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While connection speeds are increasing slowly, some ISPs mention plans about possible traffic limitations in the near 

future which would keep internet traffic expensive. In addition, Green IT became more important especially over the last 

few years. Besides on-demand content like video live streams, HTTP traffic plays an important role. Thinking of textual 

web content, compression quickly comes to mind as a possibility to reduce traffic. The current HTTP/1.1 standard only 

provides gzip as an option for content encoding. HTTP/2.0 is under heavy development and numerous new algorithms 

have been established over the last few years. This paper analyzes HTTP traffic composition on a production server and 

concludes that about 50% is compressible. It further examines the effectiveness of custom and existing algorithms with 

regards to compression ratio, speed, and energy consumption. Our results show that gzip is a sound choice for web traffic 

but alternatives like LZ4 are faster and provide competitive compression ratios. 

Categories and Subject Descriptors: E.4 [Coding And Information Theory]: Data Compaction and Compression; D.4.6 

[Computer-Communication Networks]: Network Operations—Network Monitoring 

Additional Key Words and Phrases: Web, HTTP, Compression, Energy, Traffic 

 

1 INTRODUCTION 

Internetworking of various systems plays an increasing role in everyday life. The demand for 
bandwidth is growing steadily because more and more devices depend on network access but 
faster up- and downlinks are costly. At the same time, the current trend towards Green IT requires 
devices to manage their power consumption more efficiently. Data compression could be part of 
the solution for limited bandwidth and increased energy efficiency. The current HTTP/1.1 standard 
allows only gzip for body compression [Fielding et al. 1999]. We will analyze the consequences of 
this constraint and compare the compression ratio, speed, and energy consumption of gzip and 
other algorithms using real-life HTTP traffic. 

Paper organization: The following document is organized into three consecutive sections, each 
of which presents its own results and conclusion. Section 2 analyzes HTTP traffic composition of 
a medium-size company’s server to get an impression of its compressibility. Section 3 examines 
the compression ratio and speed of selected algorithms for the content-types that were analyzed 
previously. In addition, the potential of static Huffman and dictionary coding is determined. 
Section 4 presents the setup and results of energy tests analyzing the impact of compression on 
the server’s and the client’s energy consumption. Section 5 presents an outlook for future work. 
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2 TRAFFIC ANALYSIS 

To get an impression of HTTP traffic compressibility the first step is to analyze the average 
payload’s composition on a production server. As video and download portals mainly use already 
compressed traffic and their amount of compressible contents are negligible, we will analyze a 
server hosting basic websites only, with a mixture of static and dynamic payload of html, xml, css, 
js, json, images and other. Common image formats, like jpeg and png, already use ideal 
compression algorithms and are thus not further compressible. Hence, the amount of html, xml, 
css, js, json and similar based payloads correlates with the traffic’s compressibility. We will 
analyze live HTTP traffic provided by a production web server of a medium-size company and 
track several traffic-stats like latency, distribution, and compressibility. The payloads are exported 
to test the impact of chunk sizes and compression levels using another machine. 

The analysis was performed on the web server Ms1 which is part of the production environment 
hosting German and English websites using PHP (see Table 1). All data sent from the server 
upon request was captured and exported to disk for later analysis. Confidentiality of the data was 
ensured at all times. The server’s traffic was captured for about 72 hours and referred to as P72. 

Machine CPU RAM 
Ms1 Intel® Core™ i7-3770 16 GB DDR3 
Ma1 Intel® Core™ i3-M380 4 GB DDR3 1066 

Table 1: Used machines for live analysis and further tests 

2.1 Software 

For traffic analysis and compression tests we developed NetAnalyzer, a tool to capture HTTP 
traffic and examine various important aspects. To provide an easy integration into production 
environments, we decided against writing a HTTP proxy. Instead we used libpcap to capture all 
TCP packets on port 80 and extract the actual HTTP streams after IPv4 and TCP reassembly. 
This ensures a very simple integration at the cost a slight packet loss / skipped connections in 
some environments (about 1% in our case) depending on the used hardware [Papadogiannakis et 
al. 2012]. To compensate for the latter and to ensure plausible results, tests and exports were 
repeatedly run over a period of several days. 

The captured packets traverse IPv4 reassembly and are piped into a TCP reassembler which 
assigns them to connections using both IPs and ports [Postel 1981]. Later, the TCP streams are 
analyzed by the HTTP decoder to split header / payload and distinguish between requests and 
responses. HTTP data is then streamed through several configurable compressors and analyzers 
to track e.g. the web server’s latency, the time needed for compression, and the resulting 
compression ratio for each content-type. The gathered statistics and the captured payloads are 
exported for further evaluation (section 2.2) and to serve as representative test data for the 
energy tests in section 4. The HTTP decoder triggers the analyzers directly at packet level without 
additional buffering. Hence, the compressors will append data blocks of about the average MSS 
which is, at max, 1460 bytes when using Ethernet with a MTU of 1500 bytes [Postel 1983]. As 
compressors like gzip are configured to use Z_NO_FLUSH, they are independent of this chunk 
size. Other compression algorithms like LZO and LZ4 however are strictly block based, their 
compression ratio might vary significantly depending on the block size (see section 3). 

