Refine
Document Type
- Article (2)
- Part of a Book (1)
Language
- English (3)
Is part of the Bibliography
- yes (3)
Keywords
- CNC machine tools (1)
- Energy consumption (1)
- G-code (1)
- Machine Learning (1)
Institute
Computerized Numerical Control (CNC) plays an important role in highly autonomous manufacturing systems with multiple machine tools. The necessary Numerical Control (NC) programs to manufacture the parts are mostly written in standardized G-code. An a priori evaluation of the energy demand of CNC-based machine processes opens up the possibility of scheduling multiple jobs according to balanced energy consumption over a production period. Due to this, we present a combined Machine Learning (ML) and Job-Shop-Scheduling (JSS) approach to evaluate G-code for a CNC-milling process with respect to the energy demand of each G-command. The ML model training data are derived by the Latin hypercube sampling (LHS) method facing the main G-code operations G00, G01, and G02. The resulting energy demand for each job enhances a JSS algorithm to smooth the energy demand for multiple jobs, as peak power consumption needs to be avoided due to its expense.
Computerized Numeric Control (CNC) plays an essential role in highly autonomous manufacturing systems for interlinked process chains for machine tools. NC-programs are mostly written in standardized G-code. Evaluating CNC-controlled manufacturing processes before their real application is advantageous due to resource efficiency. One dimension is the estimation of the energy demand of a part manufactured by an NC-program, e.g. to discover optimization potentials. In this context, this paper presents a Machine Learning (ML) approach to assess G-code for CNC-milling processes from the perspective of the energy demand of basic G-commands. We propose Latin Hypercube Sampling as an efficient method of Design of Experiments to train the ML model with minimum experimental effort to avoid costly setup and implementation time of the model training and deployment.