@inproceedings{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Current results on laser-based production of complex optics in glass}, series = {10. Wetzlarer Herbsttagung "Moderne Optikfertigung", 29. - 30. September 2020, Wetzlar}, booktitle = {10. Wetzlarer Herbsttagung "Moderne Optikfertigung", 29. - 30. September 2020, Wetzlar}, year = {2020}, subject = {Laserbearbeitung}, language = {en} } @inproceedings{KeferRosenbergerHessleretal.2020, author = {Kefer, Stefan and Rosenberger, Manuel and Hessler, Steffen and Girschikofsky, Maiko and Belle, Stefan and Roth, Gian-Luca and Schmauß, Bernhard and Hellmann, Ralf}, title = {Fabrication and Applications of Polymer Planar Bragg Grating Sensors based on Cyclic Olefin Copolymers}, series = {2019 Photonics \& Electromagnetics Research Symposium - Fall (PIERS - Fall)}, booktitle = {2019 Photonics \& Electromagnetics Research Symposium - Fall (PIERS - Fall)}, publisher = {Institute of Electrical and Electronics Engineers}, isbn = {978-1-7281-5304-9}, doi = {10.1109/PIERS-Fall48861.2019.9021801}, pages = {647 -- 655}, year = {2020}, abstract = {This contribution reviews recent advancements, current research and possible applications of polymer planar Bragg grating (PPBG) sensors with a focus on the utilization of cyclic olefin copolymer (COC) substrates. COC-PPBGs can be handled and fabricated efficiently by employing a single writing step procedure which features simultaneous generation of waveguide and Bragg grating structure within an injection molded substrate. The resulting photonic structures exhibit an attenuation as low as 1.2 dB cm-1 and a reflectivity up to 99 \%. The potential of COC-PPBGs for high-temperature applications is proven by demonstrating temperature measurements up to 160 °C. Moreover, it is possible to employ single PPBGs for multidimensional stress and strain sensing or even three-dimensional shape reconstruction. Due to their excellent properties, it is feasible to integrate COC-PPBGs into commercial-grade carbon fiber reinforced polymer workpieces for structural health monitoring. Furthermore, utilization of appropriate coatings enables functionalization of PPBGs for refractive index sensing and thus biochemical applications. Beside the fabrication and characterization of COC-based PPBGs, this contribution exemplifies and reviews such applications.}, subject = {Optischer Sensor}, language = {en} } @inproceedings{RothEsenHellmann2020, author = {Roth, Gian-Luca and Esen, Cemal and Hellmann, Ralf}, title = {Internal micro structuring of transparent optical polymers by fs laser}, series = {Laser-based Micro-and Nanoprocessing XIV 2020}, volume = {11268}, booktitle = {Laser-based Micro-and Nanoprocessing XIV 2020}, publisher = {International Society for Optics and Photonics}, doi = {10.1117/12.2543487}, pages = {112681L}, year = {2020}, abstract = {Lab-on-chip systems are based on components to transport, mix, separate and analyse small volumes of different fluids. The consecutive integration of more complex functions into a single and compact chip demands on multilayer systems. As the classical production using a stacking and joining of single processed layers is elaborate and limited in terms of multilayer structures, an uprising trend to fabricate those devices is the internal, three dimensional processing of transparent substrates by using ultrashort laser pulses. In this study, we report on the generation of internal hollow architectures created by focused 514nm femtosecond laser pulses inside optical polymer bulk materials of different polymers. The three-dimensional channel layout is implemented by moving the sample using three-dimensional motorized stages, allowing arbitrary complex shaped internal channel architectures. Size and cross sectional shape of a single internal generated microchannel are determined by the intensity distribution of the focal voxel. In particular, we show a comprehensive parameter study to improve this laser process with respect to a higher processing speed and stability.}, subject = {Femtosekundenlaser}, language = {en} } @inproceedings{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {Manufacturing of optical elements by non-contact laser processing}, series = {Seventh European Seminar on Precision Optics Manufacturing, Proceedings}, booktitle = {Seventh European Seminar on Precision Optics Manufacturing, Proceedings}, number = {11478}, year = {2020}, subject = {Laserbearbeitung}, language = {en} } @inproceedings{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {UKP-Prozess mit anschließendem CO2-Laserpolieren zur Fertigung komplexer Optiken}, series = {10. Workshop Laserbearbeitung von Glaswerkstoffen}, booktitle = {10. Workshop Laserbearbeitung von Glaswerkstoffen}, year = {2020}, subject = {Linse}, language = {en} } @inproceedings{SchwarzRungEsenetal.2020, author = {Schwarz, Simon and Rung, Stefan and Esen, Cemal and Hellmann, Ralf}, title = {All laser-based fabrication of optical elements}, series = {Proceedings of SPIE 11270, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XX}, booktitle = {Proceedings of SPIE 11270, Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XX}, year = {2020}, subject = {Ultrakurzzeitlaser}, language = {de} }