Equally important as the traffic’s composition are the latency distributions. As disk access is 
much slower than the overhead needed for compression [Yang et al. 2010], the CPU time spent 
on compaction of uncacheable files, like dynamic websites using PHP, Ruby, Python, or other 
languages, is less critical than compressing static websites that will most likely reside within the 
file system cache. Therefore, we try to analyze the amount of (compression-suited) dynamic 
content by exporting latency values and applying an appropriate threshold. 
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2.2 Results 

2.2.1 Traffic distribution 

The analyzed production server’s HTTP request payloads (24.6 MiB) had about 2‰ the size of 
the response payloads (12.9 GiB) and thus are statistically insignificant. Therefore, we did not 
further analyze the compressibility of the requesting side. Table 2 provides the detailed results of 
the response payload’s composition. We also did not examine the HTTP headers’ compressibility 
as the NetAnalyzer tool reported an average header size of only 561 bytes for requests and 
319 bytes for responses, respectively. Furthermore, HTTP/1.1 currently does not allow such a 
construction. The upcoming HTTP/2.0, however, will provide multiplexing with corresponding 
header-compression [Belshe et al. 2013][Peon and Ruellan 2013]. 

 html images js css xml json other 
traffic 5.54 GiB 5.35 GiB 1.37 GiB 0.36 GiB 0.04 GiB 0.02 GiB 0.21 GiB 
traffic % 42.9% 41.4% 10.8% 2.8% 0.2% 0.1% 1.8% 
files 113,737 385,927 67,138 39,498 4,557 6,212 8,689 

Table 2: Traffic distribution within P72 

Our expectation of the used image formats was confirmed as we mainly found jpeg images 
(4.59 GiB / 233,858 files) followed by png (0.67 GiB / 77,382 files) and gif (0.09 GiB / 
74,687 files). Those formats already have a high entropy of nearly 8-bit per symbol (byte) and 
thus are not suitable for further compression. All following tests will use a 24 hour slice P24 of P72. 
Unfortunately, most of the xml traffic was occupied by two files, requested every minute. After 
removing those files, to ensure a variety of different payloads, P24 contained only 25 xml files with 
500 KiB in size. Therefore, xml tests use the larger window of P72 containing 68 files using 
2.7 MiB. This amount still is negligible compared to other content-types and xml test results 
should be handled with care. Figure 1 shows the traffic distribution on the web server Ms1 within 
the extracted range of P24. The distribution on the analyzed web server strongly depends on the 
time of day and allows higher compression at nightly hours. The average traffic of one day 
consists of about 50% well suited for compression. Table 3 and Figure 1 depict the detailed traffic 
composition. 

 html js css json xml 
traffic 2,033.1 MiB 550.9 MiB 148.7 MiB 6.6 MiB 2.6 MiB 
traffic % 74.1% 20.1% 5.4% 0.2% 0.1% 
files 33,570 26,444 15,264 1,979 68 
avg filesize 62.1 KiB 21.3 KiB 10.0 KiB 3.4 KiB 39.1 KiB 

Table 3: Extracted content-types within P24 

2.2.2 Traffic latency 

The left half of Figure 2 shows the histogram for html content latencies of P72 between 0 and 
1000 milliseconds. 108761 values matched this latency range which is about 95.6% of the 
complete payload P72 (see Table 3). Q25 = 6 claims that many responses were delivered almost 
instantly. The right half shows the histogram for low latencies between 0 and 15 milliseconds. 
Starting at 8 milliseconds, the number of entries per bin almost seems to be stable. Therefore, we 
decided to split between static and dynamic contents using a threshold of 10 milliseconds. Table 
4 depicts the results, using this threshold for P24. 

 html js css json xml 
num static 25.3% 96.2% 94.0% 3.5% 2.0% 
size static 12.8% 93.0% 87.3% 7.6% 1.2% 

Table 4: Static / Dynamic distribution per content-type within P24 
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Figure 1: Distribution and amount of HTTP traffic (30 minutes average) on Ms1 

  

Figure 2: Response latencies for html payloads within P72 

2.3 Conclusion 

On the tested server Ms1 the amount of compressible payload is in fact considerable. It is 
composed of html, js, and css which account for about 56.5% of the total traffic. In addition, only 
one tenth of the html traffic is based on static content indicating a negligible overhead for 
compressing a significant amount of payload. 

 

3 COMPRESSION ANALYSIS 

In this section we select five existing compression libraries and evaluate them using the web 
traffic P24 from section 2.2. In addition to the existing compression libraries we examine the 
effectiveness of two custom compression methods in section 3.2 and 3.3. The results serve as 
input for choosing the most appropriate compression algorithms for the energy tests in section 4. 

Before presenting the compression libraries we need some definitions that will be relevant 
throughout this section. We define the terms compression ratio ∆N, compression speed Sc, and 
reduction speed Sr as in Equation 1 where tc is the time the compressor C needed for 
compressing N uncompressed bytes to n compressed bytes. 
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 = 	 
         = 	 

         = 	 
  (1) 

Compressibility depends on the input’s entropy (see Equation 2) which is about the average 
number of bits needed to describe one of its code words (e.g. one byte, one word, one sentence) 
[Blelloch]. Most compression algorithms thus are based on either a form of entropy encoding, like 
Huffman coding [Huffman 1952], and / or some kind of dictionary, like those of the Lempel-Ziv 
family [Ziv and Lempel 1977]. As these compressors have no a priori knowledge of the to-be-
compressed payloads they usually are adaptive to provide good compression ratio. However the 
adaptive behavior is CPU intensive as the data structures which provide high searching speeds 
must constantly be updated e.g. when gzip’s sliding window changes [Bell and Kulp 1993]. Thus 
we will take a closer look at a static entropy encoder / dictionary to check the feasibility of static 
algorithms using a priori knowledge and analyze obtainable compression ratios. 

