@article{ZettlRungEsenetal.2021, author = {Zettl, Julian and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Tangential Laser Turning of Fused Silica Using Ultra-short Laser Pulses}, series = {Journal of Laser Micro/Nanoengineering}, volume = {16}, journal = {Journal of Laser Micro/Nanoengineering}, number = {1}, doi = {10.2961/jlmn.2021.01.2008}, pages = {42 -- 46}, year = {2021}, abstract = {Laser turning with ultra-short laser pulses provides the possibility of manufacturing rotationally symmetric geometries, even of hard to machine materials as fused silica, down to a micrometer scale. In this laser micro machining approach, the laser beam is oriented perpendicularly to the rotational axis and tangentially to the material, whereas the target geometry is realized by moving the constantly rotating specimen according to the specified geometry under the focused laser spot. Due to the fric-tion-less laser ablation it is possible to realize a turning process in fused silica without the use of a contacting tool and therefore without causing mechanical tensions in the work piece. The processing head focuses the laser to a calculated spot size of 18 μm in diameter and the applied processing gas pressure assists in removing the ablated material. In this study, femto-second laser turning of fused silica with a diameter of 3.7 mm is investigated. The influence of the applied pulse energy is stated and the use of a trepanning optic during the turning process is characterized. Furthermore, compre-hensive parameter studies in order to optimize roughness and to find the maximum achievable abla-tion rate are shown. Limited by the mechanical speed of the rotational axis, the highest feasible abla-tion rate is 19.5 mm³/min. A roughness of Ra 0.65 μm are demonstrated.}, subject = {Laserbearbeitung}, language = {en} } @article{ZettlKlarRungetal.2021, author = {Zettl, Julian and Klar, Maximilian and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Laser turning with ultrashort laser pulses}, series = {Journal of Manufacturing Processes}, volume = {2021}, journal = {Journal of Manufacturing Processes}, number = {68}, doi = {10.1016/j.jmapro.2021.06.025}, pages = {1562 -- 1568}, year = {2021}, abstract = {We report on a comprehensive micromachining study of rotationally symmetric parts using femtosecond laser. A laser turning process with tangential impingement of the laser radiation complemented by a trepanning optics is implemented as to accomplish a true laser lathe micromachining approach. With the objective of optimized ablation rate and reduced surface roughness, the influence of pulse energy, feed rate, trepanning diameter and angular beam incidence, respectively, is investigated for processing stellite rods. We find the smallest feasible feature sizes of 8.5 μm in diameter and smoothest surfaces with an arithmetic average of the roughness profile as low as 0.18 μm. The surface roughness, however, appears to be limited by the occurrence of laser induced periodic surface structures provoked by the femtosecond laser radiation. Furthermore, the variation of the fluence in accordance to the incidence on a curved surface is discussed and the heat input into the material is examined through a longitudinal cross section.}, subject = {Ultrakurzer Lichtimpuls}, language = {en} } @article{ZettlKlarEsenetal.2020, author = {Zettl, Julian and Klar, Maximilian and Esen, Cemal and Hellmann, Ralf}, title = {Generation of Rotationally Symmetric Micro Tools using Ultrashort Laser Pulses}, series = {Journal of Laser Micro/Nanoengeneering}, volume = {15}, journal = {Journal of Laser Micro/Nanoengeneering}, number = {2}, doi = {10.2961/jlmn.2020.02.2007}, pages = {118 -- 122}, year = {2020}, abstract = {We report on the fabrication of rotationally symmetrical geometries with ultrashort laser pulses impinging the constant rotating workpiece tangentially. This particular micro machin-ing of geometry is referred to as laser turning, upon which the laser beam is, in general, orient-ed perpendicularly to the rotational axis and tangentially to the work piece. The target geome-try is realized by moving the constantly rotating specimen according to the specified geometry along the focused laser spot. In contrast to mechanical turning, laser turning induces a mini-mized amount of lateral forces through friction that might deteriorate the geometry. In this study, laser turning is examined for stellite as a function of pulse energy and pulse length in the range between 240 fs and 10 ps. Shorter pulse lengths and higher pulse energies increase the achievable ablation rate, while in the pulse length regime of below 1 ps lower roughness is achieved. With a maximum ablation rate of 1.27 mm³/min and a minimum roughness of 0.17 µm, laser turning combines both, fast processing and high surface quality.