@article{AmrheinBochtlerHellmannetal.2010, author = {Amrhein, Frank and Bochtler, Ulrich and Hellmann, Ralf and Kaloudis, Michael and Kaloumenos, Mareiki}, title = {Vergleich der thermischen Eigenschaften unterschiedlicher insulated metal substrat-Leiterplatten}, series = {PLUS, Leiterplattentechnik}, journal = {PLUS, Leiterplattentechnik}, number = {8}, publisher = {Hanser Verlag}, address = {M{\"u}nchen}, pages = {1758}, year = {2010}, subject = {Gedruckte Schaltung}, language = {de} } @article{SahlKaloudis2010, author = {Sahl, Martin and Kaloudis, Michael}, title = {Einsatz von Glasloten zur Erzeugung gasdichter F{\"u}gestellen beim Aufbau von Drucksensoren}, series = {PLUS}, journal = {PLUS}, number = {12}, publisher = {Leuze-Verlag}, address = {Bad Saulgau}, pages = {1367}, year = {2010}, subject = {Drucksensor}, language = {de} } @article{SchneiderBochtlerHellmannetal.2012, author = {Schneider, Johannes and Bochtler, Ulrich and Hellmann, Ralf and Kaloudis, Michael and Gockel, Tilo}, title = {LUVLED III - Optimierung eines K{\"u}hlkonzeptes zur Aktivluftk{\"u}hlung eines Hochleistungs-UV-LED-Moduls}, series = {Zeitschrift ELEKTOR, Sonderheft LED-Special 4 - Leuchtdioden in Theorie und Praxis, 2012}, journal = {Zeitschrift ELEKTOR, Sonderheft LED-Special 4 - Leuchtdioden in Theorie und Praxis, 2012}, number = {9}, pages = {20 -- 29}, year = {2012}, subject = {Lumineszenzdiode}, language = {de} } @article{RauerKaloudis2013, author = {Rauer, Miriam and Kaloudis, Michael}, title = {Hinter der Fassade - Ausfallanalyse an einem Lithium-Ionen Akkumulator mittels CT}, series = {QZ Qualit{\"a}t und Zuverl{\"a}ssigkeit}, volume = {2013}, journal = {QZ Qualit{\"a}t und Zuverl{\"a}ssigkeit}, number = {1}, pages = {40 -- 41}, year = {2013}, subject = {Lithium-Ionen-Akkumulator}, language = {de} } @article{RauerSchreckKaloudis2013, author = {Rauer, Miriam and Schreck, Timo and Kaloudis, Michael}, title = {X-Ray Computed Tomography as Supporting Technology in the Failure Analysis of Press-In Connections for Electronic Assemblies}, series = {Practical Metallography}, volume = {50(2013)}, journal = {Practical Metallography}, number = {3}, pages = {205 -- 221}, year = {2013}, subject = {Fehleranalyse}, language = {en} } @article{BochtlerHellmannKaloudis2010, author = {Bochtler, Ulrich and Hellmann, Ralf and Kaloudis, Michael}, title = {Neuartige UV-Lichtquelle auf Leuchtdiodenbasis, Packaging und Hybridschaltungen}, series = {PLUS}, journal = {PLUS}, number = {2}, publisher = {Leuze-Verlag}, year = {2010}, subject = {Lumineszenzdiode}, language = {de} } @article{BraunwarthAmrheinSchrecketal.2015, author = {Braunwarth, Louisa and Amrhein, Sebastian and Schreck, Timo and Kaloudis, Michael}, title = {Ecological comparison of soldering and sintering as die-attach technologies in power electronics}, series = {Journal of Cleaner Production}, volume = {23}, journal = {Journal of Cleaner Production}, number = {102}, editor = {Huisingh, Donald}, pages = {408 -- 417}, year = {2015}, abstract = {In this study the method of life cycle assessment is used to perform a comparison of two die-attach technologies of power modules: silver sintering and common soldering with a tin-silver-copper solder. The goal of the study is to indicate which die-attach technique is more environmentally friendly. This is important in order to design future electronics more environmentally friendly. Processing covers the manufacturing of the respective pastes, application of pastes, and mounting as well as the subsequent sintering or soldering, including cleaning of the soldered parts. The last step in the processing is a wire bonding process. The environmental impacts are expressed in CO2-equivalents and ReCiPe points and different variants are discussed: comparisons are made between considered pastes and between a soldered and a sintered power module, including consideration of lifetime. Concerning sintering, the influence of using recycled silver is analyzed more closely. The types of stages included in this life cycle assessment best fit a cradle-to-gate assessment, because usage, recycling, and disposal are not included. The software used is OpenLCA version 1.3.3, created by GreenDelta, and the database used is Ecoinvent version 2.2. In order to fill data gaps, electronics manufacturing companies were contacted, and our own calculations and measurements were applied. The consideration of the wet film thicknesses of the soldering system and sintering system, respectively, results in very similar CO2-equivalent emissions for sinter paste and solder paste. Comparing the soldered power module to the sintered one shows minor to significant differences between the two systems which could easily be changed when changing circumstances and assumptions. But when considering the respective lifetimes of the joining technologies, sintering technology is clearly preferable to the conventional soldering technology. Using solely recycled silver for manufacturing of silver sinter paste reduces the CO2-equivalent emissions of one sintered power module by roughly 40\%. The results clearly show the dependence of outcomes on the initial settings. Consideration of lifetime has an enormous impact on the comparison of soldering technology to sintering technology. But the benefit of this life extension through the use of sintering technology is only useful when a long lifetime is required.}, subject = {L{\"o}ten}, language = {de} } @article{RauerKaloudis2014, author = {Rauer, Miriam and Kaloudis, Michael}, title = {Ausfallanalyse an einem Lithium-Ionen Akkumulator}, series = {Maschinenmarkt}, volume = {2014}, journal = {Maschinenmarkt}, number = {2}, pages = {45 -- 46}, year = {2014}, subject = {Lithium-Ionen-Akkumulator}, language = {de} } @article{RauerKaloudis2014, author = {Rauer, Miriam and Kaloudis, Michael}, title = {Computertomographie erweitert das Blickfeld}, series = {Mikroproduktion}, volume = {2014}, journal = {Mikroproduktion}, number = {1}, pages = {50 -- 51}, year = {2014}, subject = {Computertomographie}, language = {de} } @article{DresslerRauerKaloudisetal.2014, author = {Dressler, Katharina and Rauer, Miriam and Kaloudis, Michael and Dauwe, Stefan and Herguth, Axel and Hahn, Giso}, title = {Nondestructive Characterization of Voids in Rear Local Contacts of PERC-Type Solar Cells}, series = {IEEE Journal of Photovoltaics}, volume = {2015}, journal = {IEEE Journal of Photovoltaics}, number = {1}, doi = {10.1109/JPHOTOV.2014.2359745}, pages = {70 -- 76}, year = {2014}, abstract = {In this paper, we present two nondestructive characterization methods for the detection of voids in rear local contacts of passivated emitter and rear-type solar cells, namely scanning acoustic microscopy and computer tomography. We compare both methods and include a comparison with electroluminescence measurements. It is shown in this paper that voids can easily be detected with both measurement types without any sample preparation. We found a good match of scanning acoustic microscopy (SAM) and computer tomography (CT), which is presented for this purpose for the first time. The investigation was carried out for different aluminum pastes.}, subject = {Solarzelle}, language = {de} }