 = 	 ∑ 		 
 = 	 ∑ −		  (2) 

 

3.1 General Purpose Algorithms 

This section presents the five compression libraries chosen for the initial payload analysis. Each 
library is referred to as “algorithm” for better readability, although we chose a concrete 
implementation with a specific version and configuration. All algorithms are lossless and intended 
for general purpose usage. Overall the choice was biased towards algorithms known for fast 
compression and decompression speed. 

3.1.1 gzip 

The GNU zip (gzip) is a combination of the GNU zip file format and data compressed with 
DEFLATE algorithm. It can be created using the gzip program or the zlib library. gzip is allowed 
as an encoding format by the HTTP/1.1 standard [Fielding et al. 1999] and defined in [Deutsch 
1996b]. The current RFC draft for the upcoming HTTP/2.0 standard [Belshe et al. 2013] does not 
add new compressed encoding formats, although there have been attempts [Butler et al. 2008] to 
introduce new formats into the current standard in the past. gzip serves as a reference regarding 
compression and speed. It supports different compression levels from 1 (fastest) to 9 (best ratio) 
and can use huffman-only compression strategy. We will refer to different configurations of gzip: 
gzip1, the fastest compression level; gzip6, the default compression level; gzip9, the level providing 
the best compression ratio; gziphuffman, using only Huffman coding. HTTP/1.1 allows the usage of 
deflate content encoding, also known as zlib format [Deutsch 1996c] with DEFLATE compression, 
in addition to gzip. We will focus on gzip since deflate encoding is reported to be the more reliable 
choice across different servers and browsers. 

3.1.2 LZMA 

Lempel–Ziv–Markov chain algorithm (LZMA) is a compression algorithm that uses a dictionary 
compression scheme. It is known for its high compression ratio for most contents. LZMA is used 
as the default compression method of the 7z format. The reference implementation was placed in 
the public domain in 2008. Although the API provides options to customize the compression and 
decompression experience (level 1-9), the usage of default parameters leads to high memory 
requirements especially for compression. The manual page for the xz program gives a rough 
estimate of the memory requirement for level 1 as 9 MiB for compression and 2 MiB for 
decompression. Level 4 would require about 48 MiB for compression and 5 MiB for 
decompression. The analysis of the web traffic focused on using LZMA at level 1 with a CRC64 
checksum. Default values were used for all other arguments. This configuration is hereafter 
referred to as lzma1. We chose LZMA to have a reference with regards to compressibility of the 
traffic data. 
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3.1.3 LZO 

Lempel–Ziv–Oberhumer (LZO) is a compression algorithm that focuses on fast decompression. 
Its default algorithm requires only 64 KiB memory for compression. The compression is known to 
be fast while favoring speed over a higher compression ratio. LZO is licensed under the GPLv2+. 
Its area of application includes compression in the Btrfs file system, optional data stream 
compression in OpenVPN, and Linux Kernel compression. The API provides algorithms of 
different flavors. The traffic analysis used the LZO1X-1 algorithm as recommended by the official 
LZO FAQ when aiming for speed. This configuration is hereafter referred to as lzo1. Initial tests 
were also conducted using LZO1X-999 but failed to provide significantly better compression ratio.  

3.1.4 LZ4 

LZ4 is an algorithm for fast compression and decompression. It offers two kinds of API, default 
and high compression mode (HC). The traffic analysis used LZ4 r94 in its default configuration 
hereafter referred to as lz4. The algorithm’s source code is published under the 2-clause BSD 
license. Although the project is relatively young, it has seen wide adoption lately. It is actively 
used in GRUB, the ZFS file system and is supported for Kernel compression since Linux 3.11.  

3.1.5 QuickLZ 

QuickLZ is another fast compression algorithm. It is licensed under the GPL but also offers 
commercial licensing. The algorithm provides three compression levels that allow the user to 
choose between compression or decompression speed. In addition, it offers the usage of a history 
buffer for improved compression ratio and an option for memory safe decompression for corrupt 
input data (15-20% slower). The analysis was performed with library version 1.5.0 configured with 
level 1 (fastest compression speed), a streaming buffer of 100000 bytes and no extra memory 
safety. This configuration is referred to as quicklz1 for the rest of this document. 

In addition to the general purpose algorithms we examined the feasibility of non-adaptive 
compression using one representative of dictionary and entropy coding, respectively. For the 
latter, we decided to settle for the well-known Huffman coding. 

3.2 Huffman coding 

Our implementation builds the necessary (static) Huffman table by counting the symbols within 
several training files. While the Compressor was optimized for speed, decompression was only 
implemented to ensure the algorithm is working correctly. Hence, Huffman coding will not be part 
of the energy tests in section 4 and its decompression speeds are omitted in section 3.4. Since 
we try to provide a static tree for many documents (e.g. for all html files with English content), it 
makes sense to exchange the required tree once in advance only and use it for several 
transactions. Therefore our implementation will not include the used tree within its output, saving 
some additional bytes. Within this document several Huffman trees will be used whereby 
huffmanhtml and huffmanjs are trees derived from all html / js payloads of P24 (see section 2.2). 
Huffmangen will be, in general, any Huffman tree derived from any sort of payload using the 
algorithm described above. All resulting compression ratios are compared with those of an 
adaptive tree used by gzip in Z_HUFFMAN_ONLY mode [Deutsch 1996a].  