}, subject = {Ultrakurzzeitlaser}, language = {en} } @article{ZettlEsenHellmann2023, author = {Zettl, Julian and Esen, Cemal and Hellmann, Ralf}, title = {Fundamental Considerations and Analysis of the Energy Distribution in Laser Turning with Ultrashort Laser Pulses}, series = {mdpi Micromachines}, volume = {14}, journal = {mdpi Micromachines}, number = {10}, doi = {10.3390/mi14101838}, pages = {1 -- 15}, year = {2023}, abstract = {This article discusses the process of the laser turning of rotational symmetric, cylindrical components using ultrashort laser pulses with respect to the geometrical conditions and the resulting energy distribution during the laser turning process. As a result, process predictions and potential process optimizations are feasible. Particular attention is drawn to the laser spot formation on the cylindrical surface of the work piece in conjunction with the positioning of the laser beam relative to the rotation axis of the specimen. Based on fundamental calculations and experimental results, an optimum processing strategy is discussed, whereat the use of a trepanning optic in the laser turning process and the forming of a particular surface structure is additionally being issued.}, subject = {Ultrakurzzeitlaser}, language = {en} } @article{YangBischoffMueckeetal.2024, author = {Yang, Yongting and Bischoff, Kay and M{\"u}cke, Dominik and Esen, Cemal and Hellmann, Ralf}, title = {UV-ultrashort pulsed laser ablation of fused silica}, series = {Journal of Laser Applications}, volume = {36}, journal = {Journal of Laser Applications}, number = {1}, publisher = {Laser Institute of America}, issn = {1042-346X}, doi = {http://dx.doi.org/10.2351/7.0001197}, year = {2024}, abstract = {The authors report on ultraviolet ultrashort pulsed laser ablation of fused silica and compare the achievable micromachining results to those obtained by using the fundamental emission wavelength in infrared. Ablation in ultraviolet reveals a stable efficiency for increasing fluences, whereas using an infrared beam exhibits a decreasing trend of the ablation efficiency at higher and increasing fluences. In addition, a significant improvement in the surface quality is found by using an ultraviolet wavelength in a fluence range up to 20 J/cm2 compared to infrared, e.g., revealing an Ra of down to 0.45 μm on using the ultraviolet wavelength compared to Ra = 0.56 μm on using infrared at fluences up 15 J/cm2. Moreover, taking advantage of the high available pulse energy, the authors compare the achievable ablation efficiency and surface roughness using a conventionally focused ultraviolet beam and a defocused ultraviolet beam, finding that the defocused ultraviolet beam possesses a processing quality comparable to that of the focused beam. Finally, the authors exemplify the potential of ultraviolet ultrashort pulsed laser ablation by using a Tesla mixer for microfluidic integration of fused silica.}, subject = {Laserablation}, language = {en} } @article{SommerTruetschEsenetal.2025, author = {Sommer, David and Truetsch, Ben and Esen, Cemal and Hellmann, Ralf}, title = {Fractographic Analysis and Fatigue Behavior of Additively Manufactured Ni-Superalloy Components with Post Processing Heat Treatment and Hot Isostatic Pressing}, series = {Advanced Engineering Materials}, volume = {27}, journal = {Advanced Engineering Materials}, number = {12}, publisher = {Wiley}, issn = {1438-1656}, doi = {http://dx.doi.org/10.1002/adem.202500078}, year = {2025}, abstract = {A report is made on a study of mechanical properties and fractographic characteristics of laser powder bed fusion (PBF-LB/M)-built Inconel 718, performing heat treatments and hot-isostatic pressing. For this, tensile components are heat-treated by different processes, as namely stress relief (SR), SR and double aging (SR + DA), and hot-isostatic pressing are conducted. For the mechanical testing, the ultimate tensile strength (UTS) as well as the fatigue behavior are evaluated, examining differences in maximum load behavior, elongation, and the different regimes of fatigue. As changes in material structure can be observed, the sole SR leads to a diminished UTS, while the combination of SR + DA develops an UTS of Rm = 1277 MPa. Within the fatigue behavior, the HIP shows a very balanced material structure with an increased high cycle and very high cycle regime, as the texture gets homogenized during the heat treatment. The metallographic analysis can quantify the material changes, as the density and the hardness are improved by virtue of the heat treatments. Furthermore, the fractographic analysis shows the differences in fracture behavior, arising due to the microstructural changes, as crack initiation points, crack propagation, and forced fractures can be categorized by scanning electron microscopy.