@inproceedings{KeferPapeSchmaussetal.2023, author = {Kefer, Stefan and Pape, Natalie and Schmauss, Bernhard and Hellmann, Ralf}, title = {Fabrication of Lattice-Like Waveguides in Planar Cyclic Olefin Copolymers}, series = {28th International Conference on Optical Fiber Sensors}, booktitle = {28th International Conference on Optical Fiber Sensors}, isbn = {978-1-957171-30-2}, doi = {10.1364/OFS.2023.Th6.69}, year = {2023}, abstract = {This work demonstrates the femtosecond laser-based fabrication of lattice-like waveguides in planar cyclic olefin copolymers. An overview of the fabrication process is provided and waveguiding in the C-band is proven via optical near-field analysis.}, subject = {Wellenleiter}, language = {en} } @inproceedings{KeferSchmaussHellmann2023, author = {Kefer, Stefan and Schmauss, Bernhard and Hellmann, Ralf}, title = {Sapphire-Based Planar Bragg Grating Devices}, series = {28th International Conference on Optical Fiber Sensors}, booktitle = {28th International Conference on Optical Fiber Sensors}, isbn = {978-1-957171-30-2}, doi = {10.1364/OFS.2023.W2.4}, year = {2023}, abstract = {This study reports on the long-term stability and the high-temperature capability of sapphire-based photonic crystal waveguides with integrated Bragg gratings. Furthermore, their Bragg grating reflectivity as well as their temperature sensitivity is quantified.}, subject = {Bragg-Reflektor}, language = {en} } @inproceedings{FranzMueckeKunzetal.2023, author = {Franz, Daniel and M{\"u}cke, Dominik and Kunz, Tim and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {UV picosecond laser drilling of ABF film material for printed circuit boards using laser burst mode and beam shaping}, series = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, booktitle = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, year = {2023}, abstract = {We report on an experimental study of laser microvia percussion drilling of Ajinomoto build-up film (ABF) material using an ultrashort pulsed laser in the ultraviolet region. In order to optimize the drilling quality in terms of the fabricated taper and microvia diameter, the MHz burst mode is used in combination with both a Gaussian and a top-hat laser intensity distribution. To evaluate the influence of the top-hat beam shape on defocusing, microvias were drilled at different z-positions in the range of 200 μm evenly distributed around the focal plane. The drilling quality was evaluated by laser scanning microscopy and metallography. When using a top-hat beam shape, a reduced taper of down to 26.8 \% on average is achieved compared to a Gaussian beam. For the application of 3 intra-burst pulses, we find an improvement of the taper by 11.6\% compared to the single pulse mode due to the increasing heat accumulation. Using a top-hat beam shape in combination with the MHz burst mode, an 18.2 \% reduction in laser drilling time for a microvia with a similar taper is remarkable, demonstrating the high potential for scaling throughput in electronics manufacturing.}, subject = {Pikosekundenbereich}, language = {en} } @inproceedings{BischoffMueckeEsenetal.2023, author = {Bischoff, Kay and M{\"u}cke, Dominik and Esen, Cemal and Hellmann, Ralf}, title = {UV-Femtosecond-Laser Structuring of Silicon Carbide}, series = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, booktitle = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, year = {2023}, abstract = {We report on ultraviolet ultrashort pulsed laser processing of silicon carbide. Laser ablated cavities are evaluated with respect to their ablation rates, surface roughness and overall quality by varying the laser pulse fluence. Using this type of laser, high edge quality and surface roughness down to 107 nm can be achieved with an ablation efficiency of up to 0.228 mm 3 W -1 min -1. Functional surfaces are produced by generating laser induced periodic surface structures. The comparison with infrared wavelength underlines the advantages of the ultraviolet wavelength for laser micro machining this material. Significant differences with respect to the measured ablation depths and roughness as well as generated micro-and nanostructures appear. While infrared ablation is dominated by a chipping mechanism above a critical fluence of 9.93 Jcm -2 , higher ablation rates are observed with strong quality losses at the same time. In comparison to the infrared emission wavelength, in general , a significantly higher processing quality is achieved with the ultraviolet emission wavelength. In addition, the influence of spot size and repetition rate in UV processing is investigated. By increasing these parameters, a process acceleration without quality losses is enabled. The generation of a sophisticated microstructure exemplifies the advantages of processing silicon carbide with the UV laser reported here.