3.3 LZW-based dictionary 

In order to examine dictionary coding we implemented a LZW based algorithm [Welch 1984] (a 
successor of LZ78 [Ziv and Lempel 1978]) which was inspired by the code from [Nelson 1989]. 
We used a maximum length of M=16 for the dictionary entries and a Trie to retrieve the matches. 
Our dictionary allows a maximum of 65536 entries whereas every entry will be compressed by 
using its corresponding 16-bit index. LZ77 based algorithms (like gzip) are expensive on the 
compression side due to the need to find the longest match from a sliding window [Bell and Kulp 
1993]. Using a priori knowledge to create a static dictionary, the missing adaption to changing 
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payload-content usually degrades the compression ratio. However, compression speed increases 
as the data-structures needed for efficient retrieval of the longest dictionary match, can be 
precomputed and do not need (expensive) updating during compression [Bell and Kulp 1993]. 

As the speed of the current implementation requires further optimization, we only analyzed 
achievable compression ratios using a static dictionary and omit speed and energy tests. The 
language dependency of the dictionary is analyzed by using the four front pages of amazon, 
youtube, wikipedia, and facebook. Those websites were chosen because they are common

1
, 

translated into the tested languages German, English, and Japanese and the front pages for all 
languages differed only in textual content and not in layout or structure. The dictionaries (Dde, Den, 
Djp) each use the four front pages of their corresponding language as do the payloads (Pde, Pen, 
Pjp). Since those websites heavily use <script> and <style> another dictionary D−script, based 
on each language with those tags removed and a dictionary D−content with additionally removed 
textual content, will be tested as well.  

3.4 Results 

3.4.1 Chunk size 

The impact of different chunk sizes on the general purpose algorithms was measured to find 
proper values for the following energy tests. We compressed the html part of payload P24 (see 
2.2) using each of the algorithms. The chunk size is the maximum number of bytes that each 
compressor received at once per file. Depending on the file size (see Table 3 for average file 
sizes in P24), this means fewer calls to the compressor API with larger to-be-compressed data 
chunks. It also leads to less overhead for the compression format because of fewer compressed 
data chunks. Larger chunk sizes, however, also require more memory on the system and 
increased memory management efforts for the application. Figure 3 and Figure 4 show the 
resulting impact on compression ratio and compression speed respectively. 

The libraries for gzip and lzma1 provide a stream-like API that performs internal buffering, so 
their compression ratio is not affected by the chosen chunk size. Compression speed is slightly 
lower for very small chunks, which seems to be the function call overhead of the API. 
Decompression is not affected since the compression stream always provides compressed data 
chunks of the same size, except for end-of-file situations. With the exception of the necessary 
function call overhead, both Huffman based compressors are unaffected by the chunk’s size and 
offer slightly faster compression with larger chunks only. 

The compression ratio of quicklz1 is slightly worse until reaching chunk sizes of about 4 KiB, but 
stays stable from there on. This seems to be caused by the constant format overhead per chunk. 
However, the average compression ratio is better than that of e.g. lzo1, which is probably a result 
of the optional history-buffer. Unlike the asynchronous stream-like interface of gzip6 and lzma1, 
quicklz1 returns a compressed data chunk immediately after each call to the API. Compression 
and decompression speed each double between 256 bytes and 64 KiB chunk sizes. This increase 
progresses linearly and is too small to be caused by function calls. Instead, the algorithm seems 
to be faster when allowed to compress or decompress larger data chunks at once. 

lzo1 and lz4 both provide a very simple to use block based API. Every time their API is called to 
compress a data block the compressed result is returned directly after the function call. They do 
not keep track of internal state between calls nor use a global context. This design benefits 
greatly from increased chunk sizes both for compression ratio and speed. It would probably not 
be difficult to design a stream-like API similar to the one of gzip6 around these algorithms, so that 
they would work efficiently independent of external chunk sizes. But that is outside the scope of 
this paper. The compression ratio of the two algorithms is practically identical. Speed-wise 
however, lz4 shows superior performance to lzo1, especially for decompression. 

                                                      
1
 http://www.alexa.com/topsites/countries/DE 
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Figure 3: Chunk size impact on html compression ratio using P24 (less is better) 

 

Figure 4: Chunk size impact on html compression speed using P24 (more is better) 

3.4.2 Content type 

Given the results of the previous tests we decided to settle for a chunk size of 64 KiB for the 
compression tests split by content type. The measurements were performed on the payload P24 
using machine Ma1. The compression tests were performed using an extension of the NetAnalyzer 
tool (see section 2.1). Although the compression itself is single-threaded, we used 
pthread_setaffinity_np to bind the compression thread to one core. This increased 
reproducibility and reduced the number of cache misses [Love 2003].  

