of the laser propagation properties as to enable volume refractive index modifications with free-form arrangement. Hexagonal patterns of refractive index modifications surrounding a pristine waveguide core are fabricated and single-mode waveguiding at 1550 nm is verified. Finally, the possibility of integrating Bragg gratings into this photonic waveguide type is demonstrated}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{RothWolfEsenetal.2019, author = {Roth, Gian-Luca and Wolf, Bastian and Esen, Cemal and Hellmann, Ralf}, title = {Generation of internal 3D microfluidic architectures in polymers by fs laser processing}, series = {Lasers in Manufacturing 2019}, booktitle = {Lasers in Manufacturing 2019}, year = {2019}, abstract = {Microfluidic lab on chip systems require components to transport, mix, separate and analyse small volumes of different fluids. In this study, we report on the laser generation of internal hollow architectures created by focused 514 nm femtosecond laser pulses inside PMMA bulk material. Size and cross-sectional shape of a single internal generated microchannel are determined by the intensity distribution inside the focal voxel and can be controlled either by the numerical aperture of the focusing objective or by laser beam shaping. As both approaches are practically limited with respect to the realizable cross-sectional shapes, we present a process based on an internal hatching to expand the achievable channel cross-sections and thereby enable the possibility to create complex 3D shaped internal structures. This process is applied to create fully internal functional microfluidic elements such as mixers which are part of most polymer lab-on-chip systems.}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{SchwarzRungEsenetal.2018, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Axicon fabrication with ultrashort and CO2 laser}, series = {LPM2018 The 19th International Symposium on Laser Precision Microfabrication}, booktitle = {LPM2018 The 19th International Symposium on Laser Precision Microfabrication}, year = {2018}, subject = {Ultrakurzzeitlaser}, language = {de} } @article{SchwarzRungEsenetal.2018, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Fabrication of a high-quality axicon by femtosecond laser ablation and CO2 laser polishing for quasi-Bessel beam generation}, series = {Optics Express}, volume = {26}, journal = {Optics Express}, number = {18}, pages = {23287 -- 23294}, year = {2018}, subject = {Femtosekundenlaser}, language = {en} } @article{SchwarzRungEsenetal.2021, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Ultrashort pulsed laser backside ablation of fused silica}, series = {Optics Express}, volume = {29}, journal = {Optics Express}, number = {15}, pages = {23477 -- 23486}, year = {2021}, subject = {Femtosekundenlaser}, language = {de} } @article{HaefnerBischoffHelmetal.2023, author = {H{\"a}fner, Tom and Bischoff, Kay and Helm, Jonas and Kunz, Tim and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {KEINE FREISCHALTUNG - Urheberrecht 0 bei Dokument mit Volltext Picosecond laser microvia drilling of ABF material using MHz burst mode}, series = {Materials Research Express}, volume = {10}, journal = {Materials Research Express}, number = {9}, pages = {096301 -- 096311}, year = {2023}, abstract = {We report on a comprehensive study of laser percussion microvia drilling of Ajinomoto build-up film (ABF) material using an ultrashort pulsed laser in MHz burst mode. After laser processing, microvia drilling quality is being evaluated by the fabricated diameter and taper using laser scanning microscopy and metallography. The influences of the incubation effect, heat accumulation and shielding effects as a result of pulse to pulse interactions are being discussed on the ablation threshold, penetration depth and laser microvia drilling quality. We find that an increasing heat accumulation in MHz burst mode processing is responsible for the void formation and delamination of the insulating ABF layer. Therefore, the parameter clearance is introduced to evaluate these effects on the microvia sidewalls. For a comparable clearance, applying 2 intra-burst pulses achieves an average reduced taper of down to 19.5\% compared to single pulse mode. At the same time, a reduced laser drilling time of 16.7\% per microvia highlights the enormous potential of the MHz burst mode for laser drilling of ABF material in printed circuit board fabrication.