}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{BischoffEsenHellmann2023, author = {Bischoff, Kay and Esen, Cemal and Hellmann, Ralf}, title = {Acceleration of Femtosecond Reductive Laser Sintering of Copper(II) Oxide for Conductive Copper Patterns on Cyclic Olefin Copolymers}, series = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, booktitle = {International Congress on Applications of Lasers \& Electro-Optics (ICALEO) 2023}, year = {2023}, abstract = {We report on the acceleration of femtosecond reductive laser sintering of copper (II) oxide on the surface of transparent cyclic olefin copolymers (COC) by varying the focus size to generate metallic copper (Cu) layers. By using different focusing conditions, different process speeds are achieved, and the structural accuracies are controlled. The formation of Cu lines is observed for different focus sizes at various scan speeds, which is attributed to laser exposure duration and chemical reaction time. The formed lines are categorized and measured by optical microscopy and provide the basis for two-dimensional Cu surfaces. By hatching, high quality conductive films are produced with an increased focus diameter of up to 400 µm at a scan speed of 400 mm/s and a hatch distance of 250 µm resulting in a multiple increased process speed by a factor of thirteen compared to previous research. Using 4-tip measurement , a low sheet resistance of 0.165 Ω/sq was validated on these Cu films, which have an atomic Cu content of 89.5\%.}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{KeferZettlSchmaussetal.2023, author = {Kefer, Stefan and Zettl, Julian and Schmauss, Bernhard and Esen, Cemal and Hellmann, Ralf}, title = {High-Precision Micromachining of Sapphire Towards Optical Waveguiding Structures using Femtosecond Lasers}, series = {Laser-based Micro- and Nanoprocessing XVII}, booktitle = {Laser-based Micro- and Nanoprocessing XVII}, editor = {Kling, Rainer and Pfleging, Wilhelm and Watanabe, Akira}, isbn = {9781510659230}, doi = {10.1117/12.2648758}, pages = {3 -- 11}, year = {2023}, abstract = {While sapphire is one of the most durable materials, its properties entail that high-precision machining, especially in the sub-millimeter regime, is still challenging. This contribution demonstrates and discusses novel femtosecond laser-based micromachining approaches for the fabrication of rotational-symmetric sapphire workpieces, specifically the generation of optical fibers by means of laser lathe of sapphire rods and the practical realization of windmill fibers. In addition, volume refractive index modification in planar sapphire substrates is presented to induce photonic crystal waveguides. The micromachined structures are comprehensively examined with respect to geometric fidelity, surface roughness, refractive index modification, and potential optical waveguiding properties. All micromachining approaches are done by means of frequency-doubled or frequency-tripled femtosecond laser radiation. Different laser optical setups including laser scanning head, spatial beam profilers including a spatial light modulator and axial rotatory movement of the specimen are employed for micro structuring and in-depth refractive index modifications. In particular for laser lathe, a sophisticated scanning pattern, in combination with an incremental axial rotatory movement of the specimen, allows for the precise diameter reduction of sapphire rods with 250 µm diameter to fibers with outer diameters of 25 µm. By supporting the workpiece with a V-groove fixture, multi-mode fibers with lengths up to 20 cm can be processed with an average surface roughness of 250 nm. Additionally, an adapted ablation scanning sequence enables the first practical demonstration of sapphire windmill fibers. Furthermore, using a spatial light modulator allows for the adaption of the laser propagation properties as to enable volume refractive index modifications with free-form arrangement. Hexagonal patterns of refractive index modifications surrounding a pristine waveguide core are fabricated and single-mode waveguiding at 1550 nm is verified. Finally, the possibility of integrating Bragg gratings into this photonic waveguide type is demonstrated}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{KeferPapeGriesetal.2023, author = {Kefer, Stefan and Pape, Natalie and Gries, Nikola and Roth, Gian-Luca and Schmauss, Bernhard and Hellmann, Ralf}, title = {Towards Pressure Sensors Based on Polymer Planar Bragg Gratings}, series = {Organic Photonic Materials and Devices XXV}, booktitle = {Organic Photonic Materials and Devices XXV}, isbn = {9781510659414}, doi = {10.1117/12.2648723}, year = {2023}, abstract = {While Bragg grating-based optical devices have shown promising performances