The results of the content type tests in Table 5 to Table 7 complement the measurements 
shown in Figure 3 and Figure 4. Best results are shown in bold. These tables include stats for the 
fastest (gzip1) and best (gzip9) gzip compression level. For us, the takeaway from these tests is: 
lzma1 and gzip9 provide the best compression ratio, which is consistent with what Figure 3 
indicated for html-only data. quicklz1, lzo1, and especially lz4 are superior when focused on 
speed. As expected, the compression ratio of both static Huffman codings huffmanhtml and 
huffmanjs is inferior to that of the adaptive version used in gzip [Crochemore and Lecroq 2010]. 
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 html xml css js json 
gzip1 0.157 0.151 0.242 0.371 0.319 
gzip6 0.137 0.131 0.201 0.325 0.282 
gzip9 0.136 0.128 0.191 0.325 0.280 
gziphuffman 0.640 0.624 0.640 0.652 0.673 
quicklz1 0.195 0.186 0.302 0.453 0.403 
lzo1 0.216 0.206 0.319 0.481 0.420 
lz4 0.208 0.200 0.337 0.494 0.410 
lzma1 0.130 0.121 0.209 0.323 0.294 
huffmanhtml 0.668 0.692 0.730 0.780 0.772 
huffmanjs 0.757 0.790 0.727 0.692 0.782 

Table 5: Compression ratio for P24 using 64 KiB chunks (less is better) 

 html xml css js json 
gzip1 56.8 63.7 37.4 29.8 27.2 
gzip6 30.3 34.3 20.1 17.3 17.3 
gzip9 24.4 25.9 16.6 12.4 14.5 
gziphuff 49.0 56.6 46.0 49.3 38.5 
quicklz1 216.7 234.9 113.7 110.6 77.9 
lzo1 420.0 411.2 224.3 190.2 195.6 
lz4 505.5 507.6 270.0 220.9 229.9 
lzma1 13.7 15.8 8.8 6.7 7.0 

Table 6: Compression speed (in MiB/s) for P24 using 

64 KiB chunks (more is better) 

 html xml css js json 
gzip1 230.2 242.4 119.9 118.7 112.0 
gzip6 256.5 285.1 143.3 141.9 139.0 
gzip9 257.2 281.0 150.2 137.3 144.2 
gziphuff 116.9 136.8 104.0 110.4 95.1 
quicklz1 362.7 441.8 216.3 174.3 173.1 
lzo1 570.4 602.8 291.0 256.4 328.1 
lz4 1120.8 1150.3 660.5 712.8 711.5 
lzma1 62.2 71.3 32.4 25.9 26.7 

Table 7: Decompression speed (in MiB/s) corresponding to 

Table 6 (more is better) 

Table 5 and Table 6 indicate a correlation between compression ratio and (de)compression 
speed for some of the algorithms. Therefore we calculated the Bravais-Pearson correlation 
coefficient between those values using equation 3. The correlation for Huffman based 
compressors strongly depended on the used payload types, resulted in entirely different values 
for aforementioned tests, and will be omitted. Table 8 shows that dictionary based compressors 
have a strong negative correlation between compression ratio and compression speed. Highly 
compressible files will also consume less time for compression. Moreover, decompression almost 
showed similar correlation values. 

ℎ = 	 ∑ 
∑ ⋅	∑ 

         = 	 
 ∑           = 	 

 ∑   (3) 

lzma1 lz4 gzip9 gzip1 lzo1 gzip6 quicklz1 
-0.952 -0.944 -0.941 -0.937 -0.924 -0.908 -0.896 

Table 8: Bravais-Pearson correlation between compression ratio and compression-speed 

In order to reduce the number of possible testing-combinations and to make them comparable 
with previous results, the two following tests for Huffman and dictionary coding will focus on html 
payloads only.  

3.4.3 Huffman coding 

Table 5 concluded that the compression ratio of a static Huffman tree, derived from the 
complete html traffic of P72, is similar to the ratio of an adaptive gzip. The language dependency 
of Huffman coding in general is analyzed using the payloads Pde, Pen, Pjp and their corresponding 
Huffman trees referred to as huffmangen. While compression ratios for English and German 
payloads are almost identical, Japanese payloads seem less compressible using Huffman coding, 
due to their higher entropies (see Table 9). 
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 Pde Pen Pjp 
huffmangen 69.0% 68.8% 74.7% 
gziphuffman 67.3% 67.1% 71.4% 

Table 9: Huffman compression ratio per language 

 Dde Den Djp D-script D-content 
Pde 40.2% 45.3 46.2 48.6% (+8.4%) 51.4% (+2.8%) 
Pen 44.1% 40.2 45.8 47.7% (+7.5%) 50.4% (+2.7%) 
Pjp 56.1% 58.5 40.7 49.6% (+8.9%) 56.5% (+6.9%) 
P24 48.3% 49.8 52.7 47.9% (-0.4%) 52.2% (+4.3%) 

Table 10: LZW-dictionary compression ratio depending on payload 

3.4.4 Dictionary 

Table 10 shows that P24 can be compressed to 48.3% using the dictionary Dde which is superior 
to the 66.7% offered by the Huffman tree. English and German websites can be compressed with 
another language’s dictionary at a small overhead of 5%. However, Japanese websites heavily 
depend on the language component within the dictionary to achieve good compression ratios. 
The last two columns respectively use the scriptless / contentless dictionary (see section 3.3) for 
the language of each row. For P24 those two variants are based on the German dictionary 
because it offered the best compression ratio. Removing scripts and styles from a dictionary of a 
language results in a compression ratio degraded by about 8%, indicating an extensive usage of 
<script> and <style> tags within the examined websites. It should be far more efficient to 
move those contents to external files, at least when using a LZW-based dictionary. P24 seems to 
prove this hypothesis as the compression ratio using D−script is slightly better (0.4%) than that of 
Dde. However, LZ77 based compressors will, most likely, behave differently as they use a local 
dictionary instead of a global one. Additionally removing any textual content from each dictionary 
of a language only keeping the html tags (named D−content) increased the compression ratio by 
another 3% for German / English texts and about 7% for Japanese contents. This indicates that a 
language-independent static dictionary for html payloads is feasible but slightly less efficient. 

