@inproceedings{MarxEsenLutzetal.2023, author = {Marx, Jan and Esen, Cemal and Lutz, Christian and Hellmann, Ralf and Ostendorf, Andreas}, title = {Holographic tuning of physical axicons}, volume = {2023}, number = {154}, publisher = {LiM 2023 Proceedings}, pages = {1 -- 9}, year = {2023}, abstract = {Axicon generated Bessel beams are a popular tool for high aspect ratio precision laser drilling. Spot diameter and working distance are given by the geometric parameters of the axicon and the wavelength used. Thus, it is difficult to manipulate the beam shape of a Bessel beam for a given setup. Spatial light modulators (SLMs) overcome limitations in flexibility. However, due to the limited phase shift of SLMs, only Bessel beams with flat cone angles and large focal length can be generated. In this contribution, an approach for generating Bessel beams with a shorter, but tunable focal length is presented. A physical axicon was combined with an SLM. A holographic image of a negative axicon is put on the SLM to generate a ring beam, which is focused by a subsequent physical axicon to get a small focal diameter. Thus, different sized high aspect ratio micro holes can be drilled without using any moving components.}, subject = {Bessel-B{\"u}ndel}, language = {en} }