}, subject = {Ultrakurzzeitlaser}, language = {en} } @inproceedings{SchwarzEsenHellmann2018, author = {Schwarz, Simon and Esen, Cemal and Hellmann, Ralf}, title = {Homogeneous low spatial frequency LIPSS on dielectrics generated by beam-shaped femtosecond pulsed laser irradiation}, series = {LPM2018 The 19th International Symposium on Laser Precision Microfabrication}, booktitle = {LPM2018 The 19th International Symposium on Laser Precision Microfabrication}, year = {2018}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Current results on laser-based production of complex optics in glass}, series = {10. Wetzlarer Herbsttagung "Moderne Optikfertigung", 29. - 30. September 2020, Wetzlar}, booktitle = {10. Wetzlarer Herbsttagung "Moderne Optikfertigung", 29. - 30. September 2020, Wetzlar}, year = {2020}, subject = {Laserbearbeitung}, language = {en} } @inproceedings{SchwarzEsenHellmann2018, author = {Schwarz, Simon and Esen, Cemal and Hellmann, Ralf}, title = {CO2 laser polishing of femtosecond shaped micro-optical components}, series = {3rd Conference on Laser Polishing LaP 2018}, booktitle = {3rd Conference on Laser Polishing LaP 2018}, year = {2018}, subject = {Kohlendioxidlaser}, language = {en} } @article{RothEsenHellmann2017, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {Femtosecond laser direct generation of 3D-microfluidic channels inside bulk PMMA}, series = {Optics Express}, volume = {25}, journal = {Optics Express}, number = {15}, pages = {18442 -- 18450}, year = {2017}, abstract = {We report on laser direct generation of 3D-microchannels for microfluidic applications inside PMMA bulk material by focused femtosecond pulses. Inner lying channels with cross sectional areas from 100 µm2 to 4400 µm2 are directly created in the volume of a PMMA substrate. Using the presented process, the channel length is fundamentally unlimited. Here we demonstrate a channel length of 6 meters inside a substrate with dimensions of 20 × 20 × 1.1 mm. The formation of the micro channels is based on nonlinear absorption around the focal volume that triggers a material modification. The modified volume can be selectively opened to form the channel by a subsequent annealing process. The cross section of the channel is strongly influenced by the energy distribution and illumination around the focal volume determined by the optical setup and process design. The 3D channel layout can easily be realized by moving the specimen using 3D motorized stage, allowing freely chosen complex shaped channel architectures. Within a comprehensive parameter study, varying laser power, number of multi-passes, writing speed and writing depths, we identify an optimized process in terms of attainable channel height, width and aspect ratio, as well as process stability and reproducibility. The proof of concept for an application in three dimensional microfluidic systems is provided by florescence microscopy using a dye rhodamine B solution in isopropanol.}, subject = {Femtosekundenlaser}, language = {en} } @article{RothEsenHellmann2019, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {Circular microchannels inside bulk polymethylmethacrylate generated by femtosecond laser using slit beam shaping}, series = {Journal of Laser Applications}, volume = {31}, journal = {Journal of Laser Applications}, number = {2}, pages = {022603-1 -- 022603-5}, year = {2019}, abstract = {The authors report on the laser generation of three-dimensional microchannel architectures with fundamentally unlimited channel length by focused 514 nm femtosecond laser pulses inside polymethylmethacrylate bulk material. The three-dimensional channel layout is implemented by moving the specimen using three-dimensional motorized stages, allowing freely chosen complex shaped channel architectures. Based on nonlinear absorption of high intensities around the focal volume, a material modification, including a refractive-index shift is triggered. After laser exposure, the channel is created by a gaseous degradation of exposed areas during an annealing process. Cross section and aspect ratio of thus generated microchannels are strongly influenced by the numerical aperture of the applied objective. To obtain a circular cross-sectional shape, high focusing objectives are necessary. In this report, the authors improve the existing setup by using an elliptical input beam, transforming the intensity distribution of the focal area in the propagation direction to a circular shape even for low and medium numerical aperture focusing objectives and therefore avoiding a small working distance as a limiting factor for processing depth. The elliptical input beam is obtained by insertion of a slit mask in front of the focusing objective. The ellipticity of the incident beam defines the aspect ratio of the generated microchannels. Furthermore, the size of internal microchannels is adjustable by varying laser and annealing process parameters.