for pressure sensing applications, their sensitivity, especially in the low-pressure regime, is unsatisfying and needs to be optimized by elaborate designs, such as cantilevers or other extrinsic mechanical transducers. This contribution demonstrates and discusses a novel concept for optical pressure sensors based on polymer planar Bragg gratings. Waveguide and Bragg grating are fabricated underneath the surface of a temperature-stable and humidity-insensitive cyclic olefin copolymer substrate by means of a femtosecond laser. Based on the employed direct-writing procedure, in combination with adaptive, in-situ beam shaping with a spatial light modulator, writing depth, i.e., location of the photonic structures within the substrate, as well as Bragg grating periodicity and positioning can be deliberately chosen. Afterwards, the polymer substrate is post-processed with a high-precision micro mill, so a diaphragm comprising the integrated photonic structures is generated. The resulting diaphragm exhibits a thickness of 300 µm and a diameter of 10 mm. Finally, the optical sensor is packaged and sealed to form an air-filled gas pocket underneath the diaphragm. Deformations of the diaphragm by external pressure changes translate to strain variations along the waveguide axis and thus perturb the Bragg grating period. This leads to changes in the grating's wavelength of main reflection, which can be evaluated in order to quantify the relative external pressure. With this straightforward optical sensor concept, pressure sensitivities up to 39 pm kPa-1, within relative pressures ranges from 78 kPa to 372 kPa, are achieved.}, subject = {Bragg-Reflektor}, language = {en} } @inproceedings{MarxEsenLutzetal.2023, author = {Marx, Jan and Esen, Cemal and Lutz, Christian and Hellmann, Ralf and Ostendorf, Andreas}, title = {Holographic tuning of physical axicons}, volume = {2023}, number = {154}, publisher = {LiM 2023 Proceedings}, pages = {1 -- 9}, year = {2023}, abstract = {Axicon generated Bessel beams are a popular tool for high aspect ratio precision laser drilling. Spot diameter and working distance are given by the geometric parameters of the axicon and the wavelength used. Thus, it is difficult to manipulate the beam shape of a Bessel beam for a given setup. Spatial light modulators (SLMs) overcome limitations in flexibility. However, due to the limited phase shift of SLMs, only Bessel beams with flat cone angles and large focal length can be generated. In this contribution, an approach for generating Bessel beams with a shorter, but tunable focal length is presented. A physical axicon was combined with an SLM. A holographic image of a negative axicon is put on the SLM to generate a ring beam, which is focused by a subsequent physical axicon to get a small focal diameter. Thus, different sized high aspect ratio micro holes can be drilled without using any moving components.}, subject = {Bessel-B{\"u}ndel}, language = {en} } @inproceedings{KeferSchmaussHellmann2021, author = {Kefer, Stefan and Schmauss, Bernhard and Hellmann, Ralf}, title = {POLYMER PLANAR BRAGG GRATINGS BASED ON BULK CYCLIC OLEFIN COPOLYMERS: FABRICATION AND FUNCTIONALIZATION}, series = {Proceedings of Student Conference on Sensors, Systems and Measurement 2021}, booktitle = {Proceedings of Student Conference on Sensors, Systems and Measurement 2021}, isbn = {978-80-01-06822-9}, year = {2021}, subject = {Bragg-Reflektor}, language = {en} } @inproceedings{LutzSchwarzRungetal.2021, author = {Lutz, Christian and Schwarz, Simon and Rung, Stefan and Marx, Jan and Esen, Cemal and Hellmann, Ralf}, title = {Optical system for multi Bessel beam high power ultrashort pulsed laser processing using a spatial light modulator}, series = {Lasers in Manufacturing - LiM 2021}, booktitle = {Lasers in Manufacturing - LiM 2021}, year = {2021}, abstract = {We report on an optical setup for multi Bessel beam processing combining a refractive axicon and a spatial light modulator. Based on their particular beam profile, Bessel beams exhibit various advantages over conventional Gaussian beams for ultrashort pulsed laser processing. Especially for micromachining of transparent materials, applications such as micro-hole drilling or the generation of voids benefit from the increased focal length of the applied Bessel beam. In addition, on account of the significantly increased average output power of industrial ultrashort pulsed lasers over the last years, there is a high demand on multi spot applications for using the available laser power in efficient production processes. Our optical concept combines the dynamic possibilities of beam splitting using spatial light modulator with the benefits of Bessel beams facilitating multi Bessel beam processing.}, subject = {Ultrakurzzeitlaser}, language = {en} }