Refine
Document Type
- Conference Proceeding (5)
- Article (3)
Keywords
- arbeitsplatz (1)
- autoencoder (1)
- machine learning (1)
- mensch-roboter (1)
- montage (1)
- neural network (1)
Institute
Material development processes are highly iterative and driven by the experience and intuition of the researcher. This can lead to time consuming procedures. Data-driven approaches such as Machine Learning can support decision processes with trained and validated models to predict certain output parameter. In a multifaceted process chain of material synthesis of electrochemical materials and their characterization, Machine Learning has a huge potential to shorten development processes. Based on this, the contribution presents a novel approach to utilize data derived from Small-Angle X-ray Scattering (SAXS) of SiO_2 matrix materials for battery anodes with Neural Networks. Here, we use SAXS as an intermediate, high-throughput method to characterize sol–gel based porous materials. A multi-step-method is presented where a Feed Forward Net is connected to a pretrained autoencoder to reliably map parameters of the material synthesis to the SAXS curve of the resulting material. In addition, a direct comparison shows that the prediction error of Neural Networks can be greatly reduced by training each output variable with a separate independent Neural Network.
Im Zuge der fortschreitenden Globalisierung und zunehmenden Digitalisierung der Arbeitswelt, ergeben sich gerade für kleine und mittelständische Unternehmen Herausforderungen im Bereich der Produktion und insbesondere in der Montage. Steigende Komplexität der Produkte, kürzer werdende Produktlebenszyklen bei kleinen Losgrößen mit hoher Variantenvielfalt und großem Wettbewerbsdruck zwingen Unternehmen bereits vorhandene Montagestrategien zu überarbeiten. Gerade bei komplexeren Baugruppen ist eine Hochautomatisierung der Montage in der Serienfertigung aufgrund der Produktstruktur nur schwer realisierbar und oftmals nicht wirtschaftlich. In der industriellen Produktion ist ein klarer Trend von der Massenproduktion hin zur »Massenspezialanfertigung« zu erkennen. Die Leistungsfähigkeit eines Industriebetriebes hängt entscheidend von den angewandten Produktionsverfahren, den eingesetzten Produktionsmitteln und der eingeführten Produktionsorganisation ab. Aber auch das Zusammenspiel von Mensch, Organisation und Technik trägt dazu bei Potenziale für den Erfolg eines Unternehmens auszuschöpfen. Aufgrund sich ständig ändernder Marktbedingungen und der kostengünstigen Herstellung von Produkten in Niedriglohnländern bei gleichzeitig steigendem Qualitätsniveau müssen Produktionsstrukturen ständig neu überdacht und weiterentwickelt werden. Die Montage ist im Vergleich zur klassischen Fertigung (wie z.B. Drehen, Fräsen oder Schleifen) ein eher niedrig automatisierter Bereich der industriellen Produktion, indem allerdings eine hohe Wertschöpfung am Produkt stattfindet. Die manuelle Montage ist daher auch zukünftig ein wichtiger Bestandteil der industriellen Produktion. Um am Markt bestehen zu können, müssen Unternehmen nach Möglichkeiten suchen, um manuelle Arbeit produktiver und damit kosteneffizienter zu gestalten ohne dabei Abstriche bei der Qualität hinzunehmen. Zur Unterstützung manueller Tätigkeiten sind in den vergangenen Jahren verschiedene Innovationen in den Fokus der Unternehmen gerückt. Das Ziel muss es sein, den (Montage-)Standort Deutschland durch innovative Konzepte wie kollaborative Mensch-Roboter-Arbeitsplätze zu sichern.