3.4.5 General optimizations 

Previous tests indicated a huge amount of tabs and spaces within the payloads. Supplementary 
tests were conducted to analyze whether additional bytes can be saved by replacing indentation 
tabs with spaces. We examined a fraction of payload P24 created by using only those files which 
solely use tabs for indentation and filtering duplicates referred to as Ptab. Table 11 points out those 
new results. The values state that it doesn’t matter whether to use one space or one tab for 
indentation when working with common compression algorithms. However, using four spaces for 
indentation is inefficient and increases the traffic by about 4% even when using gzip compression. 

 original tab -> 1 space tab -> 2 space tab -> 4 spaces 
none 50,626 50,626 (0.0%) 55,026 (+8.7%) 63,826 (+26.1%) 
huffmanstatic 33,775 32,958 (-2.4%) 34,494 (+2.1%) 36,694 (+8.6%) 
gziphuffman 32,996 32,370 (-1.9%) 33,626 (+1.9%) 35,363 (+7.2%) 
gzip1 10,070 10,065 (0.0%) 10,191 (+1.2%) 10,464 (+3.9%) 

Table 11: Impact of tab/space indentation on the compression (in bytes) of payload Ptab 

Inspired by the growing output size when using multiple spaces for indentation, we also applied 
a simple minification to the previously tested payload Ptab by removing all \r, \n, \t and multiple 
consecutive whitespaces (see Table 12). However, our simple implementation will, most likely, 
break javascript code, style sheets or <pre> blocks. Moreover, many additional operations as 
comment-removal or variable-renaming could be applied to further enhance the minification. 
Widely used CMS and templates pose another challenge for minification. Using those, it is not 
easily possible to minify a website beforehand as it is composed of numerous elements. 
Minification within the compressor would be a far better solution here, probably at the cost of 
lowered compression speeds. 
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 uncompressed huffmanstatic gziphuffman gzip1 
original 50,626 33,757 32,996 10,070 
minified 45,317 (-10.5%) 30,214 (-10.5%) 29,744 (-9.9%) 9,673 (-3.9%) 

Table 12: Impact of minification on the compression (in bytes) of payload Ptab 

3.5 Conclusion 

The gzip6 algorithm offers a good trade-off between compression ratio and speed. lzma1 
showed strong compression ratio but was also the slowest option throughout the measurements 
with the highest memory consumption. For some content types gzip9 even provided slightly better 
compression ratio than lzma1. For these reasons LZMA level 1 and higher might not be suitable 
for low-latency real-time data compression or decompression. lzo1 and lz4 are both fast and show 
similar characteristics (need large chunk size) while lz4 offers superior speed. Given an 
appropriate chunk size (32 KiB and above), lz4 would also be preferred over quicklz1 as it is faster 
and provides competitive compression ratio. In a scenario where a large chunk size is not an 
option and good compression is more important than speed, quicklz1 might be a viable alternative.  

Static compression algorithms, using a priori knowledge, offer competitive compression ratio 
and have room for additional optimization as they rarely need data-structure adjustments during 
compression. Those algorithms may use data structures otherwise too costly (like Patricia-Tries 
[Morrison 1968]) to reduce memory consumption rendering them practical for embedded systems 
where memory and CPU time is expensive. Albeit there are many adjustable variables which 
need further investigation in order to provide a set of rules for some content-type which 
maximizes the compression ratio. It is possible to save additional bytes by using minification 
which could be considered a lossy compression algorithm. Minification is applicable to all of the 
analyzed compressible content-types (html, js, css, xml, json) and can be quite complex, e.g. 
when renaming variables to shorter sequences. If suitable, pre-minification should be applied at 
the cost of edit ability. 

 

4 ENERGY TESTS 

This section will pick a subset of the previously evaluated algorithms and measure energy 
consumption relative to one another using real life the traffic we analyzed before. The goal of 
these tests is to show how much the energy consumption of different compression algorithms 
vary. We tried to eliminate many disruptive factors to measure the algorithms’ energy 
consumption in terms of their CPU and network utilization.  

4.1 Hardware 

The setup of our energy tests consists of three separate hardware devices: the server, the 
client, and a switch linking them together. The client and server are machines originally intended 
for regular desktop use; see Table 13 for their specification. They are linked using a regular 
100 MBit switch which will be of no concern to the test. 

