@inproceedings{DausHasenkopfThielemann2009, author = {Daus, Andreas and Hasenkopf, Matthias and Thielemann, Christiane}, title = {Novel 3D cell culture systems for electromagnetic exposure studies}, series = {BioEM 2009, Davos, Switzerland}, booktitle = {BioEM 2009, Davos, Switzerland}, year = {2009}, subject = {Zellkultur}, language = {en} } @article{TrentThielemannMonici2024, author = {Trent, Davis and Thielemann, Christiane and Monici, Monica}, title = {How are cell and tissue structure and function influenced by gravity and what are the gravity perception mechanisms?}, series = {npj Microgravity}, volume = {2014}, journal = {npj Microgravity}, number = {10 / 16}, doi = {10.1038/s41526-024-00357-9}, pages = {1 -- 7}, year = {2024}, abstract = {Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.}, subject = {Zellkultur}, language = {en} } @article{HeselichFriessRitteretal.2018, author = {Heselich, Anja and Frieß, Johannes and Ritter, Sylvia and Benz, Naja and Layer, Paul and Thielemann, Christiane}, title = {High LET radiation shows no major cellular and functional effects on primary cardiomyocytes in vitro}, series = {Life Sciences in Space Research}, volume = {2018}, journal = {Life Sciences in Space Research}, number = {16}, doi = {10.1016/j.lssr.2018.01.001}, pages = {93 -- 100}, year = {2018}, abstract = {It is well known that ionizing radiation causes adverse effects on various mammalian tissues. However, there is little information on the biological effects of heavy ion radiation on the heart. In order to fill this gap, we systematically examined DNA-damage induction and repair, as well as proliferation and apoptosis in avian cardiomyocyte cultures irradiated with heavy ions such as titanium and iron, relevant for manned space-flight, and carbon ions, as used for radiotherapy. Further, and to our knowledge for the first time, we analyzed the effect of heavy ion radiation on the electrophysiology of primary cardiomyocytes derived from chicken embryos using the non-invasive microelectrode array (MEA) technology. As electrophysiological endpoints beat rate and field action potential duration were analyzed. The cultures clearly exhibited the capacity to repair induced DNA damage almost completely within 24 h, even at doses of 7 Gy, and almost completely recovered from radiation-induced changes in proliferative behavior. Interestingly, no significant effects on apoptosis could be detected. Especially the functionality of primary cardiac cells exhibited a surprisingly high robustness against heavy ion radiation, even at doses of up to 7 Gy. In contrast to our previous study with X-rays the beat rate remained more or less unaffected after heavy ion radiation, independently of beam quality. The only change we could observe was an increase of the field action potential duration of up to 30\% after titanium irradiation, diminishing within the following three days. This potentially pathological observation may be an indication that heavy ion irradiation at high doses could bear a long-term risk for cardiovascular disease induction.}, subject = {Zellkultur}, language = {en} } @article{DausGoldhammerLayeretal.2011, author = {Daus, Andreas and Goldhammer, Michael and Layer, Paul and Thielemann, Christiane}, title = {Electromagnetic exposure of scaffold-free three-dimensional cell culture systems}, series = {Bioelectromagnetics}, volume = {32}, journal = {Bioelectromagnetics}, number = {5}, issn = {1521-186X}, doi = {10.1002/bem.20649}, pages = {351 -- 359}, year = {2011}, subject = {Zellkultur}, language = {en} } @article{ThielemannKrstićJuettneretal.2023, author = {Thielemann, Christiane and Krstić, Nenad and J{\"u}ttner, Jens and Giegerich, Lars and Mayer, Margot and Knuth, Monika and M{\"u}ller, Achim}, title = {3D printed biosensor for continuous glucose measurement in cell cultures}, series = {Annals of 3D Printed Medicine}, volume = {2023}, journal = {Annals of 3D Printed Medicine}, number = {-}, doi = {https://doi.org/10.1016/j.stlm.2023.100111}, pages = {- -- -}, year = {2023}, abstract = {A novel 3D-printed glucose sensor is presented for cell culture application. Glucose sensing was performed using a fluorescence resonance energy transfer (FRET)-based assay principle based on ConA and dextran. Both molecules are encapsulated in alginate microspheres and embedded in the UV-curable, stable hydrogel polyvinyl alcohol (PVA). The rheology of the formulation was adapted to obtain good properties for an extrusion-based printing process. The printed sensor structures were tested for their ability to detect glucose in vitro. A proportional increase in fluorescence intensity was observed in a concentration range of 0 - 2 g/L glucose. Tests with HEK cell cultures also showed good cell compatibility and excellent adhesion properties on plasma-treated Petri dishes. The printed sensors were able to detect the glucose decay associated with the metabolic activities of the fast-growing HEK cells in the cell culture medium over ten days. The proof-of-principle study shows that metabolic processes in cell cultures can be monitored with the new printed sensor using a standard fluorescence wide-field microscope.}, subject = {Biosensor}, language = {en} }