}, subject = {Rapid Prototyping, Fertigung}, language = {en} } @inproceedings{SommerSafiEsenetal.2024, author = {Sommer, David and Safi, Abdulrahman and Esen, Cemal and Hellmann, Ralf}, title = {Additive manufacturing of Nickel-based superalloy: optimization of surface roughness using integrated high-speed milling}, series = {Laser 3D Manufacturing XI}, booktitle = {Laser 3D Manufacturing XI}, editor = {Gu, Bo and Chen, Hongqiang}, publisher = {SPIE}, doi = {http://dx.doi.org/10.1117/12.3000972}, year = {2024}, subject = {Hochgeschwindigkeitsfr{\"a}sen}, language = {en} } @article{SommerPapeEsenetal.2022, author = {Sommer, David and Pape, Dominik and Esen, Cemal and Hellmann, Ralf}, title = {Tool Wear and Milling Characteristics for Hybrid Additive Manufacturing Combining Laser Powder Bed Fusion and In Situ High-Speed Milling}, series = {Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials}, volume = {15}, journal = {Ultra-Precision Manufacturing Technology for Difficult-to-Machine Materials}, number = {3}, doi = {https://doi.org/10.3390/ma15031236}, pages = {1 -- 13}, year = {2022}, abstract = {We report on milling and tool wear characteristics of hybrid additive manufacturing comprising laser powder bed fusion and in situ high-speed milling, a particular process in which the cutter mills inside the powder bed without any cooling lubricant being applicable. Flank wear is found to be the dominant wear characteristic with its temporal evolution over utilization period revealing the typical s-shaped dependence. The flank wear land width is measured by microscopy and correlated to the achievable surface roughness of milled 3D-printed parts, showing that for flank wear levels up to 100 μm a superior surface roughness below 3 μm is accessible for hybrid additive manufacturing. Further, based on this correlation recommended tool, life scenarios can be deduced. In addition, by optimizing the finishing tool start position and the number of afore-built layers, the milling process is improved with respect to the maximum millable angle for undercut surfaces of 3D-printed parts to 30° for the roughing process and to 40° for the entire machining process including finishing}, subject = {Hochgeschwindigkeitsfr{\"a}sen}, language = {de} } @article{SommerHornungEsenetal.2024, author = {Sommer, David and Hornung, Simon and Esen, Cemal and Hellmann, Ralf}, title = {Surface roughness optimization of hybrid PBF-LB/M-built Inconel 718 using in situ high-speed milling}, series = {The International Journal of Advanced Manufacturing Technology}, volume = {132}, journal = {The International Journal of Advanced Manufacturing Technology}, number = {3-4}, publisher = {Springer Science and Business Media LLC}, issn = {0268-3768}, doi = {http://dx.doi.org/10.1007/s00170-024-13382-5}, pages = {1741 -- 1751}, year = {2024}, abstract = {AbstractWe report on the optimization of the surface roughness of hybrid additive manufactured Ni superalloys, combining a conventional laser powder bed fusion process with in situ high-speed milling. This remarkable hybrid approach has only recently been applied to different steel types and barely to Ni superalloys which opposite to steel appear to be challenging for milling processes, particularly within the powderbed of laser powder bed fusion. Different influencing factors on the surface roughness are varied in this study, following the Taguchi method. Their effect is evaluated with respect to the average surface roughness and the maximum surface roughness. The signal-to-noise ratio for the varied parameters infeed, z-pitch, feed rate, and spindle speed is calculated, determining their relevance on the surface roughness, and defining an optimal parameter combination. As the surface quality is optimized to \$\$\varvec{R_a=0.47\, \mu m}\$\$ R a = 0.47 μ m , the definition of the optimal parameter combination is of the highest relevance for the application of this novel manufacturing approach for Inconel. Using linear regression, the resulting surface roughness of these parameters is predicted, getting validated by the experimental evaluation. Due to a further analysis, including EDX analysis and a quantitative element analysis at different positions of the flank of the milling cutter, wear characteristics as well as the dissipation of the coating of the milling cutter are detected. The flank wear and the resulting breakage of the cutting edge are defined as the main reasons of a rising surface roughness.}, subject = {Hochgeschwindigkeitsfr{\"a}sen}, language = {en} } @inproceedings{SommerHornungEsenetal.2024, author = {Sommer, David and Hornung, Simon and Esen, Cemal and Hellmann, Ralf}, title = {Optimization of mechanical properties of additive manufactured IN 718 parts combining LPBF and in-situ high-speed milling}, series = {Laser 3D Manufacturing XI}, booktitle = {Laser 3D Manufacturing XI}, editor = {Gu, Bo and Chen, Hongqiang}, publisher = {SPIE}, doi = {http://dx.doi.org/10.1117/12.3000952}, year = {2024}, subject = {Hochgeschwindigkeitsfr{\"a}sen}, language = {en} }