Machine CPU RAM HDD 
Mec Intel Atom N2800 2 GB DDR3 Seagate Momentus 5400.6 250 GB 
Mes Intel Core 2 Duo E6550 2 GB DDR2 800 Seagate Momentus 5400.6 250 GB 

Table 13: Computers used for energy tests. Mec works as the client, Mes works as the server 

We tried to eliminate possibly interfering factors to achieve a uniform consumption 
measurement for idle mode. Unnecessary components like on-board audio, LPT and RS232 ports 
were disabled in the BIOS. Also, cpufreq configured for ondemand was used to reduce the 
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machines’ (idle) power consumption. Both test machines are using Gentoo Linux running kernel 
version 3.8 optimized for each machine’s CPU. 

We used two Voltcraft Energy Logger 4000 devices to measure the consumed energy. They are 
connected between the mains socket and the device to be measured. While the energy logger’s 
display provides a precision of 0.1 watts, the exported binary data leads to a lower precision of 
about 0.23 watts when using an average voltage of 230 volts (230.0V 0.001A = 0.23W). 

4.2 Software 

The energy tests were run by a tool we wrote for this purpose. NetAnalyzer served well for 
analysis but for energy tests we needed a program with as little overhead as possible. It can 
either be run in client or server mode and was deployed on both test machines Mec and Mes.  

4.2.1 Client mode configuration 

When the tool is run in client mode the user can set various parameters to control the server’s 
behavior. We used P24 (see section 2.2) for our energy tests to ensure real-world traffic. P24 does 
not only consist of the original payload but also includes meta information about the time stamp of 
each request. The client parses those meta information to be able to decide which file to request 
at a time. The tool allows for the payload to be sent in a shorter interval using a replay speed 
option which makes the test process less time consuming while preserving the original request 
distribution. P24 was used for the energy tests, so the original request time frame was 24 hours. 
We chose a replay speed of 3x to make each of the tests finish after 8 hours instead of 24. 
Section 2.2 has shown that the production server we analyzed was not running under full load. In 
fact P24 consists of only about 2.7 GiB of compressible data over a time period of 24 hours. This 
was not enough traffic for our measurements. We decided to simulate more load by sending each 
request multiple times, so each file was repeatedly requested 26 times in a row. The repeated 
requests of one file were equally spread over the time between two real requests. A chunk size 
option tells the server the size of chunks to use when reading a file and pass it to the compression 
algorithms (see 3.4). The compressed chunk is then sent to the client. We decided to run the 
energy tests using the three most diverse algorithms evaluated in section 3: gzip6, lzma1, and lz4. 
In addition tests were also run without compression for reference, referred to as none. 

4.2.2 Server mode configuration 

The server mode is initialized with a link to the actual payload P24 on the local file system. P24 
consists of payload that the NetAnalyzer exported, where each HTTP response’s payload was 
exported as a single file. Every time a client connects and requests a file, the server reads the file 
from the file system (xfs) using the given chunk size, compresses it with the appropriate 
compression algorithm and sends the data to the client one compressed chunk after another. 
Each access to the local file system made by the server (reading chunks) used the direct IO flag 
O_DIRECT. This forces the operation system to always access the drive directly without using the 
file system cache even when the same file is read repeatedly. While this is unusually in 
production environments, it ensures better reproducibility. 

4.2.3 Protocol overhead 

The energy tests contain a protocol overhead on top the actual payload. The client’s overhead 
consists of the client telling the server which file to send, chunk size and compression algorithm. 
The server on the other hand sends the client the length of the following compressed chunk. This 
overhead, however, is negligible as it makes up only 0.25% of the whole communication for client 
and server combined for gzip6 compression with a chunk size of 64 KiB. Table 14 presents the 
most important energy test configuration options that were explained in this section. 
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Test Runtime 8 hours 
Repeat count 26x 
Chunk size 64 KiB 
Compression none, gzip6, lzma1, lz4 
Data P24 (2.7 GiB, 75,278 files) 
Content types html, js, css (see Table 3 for distribution details) 

Table 14: Energy test parameters and statistics 

4.3 Results 

Table 15 (left) shows the power consumption measurements collected for the client Mec. The 
tests were run using the configuration described in Table 14: 69 GiB of uncompressed payload 
spread over 1.9 Mio separate connections over a time frame of 8 hours. The actual amount of 
bytes sent over the network was less when using compression, but the number of connections 
stayed the same. The client received the data being sent from the server and decompressed it. 
The difference in energy consumption between compression algorithms was barely measurable 
with our equipment. Most of the values are located in an area only about 0.3 watts wide, which is 
just slightly higher than the measurement accuracy of our energy logger (see section 4.1). 

The values presented in Table 15 (left) show noticeable trends. The idle consumption is in fact 
the lowest, although not by much, and lzma1 decompression measurements are the highest. 
Although Table 16 shows that the client spent about 100min (6010s) for decompressing data 
using lzma1. Table 15 indicates almost no increase in energy consumption compared to lz4 
decompression, which kept decompression only about 7min (426s) over a time frame of 8 hours. 

The server measurements presented in Figure 5 are more diverse, since the server is 
responsible for the compression workload. The idle measurement is almost a straight line within 
the energy logger’s accuracy. The traffic distribution of P24 can be recognized by looking at the 
graph, especially for lzma1, which consumes considerably more energy than the other algorithms. 
gzip6 replicates the payload traffic although by a smaller degree than lzma1. The values for none 
and lz4 both show nearly identical progression but are lower than gzip6 and lzma1 at any time. 
These impressions are confirmed by the energy consumption details in Table 15 (right). 
Compressing payload with lz4 does not increase the energy consumption of our server, the data 
rather shows it might even be less costly (44.90 watts vs. 44.80 watts). This might be an effect of 
the reduced network traffic caused by compression, which leads to the theory that energy-wise 
the traffic savings from lz4 compression are higher than costs of the compression itself. 