}, subject = {Femtosekundenlaser}, language = {en} } @article{RothEsenHellmann2018, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {Vertical Microchannels for Microfluidic Multilayer Interconnections in PMMA}, series = {Journal of Laser Micro/Nanoengineering}, volume = {13}, journal = {Journal of Laser Micro/Nanoengineering}, number = {3}, pages = {155 -- 159}, year = {2018}, abstract = {We report on laser generation of microchannels by focused femtosecond laser pulses inside PMMA bulk material. This process enables direct fabrication of three dimensional microfluidic channel architectures with generally unlimited channel length. Based on nonlinear ultrashort pulse laser absorption of high intensities around the focal volume, a material modification including a refractive index shift is triggered. After laser exposure the channel is created by a gaseous degradation of exposed areas during an annealing process. The 3D channel layout can easily be realized by moving the specimen using 3D motorized stages, allowing freely chosen complex shaped channel architectures. In this report, the creation of inner lying vertical microchannels is examined. In addition to previously shown horizontal channel architectures vertical channels are necessary to fulfill the definition of an internal three-dimensional microfluidic structure and to create interconnections in multilevel lab on chip devices. The cross section and geometry of vertical channels are strongly influenced by laser parameters such as pulse duration, laser power and writing speed. The influence of these process parameters on the channels diameter is determined and parameters are optimized regarding a controllable, stable and reproducible process. The functionality of vertical microchannels as an interconnection between multilayer microfluidic devices is demonstrated using a Rhodamine B solution.}, subject = {Polymethylmethacrylate}, language = {en} } @article{RothEsenHellmann2018, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {Control of femtosecond laser generated microfluidic channels inside poly (methyl methacrylate)}, series = {Journal of Laser Applications}, volume = {30}, journal = {Journal of Laser Applications}, number = {3}, pages = {032016-1 -- 032016-6}, year = {2018}, abstract = {In this study, the authors report on femtosecond laser direct generation of microchannels inside poly(methyl methacrylate) with variable dimensions ranging from a channel height of 20 to 350 μm and an aspect ratio down to 1.2. Focused ultrashort laser pulses are used to trigger a material modification in the focal area which can be selectively opened by a subsequent annealing process. A 3D microchannel architecture can easily be realized by moving the specimen using motorized stages, allowing freely chosen complex shaped channel layouts. While the laser wavelength is identified as one of the main parameters determining process effectiveness, another core of this study is the variation of channel dimensions by the numerical aperture of the applied objective to focus the laser. The authors find that both size and shape of the modified region and the resulting microchannel can be controlled by altering the numerical aperture.}, subject = {Femtosekundenlaser}, language = {en} } @article{RungBokanKleinwortetal.2019, author = {Rung, Stefan and Bokan, Kevin and Kleinwort, Frederick and Schwarz, Simon and Simon, Peter and Klein-Wiele, Jan-Hendrik and Esen, Cemal and Hellmann, Ralf}, title = {Possibilities of Dry and Lubricated Friction Modification Enabled by Different Ultrashort Laser-Based Surface Structuring Methods}, series = {Lubricants}, volume = {7}, journal = {Lubricants}, number = {43}, doi = {10.3390/lubricants7050043}, pages = {1 -- 13}, year = {2019}, abstract = {In this contribution we report on the possibilities of dry and lubricated friction modification introduced by different laser surface texturing methods. We compare the potential of Laser-Induced Periodic Surface Structures and Laser Beam Interference Ablation on 100Cr6 steel in a linear reciprocating ball-on-disc configuration using 100Cr6 steel and tungsten carbide balls with load forces between 50mN and 1000 mN. For dry friction, we find a possibility to reduce the coefficient of friction and we observe a pronounced direction dependency for surfaces fabricated by Laser Beam Interference Ablation. Furthermore, Laser-Induced Periodic Surface Structures result in a load-dependent friction reduction for lubricated linear reciprocating movements. This work helps to identify the modification behaviour of laser generated micro structures with feature sizes of approximately 1μm and reveals new possibilities for surface engineering}, subject = {Laser}, language = {en} } @article{RungBokanRutschetal.2018, author = {Rung, Stefan and Bokan, Kevin and Rutsch, Kevin and Schwarz, Simon and Esen, Cemal and Hellmann, Ralf}, title = {Laser Induced Periodic Surface Structures on 100Cr6 Steel for Modification of Friction Demonstrated with Stribeck Test}, series = {Journal of Laser Micro/Nanoengineering}, volume = {13}, journal = {Journal of Laser Micro/Nanoengineering}, number = {3}, doi = {10.2961/jlmn.2018.03.0004}, pages = {160 -- 165}, year = {2018}, abstract = {In this contribution, we report on surface functionalization by introducing laser induced periodic surface structures on 100Cr6 bearing steel to modify complex tribological properties. The advanced approach of this study is the measurement of the coefficient of friction by performing a ball-on-disk Stribeck test on laser structured surfaces with polytetrafluoroethylene balls in a lubricant environment. The Stribeck test reveals the modified friction behavior using translation speeds up to 106 mm/min and load forces between 100 mN and 5000 mN. Our results show increased stiction and coefficient of friction for laser structured surfaces in the regime of boundary lubrication which is attributed to the laser induced surface asperities. Decreased coefficient of friction is observed in the regime of mixed and hydrodynamic lubrication, i.e. for velocities higher than 1000 mm/min, for surfaces covered by laser induced periodic surface structures with low spatial frequency.}, subject = {Laser}, language = {en} } @inproceedings{RothEsenHellmann2020, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {Internal micro structuring of transparent optical polymers by fs laser}, series = {Laser-based Micro-and Nanoprocessing XIV 2020}, volume = {11268}, booktitle = {Laser-based Micro-and Nanoprocessing XIV 2020}, publisher = {International Society for Optics and Photonics}, doi = {10.1117/12.2543487}, pages = {112681L}, year = {2020}, abstract = {Lab-on-chip systems are based on components to transport, mix, separate and analyse small volumes of different fluids. The consecutive integration of more complex functions into a single and compact chip demands on multilayer systems. As the classical production using a stacking and joining of single processed layers is elaborate and limited in terms of multilayer structures, an uprising trend to fabricate those devices is the internal, three dimensional processing of transparent substrates by using ultrashort laser pulses. In this study, we report on the generation of internal hollow architectures created by focused 514nm femtosecond laser pulses inside optical polymer bulk materials of different polymers. The three-dimensional channel layout is implemented by moving the sample using three-dimensional motorized stages, allowing arbitrary complex shaped internal channel architectures. Size and cross sectional shape of a single internal generated microchannel are determined by the intensity distribution of the focal voxel. In particular, we show a comprehensive parameter study to improve this laser process with respect to a higher processing speed and stability.}, subject = {Femtosekundenlaser}, language = {en} } @article{RothEsenHellmann2018, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {Laser beam microwelding of transparent plastics}, series = {Joining Plastics}, volume = {12}, journal = {Joining Plastics}, number = {3/4}, pages = {2 -- 8}, year = {2018}, abstract = {The laser beam welding of transparent plastic components is still a challenge according to the state of the art. A new approach for the joining of two transparent polymeric components using ultrashort laser beam pulses is presented in this report. In this respect, the high peak pulse intensity associated with these lasers permits non-linear absorption processes and thus the production of a locally well-defined heat source in the interior even of a transparent material or at the boundary layer between two transparent substrates. Welding results for transparent plastics of the cycloolefin copolymer and polycarbonate types are shown in this study. In addition to the investigation into the influences of fundamental process parameters on the weld geometry, the leak tightness is demonstrated in this study using a microfluidic system.}, subject = {Laserschweißen}, language = {en} } @article{SchwarzRungEsenetal.2018, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Homogeneous low spatial frequency LIPSS on dielectric materials generated by beam-shaped femtosecond pulsed laser irradiation}, series = {Journal of Laser Micro/Nanoengineering}, volume = {13}, journal = {Journal of Laser Micro/Nanoengineering}, number = {2}, pages = {90 -- 94}, year = {2018}, subject = {Femtosekundenlaser}, language = {en} } @article{SchwarzRungEsenetal.2018, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Influence of pulse duration on high-precision manufacturing of 3D geometries}, series = {Journal of Laser Micro/Nanoengineering}, volume = {13}, journal = {Journal of Laser Micro/Nanoengineering}, number = {3}, pages = {292 -- 295}, year = {2018}, subject = {Dreidimensionale Geometrie}, language = {en} } @article{SchwarzRungEsenetal.2018, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Surface Plasmon Polariton Triggered Generation of 1D-Low Spatial Frequency LIPSS on Fused Silica}, series = {Applied Sciences}, volume = {8}, journal = {Applied Sciences}, number = {9}, pages = {1624 -- 1624}, year = {2018}, subject = {Femtosekundenlaser}, language = {en} } @article{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Rapid fabrication of precise glass axicon arrays by an all laser-based manufacturing technology}, series = {Journal of Laser Applications}, volume = {32}, journal = {Journal of Laser Applications}, number = {1}, pages = {012001 -- 012001}, year = {2020}, subject = {Femtosekundenlaser}, language = {en} } @article{RothHesslerKeferetal.2020, author = {Roth, Gian-Luca and Hessler, Steffen and Kefer, Stefan and Girschikofsky, Maiko and Esen, Cemal and Hellmann, Ralf}, title = {Femtosecond laser inscription of waveguides and Bragg gratings in transparent cyclic olefin copolymers}, series = {Optics Express}, volume = {28}, journal = {Optics Express}, number = {12}, doi = {10.1364/OE.388364}, pages = {18077 -- 18084}, year = {2020}, abstract = {We report on a femtosecond laser based fabrication technique that enables simultaneous single-step generation of optical waveguides and Bragg gratings inside bulk cyclic olefin copolymers. Due to the nonlinear absorption of focused and spatially modulated laser radiation with a wavelength of 514 nm and a pulse duration of 450 fs, a modification concluding a refractive index shift increase inside the substrate can be achieved. A sophisticated characterization of the generated waveguides by means of an elaborate cut-back method reveals a maximum attenuation of 3.2 dB/cm. Additionally, a Mach-Zehnder interferometer is used to examine the waveguide's refractive index profile. The integrated Bragg grating structures exhibit reflectivities up to 95 \% and a spectral full width at half maximum of 288 pm, at a Bragg wavelength of 1582 nm, whereas the grating period can be deliberately chosen by adapting the fabrication parameters. Thus, due to its increased flexibility and the resulting dispensability of cost-intensive phase masks, this method constitutes an especially promising fabrication process for polymer Bragg gratings inside of bulk materials.}, subject = {Femtosekundenlaser}, language = {en} } @article{RothHaubnerKeferetal.2020, author = {Roth, Gian-Luca and Haubner, Julian and Kefer, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Fs-laser based hybrid micromachining for polymer micro-opto electrical systems}, series = {Optics and Lasers in Engineering}, volume = {137}, journal = {Optics and Lasers in Engineering}, number = {10362}, doi = {10.1016/j.optlaseng.2020.106362}, pages = {1 -- 8}, year = {2020}, abstract = {We report on femtosecond laser direct writing of electrically conductive copper structures on transparent cyclic olefin copolymer based planar optical chips. The process is based on a laser-induced reduction of CuO nanoparticles dissolved in a water-soluble resin. Thus generated conductive copper structures are characterized with respect to their chemical composition and electrical resistivity. In addition, the application of ultrashort laser pulses enables a hybrid micromachining approach comprising ablation of polymer substrates and the fabrication of copper patterns in a single laser processing setup. A possible electro-optical application of this approach is demonstrated by employing the copper structures as an electro-thermal microheater in combination with a polymer planar optical Bragg grating sensor. This, in turn, highlights the potential of generating copious micro-opto-electro-mechanical polymer structures for numerous sensing applications ranging from Lab-on-Chip to environmental applications using the presented hybrid micromachining approach.}, subject = {Femtosekundenlaser}, language = {en} } @article{RungBokanSchwarzetal.2020, author = {Rung, Stefan and Bokan, Kevin and Schwarz, Simon and Esen, Cemal and Hellmann, Ralf}, title = {Influence of laser wavelength on the modification of friction between 100Cr6 steel and polytetrafluoroethylene by femtosecond laser-induced periodic surface structures}, series = {Journal of Laser Applications}, volume = {32}, journal = {Journal of Laser Applications}, number = {3}, doi = {10.2351/7.0000036}, pages = {032017-1 -- 032017-6}, year = {2020}, subject = {Femtosekundenlaser}, language = {en} } @article{SchleierAdelmannEsenetal.2017, author = {Schleier, Max and Adelmann, Benedikt and Esen, Cemal and Hellmann, Ralf}, title = {Cross-correlation-based algorithm for monitoring laser cutting with high-power fiber lasers}, series = {IEEE Sensors Journal}, volume = {18}, journal = {IEEE Sensors Journal}, number = {4}, doi = {10.1109/JSEN.2017.2783761}, pages = {1585 -- 1590}, year = {2017}, subject = {Laserschneiden}, language = {en} } @article{RothKeferHessleretal.2021, author = {Roth, Gian-Luca and Kefer, Stefan and Hessler, Steffen and Esen, Cemal and Hellmann, Ralf}, title = {Integration of Microfluidic and Photonic Components within Transparent Cyclic Olefin Copolymers by Using fs Laser}, series = {Journal of Laser Micro/Nanoengineering}, volume = {16}, journal = {Journal of Laser Micro/Nanoengineering}, number = {1}, doi = {10.2961/jlmn.2021.01.2009}, pages = {1 -- 6}, year = {2021}, abstract = {In this study, we report on the integration of microfluidic channels and optical components by focusing femtosecond laser radiation inside transparent cyclic olefin copolymer (COC) bulk material. An internal localized material modification is triggered based on nonlinear absorption of the laser radiation's high intensities inside the focal volume. The size and shape of the three-dimensional internal modification are controlled by using an adaptive beam shaping setup. The irradiated areas show a positive refractive index shift and can be used as Type I internal optical waveguides. Furthermore, precise control of the spatial pulse-to-pulse distance in combination with a suitable beam profile enables the integration of functional photonic elements, e.g., Bragg gratings, into the waveguide. Thus, it also enables the generation of integrated photonic sensors. In addition, internal fs laser-induced modifications are characterized by a lower thermal stability as compared to the pristine polymer material. By performing a post-annealing process step, internal hollow microstructures are created by gaseous degradation of the exposed areas. Circular microchannels can be generated in a deliberately chosen layout by employing motorized 3D stages. In comparison to etching-based fabrication methods the proposed technology facilitates unlimited channel lengths, as it omits restrictions arising from an etching selectivity and duration. Altogether, this contribution paves the way towards the fabrication of internal three-dimensional optofluidic devices, equipped with a photonic sensor. In contrast, microfluidic and photonic structures are both created by femtosecond laser direct writing inside of transparent polymers.}, subject = {Femtosekundenlaser}, language = {en} } @article{ZettlKlarEsenetal.2020, author = {Zettl, Julian and Klar, Maximilian and Esen, Cemal and Hellmann, Ralf}, title = {Generation of Rotationally Symmetric Micro Tools using Ultrashort Laser Pulses}, series = {Journal of Laser Micro/Nanoengeneering}, volume = {15}, journal = {Journal of Laser Micro/Nanoengeneering}, number = {2}, doi = {10.2961/jlmn.2020.02.2007}, pages = {118 -- 122}, year = {2020}, abstract = {We report on the fabrication of rotationally symmetrical geometries with ultrashort laser pulses impinging the constant rotating workpiece tangentially. This particular micro machin-ing of geometry is referred to as laser turning, upon which the laser beam is, in general, orient-ed perpendicularly to the rotational axis and tangentially to the work piece. The target geome-try is realized by moving the constantly rotating specimen according to the specified geometry along the focused laser spot. In contrast to mechanical turning, laser turning induces a mini-mized amount of lateral forces through friction that might deteriorate the geometry. In this study, laser turning is examined for stellite as a function of pulse energy and pulse length in the range between 240 fs and 10 ps. Shorter pulse lengths and higher pulse energies increase the achievable ablation rate, while in the pulse length regime of below 1 ps lower roughness is achieved. With a maximum ablation rate of 1.27 mm³/min and a minimum roughness of 0.17 µm, laser turning combines both, fast processing and high surface quality.}, subject = {Ultrakurzzeitlaser}, language = {en} } @article{LutzRothRungetal.2021, author = {Lutz, Christian and Roth, Gian-Luca and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Efficient Ultrashort Pulsed Laser Processing by Dynamic Spatial Light Modulator Beam Shaping for Industrial Use}, series = {Journal of Laser Micro/Nanoengineering}, volume = {16}, journal = {Journal of Laser Micro/Nanoengineering}, number = {1}, doi = {10.2961/jlmn.2021.01.2011}, pages = {1 -- 6}, year = {2021}, abstract = {We report on the effect of different transversal beam shapes on the efficiency of ablation processes and the resulting surface characteristics. A possibility to efficiently apply ultrashort pulsed lasers with high average power is beam shaping. By using a cooled reflective based liquid crystal spatial light modulator to generate different spot distributions, it is possible to spatially allocate the available power to avoid excessive high fluences. In our experiments, we determine the optimal fluence to ablate the maximum volume per watt to be in the range of 0.2-0.4 J/cm². Based on this fluence, we increase the number of spots from one to a maximum of twenty to ablate steel in a multilayer scanning-based process. In this context, we examine the influence of different separation distances between the spots on the ablation efficiency and roughness. Subsequently to these investigations, we develop an efficient roughing process with higher ablation rates and a nearly constant roughness.