Refine
Document Type
- Article (7)
- Conference Proceeding (1)
Is part of the Bibliography
- yes (8)
Keywords
- CNC machine tools (1)
- Energy consumption (1)
- G-code (1)
- Machine Learning (1)
- corona (1)
- covid (1)
- internationalisierung (1)
Institute
Highly autonomous production cells are a crucial part of manufacturing systems in industry 4.0 and can contribute to a sustainable value-adding process. To realize a high degree of autonomy in production cells with an industrial robot and a machine tool, an experimental approach was carried out to deal with numerous challenges on various automation levels. One crucial aspect is the scheduling problem of tasks for each resource (machine tool, tools, robot, AGV) depending on various data needed for a job-shop scheduling algorithm. The findings show that the necessary data has to be derived from different automation levels in a company: horizontally from ERP to shop-floor, vertically from the order handling department to the maintenance department. Utilizing that data, the contribution provides a cascaded scheduling approach for machine tool jobs as well as CNC and robot tasks for highly autonomous production cells supplied by AGVs.
Advances in machine learning detecting changeover processes in cyber physical production systems
(2020)
The performance indicator, Overall Equipment Effectiveness (OEE), is one of the most important ones for production control, as it merges information of equipment usage, process yield, and product quality. The determination of the OEE is oftentimes not transparent in companies, due to the heterogeneous data sources and manual interference. Furthermore, there is a difference in present guidelines to calculate the OEE. Due to a big amount of sensor data in Cyber Physical Production Systems, Machine Learning methods can be used in order to detect several elements of the OEE by a trained model. Changeover time is one crucial aspect influencing the OEE, as it adds no value to the product. Furthermore, changeover processes are fulfilled manually and vary from worker to worker. They always have their own procedure to conduct a changeover of a machine for a new product or production lot. Hence, the changeover time as well as the process itself vary. Thus, a new Machine Learning based concept for identification and characterization of machine set-up actions is presented. Here, the issue to be dealt with is the necessity of human and machine interaction to fulfill the entire machine set-up process. Because of this, the paper shows the use case in a real production scenario of a small to medium size company (SME), the derived data set, promising Machine Learning algorithms, as well as the results of the implemented Machine Learning model to classify machine set-up actions.
Eines der zentralen strategischen Ziele unserer Hochschule ist die Internationalisierung, sowie der »internationalisation@home«. Als die weltweite Corona-Pandemie die Präsenzlehre und -forschung ebenso wie den internationalen Austausch von Studierenden und Forschenden zu Beginn 2020 quasi zum Erliegen brachte wurden die Rufe nach digitalen Angeboten im internationalen Bereich schnell laut. Vor diesem Hintergrund reagierte der »Deutsche Akademische Auslandsdienst (DAAD)« mit der kurzfristig ins Leben gerufenen Förderlinie »International Virtual Academic Collaboration« (IVAC), um internationale Hochschulkooperationen und weltweite Mobilität unter digitalen Vorzeichen strategisch zu gestalten und auszubauen [1].
Computerized Numeric Control (CNC) plays an essential role in highly autonomous manufacturing systems for interlinked process chains for machine tools. NC-programs are mostly written in standardized G-code. Evaluating CNC-controlled manufacturing processes before their real application is advantageous due to resource efficiency. One dimension is the estimation of the energy demand of a part manufactured by an NC-program, e.g. to discover optimization potentials. In this context, this paper presents a Machine Learning (ML) approach to assess G-code for CNC-milling processes from the perspective of the energy demand of basic G-commands. We propose Latin Hypercube Sampling as an efficient method of Design of Experiments to train the ML model with minimum experimental effort to avoid costly setup and implementation time of the model training and deployment.