In addition to the measurements made by the energy logger, we analyzed the CPU usage of the 
client and server machines during the energy tests. The rationale behind this was to verify that 
power consumption and CPU utilization were consistent. The CPU usage was recorded by 
continuously reading the output of /proc/stat on each system. Figure 6 and Figure 7 show the 
CPU usage over time on the client. Table 17 (left) lists more details on the CPU usage with user 
and irq (software and hardware interrupts combined) values separated. For the server, Figure 8, 
Figure 9, and Table 17 (right) present the same information respectively. 

Overall, the CPU usage and energy measurements are not only consistent with each other, we 
also noticed good reproducibility during the test. 

 kWh voltage avg (σ) watt avg (σ)  kWh voltage avg (σ) watt avg (σ) 
idle 0.095 222.6 (1.45) 11.99 (0.092)  0.348 223.4 (1.44) 43.82 (0.200) 
none 0.096 222.9 (0.90) 12.09 (0.107)  0.357 223.7 (0.90) 44.90 (0.362) 
gzip6 0.096 222.8 (1.05) 12.05 (0.112)  0.365 223.6 (1.05) 45.92 (0.734) 
lzma1 0.096 222.6 (1.36) 12.14 (0.105)  0.379 223.4 (1.37) 47.62 (1.313) 
lz4 0.096 221.9 (1.35) 12.08 (0.102)  0.356 222.7 (1.35) 44.80 (0.383) 

Table 15: Energy consumption details using options described in Table 14 on Mec (left) and Mes (right) 
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Figure 5: Power consumption using options described in Table 14 on Mes (30min average) 

4.4 Conclusion 

The measurements on our client machine Mec did not provide significant results. The reason 
might be decompression being so cheap in general (see Table 7) or because our client machine 
was already very energy efficient. Probably both factors were responsible, but we were not able to 
conclusively determine the exact degree of each.  

 uncompressed (MiB/s) compressed (MiB/S) compr. time (s) decompr. time (s) 
none 2.467 - - - 
gzip6 2.467 0.440 2933 1451 
lzma1 2.467 0.427 5985 6010 
lz4 2.467 0.673 235 426 

Table 16: Network traffic using options from Table 14 for compression on Mes (left) and decompression on Mec (right) 

  

Figure 6: CPU usage over time using Table 14 on Mec with none (left) and gzip6 (right) 

  

Figure 7: CPU usage over time using Table 14 on Mec for lzma1 (left) and lz4 (right) 
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The measurements on the server machine Mes show that the power consumption development 
of gzip6 and lzma1 is clearly dependent on the traffic distribution. Although being relatively energy 
inefficient, both offer good compression ratio. LZ4, however, did not lead to an increased energy 
consumption or CPU usage compared to tests without compression. LZ4 lead to higher user 
space utilization during compression but the system spent less time handling interrupts (see user 
and irq column in Table 17). Compared to tests without compression, our theory is that the 
increased power consumption for lz4 compression was balanced by the saved network traffic.  

  

Figure 8: CPU usage over time using Table 14 on Mes for none (left) and gzip6 (right) 

  

Figure 9: CPU usage over time using Table 14 on Mes for lzma1 (left) and lz4. (right) 

 all (%) user (%) irq (%)  all (%) user (%) irq (%) iowait (%) 
none 5.437 0.581 0.885  5.944 0.148 0.876 4.490 
gzip6 8.000 5.563 0.475  16.223 10.360 0.394 4.554 
lzma1 24.423 21.360 0.526  29.826 24.452 0.419 4.593 
lz4 6.127 2.364 0.505  5.955 0.907 0.426 4.250 

Table 17: CPU usage statistics using options described in Table 14 on Mec (left) and Mes (right) 

5 FUTURE WORK 

Although we examined the feasibility of static compression methods we did not provide a final 
Huffman tree / dictionary usable e.g. for all German websites. This could be a subject for 
supplementary analysis to come up with a suitable solution. 

Our energy tests concluded that the energy consumption of LZ4 is similar to using no 
compression. More sophisticated measuring equipment could conclude whether it is possible for 
compression to even reduce energy consumption. Another interesting test bed could use wireless 
instead of wired connections. The relation between energy savings due to traffic reduction and the 
additional energy needed for compression should be more evident than in our test setup. 

We examined the complexity needed for data compression but omitted the CPU overhead spent 
by the underlying scripting language to generate websites. Further tests should be conducted to 
examine the overhead needed for compression using the algorithms directly on the target 
systems including dynamic website creation. Those could point out the relation between the 
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amount of time needed for website creation and compression. This would also require adjusting 
web servers and browsers to support the to-be-tested algorithms. Arvind Jain and Jason Glasgow 
looked into part of this problem, focusing on why the benefits of content compression often do not 
lead to better load times for web pages [Jain and Glasgow 2012]. 
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amount of time needed for website creation and compression. This would also require adjusting 
web servers and browsers to support the to-be-tested algorithms. Arvind Jain and Jason Glasgow 
looked into part of this problem, focusing on why the benefits of content compression often do not 
lead to better load times for web pages [Jain and Glasgow 2012]. 
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