}, subject = {Ultrakurzzeitlaser}, language = {en} } @inproceedings{LutzSchwarzRungetal.2021, author = {Lutz, Christian and Schwarz, Simon and Rung, Stefan and Marx, Jan and Esen, Cemal and Hellmann, Ralf}, title = {Optical system for multi Bessel beam high power ultrashort pulsed laser processing using a spatial light modulator}, series = {Lasers in Manufacturing - LiM 2021}, booktitle = {Lasers in Manufacturing - LiM 2021}, year = {2021}, abstract = {We report on an optical setup for multi Bessel beam processing combining a refractive axicon and a spatial light modulator. Based on their particular beam profile, Bessel beams exhibit various advantages over conventional Gaussian beams for ultrashort pulsed laser processing. Especially for micromachining of transparent materials, applications such as micro-hole drilling or the generation of voids benefit from the increased focal length of the applied Bessel beam. In addition, on account of the significantly increased average output power of industrial ultrashort pulsed lasers over the last years, there is a high demand on multi spot applications for using the available laser power in efficient production processes. Our optical concept combines the dynamic possibilities of beam splitting using spatial light modulator with the benefits of Bessel beams facilitating multi Bessel beam processing.}, subject = {Ultrakurzzeitlaser}, language = {en} } @inproceedings{FranzRothRungetal.2021, author = {Franz, Daniel and Roth, Gian-Luca and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Superimposed beam deflection using acousto-optical deflectors in combination with a galvanometer scanner}, series = {Lasers in Manufacturing - LiM 2021}, booktitle = {Lasers in Manufacturing - LiM 2021}, year = {2021}, subject = {Galvanometer}, language = {en} } @article{SchwarzRothRungetal.2020, author = {Schwarz, Simon and Roth, Gian-Luca and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Fabrication and evaluation of negative axicons for ultrashort pulsed laser applications}, series = {Optics Express}, volume = {Optics Express}, journal = {Optics Express}, number = {28}, pages = {26207 -- 26217}, year = {2020}, subject = {Ultrakurzzeitlaser}, language = {en} } @inproceedings{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Manufacturing of optical elements by non-contact laser processing}, series = {Seventh European Seminar on Precision Optics Manufacturing, Proceedings}, booktitle = {Seventh European Seminar on Precision Optics Manufacturing, Proceedings}, number = {11478}, year = {2020}, subject = {Laserbearbeitung}, language = {en} } @article{ZettlRungEsenetal.2021, author = {Zettl, Julian and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Tangential Laser Turning of Fused Silica Using Ultra-short Laser Pulses}, series = {Journal of Laser Micro/Nanoengineering}, volume = {16}, journal = {Journal of Laser Micro/Nanoengineering}, number = {1}, doi = {10.2961/jlmn.2021.01.2008}, pages = {42 -- 46}, year = {2021}, abstract = {Laser turning with ultra-short laser pulses provides the possibility of manufacturing rotationally symmetric geometries, even of hard to machine materials as fused silica, down to a micrometer scale. In this laser micro machining approach, the laser beam is oriented perpendicularly to the rotational axis and tangentially to the material, whereas the target geometry is realized by moving the constantly rotating specimen according to the specified geometry under the focused laser spot. Due to the fric-tion-less laser ablation it is possible to realize a turning process in fused silica without the use of a contacting tool and therefore without causing mechanical tensions in the work piece. The processing head focuses the laser to a calculated spot size of 18 μm in diameter and the applied processing gas pressure assists in removing the ablated material. In this study, femto-second laser turning of fused silica with a diameter of 3.7 mm is investigated. The influence of the applied pulse energy is stated and the use of a trepanning optic during the turning process is characterized. Furthermore, compre-hensive parameter studies in order to optimize roughness and to find the maximum achievable abla-tion rate are shown. Limited by the mechanical speed of the rotational axis, the highest feasible abla-tion rate is 19.5 mm³/min. A roughness of Ra 0.65 μm are demonstrated.