Refine
Has Fulltext
- no (3)
Document Type
Language
- English (3)
Is part of the Bibliography
- yes (3)
Institute
Currently, many sources predict increasing use of AR technology in the industrial environment. The task of immersive productive assistance systems is to provide information contextually to the industrial user. Therefore, it is essential to explore the factors and effects that influence the visibility and the corresponding quality of this information. Caused by the technical limitations of additive display technology and application conditions, this new approach has evaluated the immersive visibility of Landolt Rings in various greyscales against ambient illuminance levels on different industrial-like surfaces, coupled with and without a white virtual background. For this purpose, an empirical study in a within-subjects-design with full factorial experimental design (n=23) was conducted on Microsoft HoloLens 2 hardware. The mean values of the main effects indicate that visibility is significantly affected by ambient illuminance (best results at lower level), greyscale (best results at middle level) and virtual background (best results with background). In contrast, the choice of surface is shown to have no statistically significant effect on visibility, however it affects the response time. Additionally, cross-interactions of variables were analyzed and lead to a design recommendation for immersive industrial applications.
The results of the empirical study based on an AR Landolt C vision were examined to compare real and virtual visibility as a function of stimulus size on an HMD (e.g. MS HoloLens 2). A counterbalanced within-subject-design study with n = 32 probands was conducted. The results show on one hand a visibility loss between real and immersive systems by the same size of representation. On the other hand, a transfer function can be derived to ensure comparable visibility between the systems. This transfer function can be used to compensate for the visibility loss as a design guideline for immersive applications. In approximation, the Weber-Fechner's relation can be applied on AR visibility versus size of stimuli.
In the context of urban production and sustainable reuse of existing buildings, a detailed planning of the later usage is indispensable. One approach is to enable large-scale AR simulation on site with a sufficient Level of Detail (LoD) and stability. To determine performance metrics, a technology-stack is created and presented that enables a realistic field experiment in an industrial environment (area of 1,314 m2) using Microsoft HoloLens 2. For the experiment, a 3D model was instantiated as often as possible up to the limit of system stability and in different LoDs (100% down to 10%). The result shows that it is feasible to represent 2.63 million polygons (equivalent to about 1,909 m3 of augmented space) on LOD-35%; LoD-100% is equivalent to 327.38 m3 and 1,284 million polygons. Polygonal density [polygons/m3] is introduced as new indicator for better comparability when using 3D models. Thus, it is possible to immersively visualize urban production planning processes in large-scale scenarios. This expands the functional planning space of Urban Production and overcomes previous technical limitations.