- Mit einem Umsatz von 103 Milliarden Euro ist die Metallindustrie eine der größten deutschen Industriebranchen. Diese ist von volatilen Marktbedingungen und hohem Wettbewerb geprägt [1][2]. Kleine und mittlere produzierende Unternehmen (sogenannte KMU) sehen zunehmend gravierende Probleme bei der Einhaltung von Lieferterminen bedingt durch hohe Durchlaufzeiten in der Produktion [3]. Neben kaufmännischen Planungssystemen zur Erstellung von Produktionsplänen nutzen Unternehmen als Planungsgrundlage weiterhin Excel mit 31 % und manuelle Prozesse mit 10 % [4]. Gleiches gilt für Produktwechselvorgänge auf Maschinen (Rüsten). Aufgrund dieser Aspekte ist es notwendig, die Rentabilität der KMU in der Metallindustrie zu steigern. Das wird durch effiziente Produktionsplanung und -steuerung, sowie der daraus resultierenden hohen Reaktionsfähigkeit und Flexibilität realisiert. Daher ist die Produktionsplanung auf die Markt- und Kundenanforderungen und die Anlageneffektivität auf ein hohes und stabiles Niveau auszurichten [5]. Hier bietet die Erfassung von Echtzeitdaten eine adäquate Reaktion auf die genannten Anforderungen. Ebenfalls liefert sie großes Potenzial für die Produktionsplanung und -steuerung, um die Disposition und Koordination von Arbeitsaufträgen zu optimieren. Weiterhin werden Störgrößen oder unvorhergesehene Planungsabweichungen reduziert [4][6]. Zusätzlich ist eine erhöhte Transparenz und Verbesserung menschlicher Entscheidungsprozesse notwendig. Dies kann durch datengetriebene Methoden unterstützt und sichergestellt werden [7]. Ein Ansatz zur Optimierung des Produktionsergebnisses kann durch die Erhöhung der Anlagenproduktivität selbst realisiert werden. Dazu muss die Verfügbarkeit der Anlagen durch Lokalisierung und Reduzierung von Verlusten erhöht werden. Die Umrüstungsprozesse tragen stark negativ zur Verfügbarkeit einer Produktion bei. Eine Steigerung der Gesamtanlageneffektivität (overall equipment effectiveness oder kurz OEE) in einer Fertigungsumgebung ist jedoch möglich durch eine intelligente Nutzung von Sensordaten mit Techniken wie z. B. Machine Learning (ML).