}, subject = {Laserbearbeitung}, language = {en} } @article{SchleierAdelmannEsenetal.2021, author = {Schleier, Max and Adelmann, Benedikt and Esen, Cemal and Glatzel, Uwe and Hellmann, Ralf}, title = {Development and evaluation of an image processing algorithm for monitoring fiber laser fusion cutting by a high-speed camera}, series = {Journal of Laser Applications}, volume = {2021}, journal = {Journal of Laser Applications}, number = {33}, doi = {10.2351/7.0000391}, pages = {032004 -- 032004}, year = {2021}, subject = {Faserlaser}, language = {en} } @inproceedings{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {UKP-Prozess mit anschließendem CO2-Laserpolieren zur Fertigung komplexer Optiken}, series = {10. Workshop Laserbearbeitung von Glaswerkstoffen}, booktitle = {10. Workshop Laserbearbeitung von Glaswerkstoffen}, year = {2020}, subject = {Linse}, language = {en} } @article{SchwarzGoetzendorferRungetal.2021, author = {Schwarz, Simon and G{\"o}tzendorfer, Babette and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Compact Beam Homogenizer Module with Laser-Fabricated Lens-Arrays}, series = {applied sciences}, volume = {2021}, journal = {applied sciences}, number = {11}, pages = {1018 -- 1018}, year = {2021}, subject = {Femtosekundenlaser}, language = {en} } @article{SchwarzRungEsenetal.2021, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Enhanced ablation efficiency using GHz bursts in micromachining fused silica}, series = {Optics Letters}, volume = {46}, journal = {Optics Letters}, number = {2}, pages = {282 -- 285}, year = {2021}, subject = {Fr{\"a}sen}, language = {de} } @article{ZettlKlarRungetal.2021, author = {Zettl, Julian and Klar, Maximilian and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Laser turning with ultrashort laser pulses}, series = {Journal of Manufacturing Processes}, volume = {2021}, journal = {Journal of Manufacturing Processes}, number = {68}, doi = {10.1016/j.jmapro.2021.06.025}, pages = {1562 -- 1568}, year = {2021}, abstract = {We report on a comprehensive micromachining study of rotationally symmetric parts using femtosecond laser. A laser turning process with tangential impingement of the laser radiation complemented by a trepanning optics is implemented as to accomplish a true laser lathe micromachining approach. With the objective of optimized ablation rate and reduced surface roughness, the influence of pulse energy, feed rate, trepanning diameter and angular beam incidence, respectively, is investigated for processing stellite rods. We find the smallest feasible feature sizes of 8.5 μm in diameter and smoothest surfaces with an arithmetic average of the roughness profile as low as 0.18 μm. The surface roughness, however, appears to be limited by the occurrence of laser induced periodic surface structures provoked by the femtosecond laser radiation. Furthermore, the variation of the fluence in accordance to the incidence on a curved surface is discussed and the heat input into the material is examined through a longitudinal cross section.}, subject = {Ultrakurzer Lichtimpuls}, language = {en} } @article{RothEsenHellmann2019, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {A New Approach to Seal Polymer Microfluidic Devices Using Ultrashort Laser Pulses}, series = {Journal of Laser Micro/Nanoengineering}, volume = {14}, journal = {Journal of Laser Micro/Nanoengineering}, number = {1}, pages = {49 -- 53}, year = {2019}, abstract = {We report on the joining of two different transparent thermoplastic polymers using infrared femtosecond laser pulses. Solely being based on nonlinear absorption, the developed micro-welding process for cyclo-olefin copolymers and polycarbonate does not require any intermediate absorbing layers or any surface pre-processing of the welding partners. In addition, it circumvents any heat damages at the outer surfaces of the welding partners. Femtosecond laser welding of cyclo-olefin copolymers is improved by increasing the numerical aperture of the focusing setup resulting in a wider and more homogenous welding cross-section. Welding results are classified by shear strength and fracture modes are analyzed using scanning electron microscopy. Furthermore, we demonstrate, to the best of our knowledge, first results of ultrashort pulse laser welding of transparent polycarbonate, one of the most used transparent polymers. In view of an optimized and stable micro-welding process, we study the influence of laser power and focal position on welding results. The application of ultrashort pulse laser welding for Lab-on-chip fabrication technologies is demonstrated by sealing an ultrashort pulse laser ablated microfluidic device based on a transparent polymer substrate.}, subject = {Femtosekundenlaser}, language = {en} }