

Author's address: Frank Ebner, Volker Schneider; Fakultät für Informatik und Wirtschaftsinformatik, Hochschule für

Angewandte Wissenschaften, Sanderheinrichsleitenweg 20, Würzburg, Deutschland

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the

first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others

than FHWS must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to

redistribute to lists, or to use any component of this work in other works requires prior specifc permission.

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

Analysis of Web Data Compression and its Impact on Traffic and Energy

Consumption

Frank Ebner and Volker Schneider
University of Applied Science Würzburg-Schweinfurt
Würzburg

While connection speeds are increasing slowly, some ISPs mention plans about possible traffic limitations in the near

future which would keep internet traffic expensive. In addition, Green IT became more important especially over the last

few years. Besides on-demand content like video live streams, HTTP traffic plays an important role. Thinking of textual

web content, compression quickly comes to mind as a possibility to reduce traffic. The current HTTP/1.1 standard only

provides gzip as an option for content encoding. HTTP/2.0 is under heavy development and numerous new algorithms

have been established over the last few years. This paper analyzes HTTP traffic composition on a production server and

concludes that about 50% is compressible. It further examines the effectiveness of custom and existing algorithms with

regards to compression ratio, speed, and energy consumption. Our results show that gzip is a sound choice for web traffic

but alternatives like LZ4 are faster and provide competitive compression ratios.

Categories and Subject Descriptors: E.4 [Coding And Information Theory]: Data Compaction and Compression; D.4.6

[Computer-Communication Networks]: Network Operations—Network Monitoring

Additional Key Words and Phrases: Web, HTTP, Compression, Energy, Traffic

1 INTRODUCTION

Internetworking of various systems plays an increasing role in everyday life. The demand for
bandwidth is growing steadily because more and more devices depend on network access but
faster up- and downlinks are costly. At the same time, the current trend towards Green IT requires
devices to manage their power consumption more efficiently. Data compression could be part of
the solution for limited bandwidth and increased energy efficiency. The current HTTP/1.1 standard
allows only gzip for body compression [Fielding et al. 1999]. We will analyze the consequences of
this constraint and compare the compression ratio, speed, and energy consumption of gzip and
other algorithms using real-life HTTP traffic.

Paper organization: The following document is organized into three consecutive sections, each
of which presents its own results and conclusion. Section 2 analyzes HTTP traffic composition of
a medium-size company’s server to get an impression of its compressibility. Section 3 examines
the compression ratio and speed of selected algorithms for the content-types that were analyzed
previously. In addition, the potential of static Huffman and dictionary coding is determined.
Section 4 presents the setup and results of energy tests analyzing the impact of compression on
the server’s and the client’s energy consumption. Section 5 presents an outlook for future work.

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 7

Page 2 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

2 TRAFFIC ANALYSIS

To get an impression of HTTP traffic compressibility the first step is to analyze the average
payload’s composition on a production server. As video and download portals mainly use already
compressed traffic and their amount of compressible contents are negligible, we will analyze a
server hosting basic websites only, with a mixture of static and dynamic payload of html, xml, css,
js, json, images and other. Common image formats, like jpeg and png, already use ideal
compression algorithms and are thus not further compressible. Hence, the amount of html, xml,
css, js, json and similar based payloads correlates with the traffic’s compressibility. We will
analyze live HTTP traffic provided by a production web server of a medium-size company and
track several traffic-stats like latency, distribution, and compressibility. The payloads are exported
to test the impact of chunk sizes and compression levels using another machine.

The analysis was performed on the web server Ms1 which is part of the production environment
hosting German and English websites using PHP (see Table 1). All data sent from the server
upon request was captured and exported to disk for later analysis. Confidentiality of the data was
ensured at all times. The server’s traffic was captured for about 72 hours and referred to as P72.

Machine CPU RAM
Ms1 Intel® Core™ i7-3770 16 GB DDR3
Ma1 Intel® Core™ i3-M380 4 GB DDR3 1066

Table 1: Used machines for live analysis and further tests

2.1 Software

For traffic analysis and compression tests we developed NetAnalyzer, a tool to capture HTTP
traffic and examine various important aspects. To provide an easy integration into production
environments, we decided against writing a HTTP proxy. Instead we used libpcap to capture all
TCP packets on port 80 and extract the actual HTTP streams after IPv4 and TCP reassembly.
This ensures a very simple integration at the cost a slight packet loss / skipped connections in
some environments (about 1% in our case) depending on the used hardware [Papadogiannakis et
al. 2012]. To compensate for the latter and to ensure plausible results, tests and exports were
repeatedly run over a period of several days.

The captured packets traverse IPv4 reassembly and are piped into a TCP reassembler which
assigns them to connections using both IPs and ports [Postel 1981]. Later, the TCP streams are
analyzed by the HTTP decoder to split header / payload and distinguish between requests and
responses. HTTP data is then streamed through several configurable compressors and analyzers
to track e.g. the web server’s latency, the time needed for compression, and the resulting
compression ratio for each content-type. The gathered statistics and the captured payloads are
exported for further evaluation (section 2.2) and to serve as representative test data for the
energy tests in section 4. The HTTP decoder triggers the analyzers directly at packet level without
additional buffering. Hence, the compressors will append data blocks of about the average MSS
which is, at max, 1460 bytes when using Ethernet with a MTU of 1500 bytes [Postel 1983]. As
compressors like gzip are configured to use Z_NO_FLUSH, they are independent of this chunk
size. Other compression algorithms like LZO and LZ4 however are strictly block based, their
compression ratio might vary significantly depending on the block size (see section 3).

Equally important as the traffic’s composition are the latency distributions. As disk access is
much slower than the overhead needed for compression [Yang et al. 2010], the CPU time spent
on compaction of uncacheable files, like dynamic websites using PHP, Ruby, Python, or other
languages, is less critical than compressing static websites that will most likely reside within the
file system cache. Therefore, we try to analyze the amount of (compression-suited) dynamic
content by exporting latency values and applying an appropriate threshold.

Frank Ebner, Volker Schneider

8 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider Page 3

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

2.2 Results

2.2.1 Traffic distribution

The analyzed production server’s HTTP request payloads (24.6 MiB) had about 2‰ the size of
the response payloads (12.9 GiB) and thus are statistically insignificant. Therefore, we did not
further analyze the compressibility of the requesting side. Table 2 provides the detailed results of
the response payload’s composition. We also did not examine the HTTP headers’ compressibility
as the NetAnalyzer tool reported an average header size of only 561 bytes for requests and
319 bytes for responses, respectively. Furthermore, HTTP/1.1 currently does not allow such a
construction. The upcoming HTTP/2.0, however, will provide multiplexing with corresponding
header-compression [Belshe et al. 2013][Peon and Ruellan 2013].

 html images js css xml json other
traffic 5.54 GiB 5.35 GiB 1.37 GiB 0.36 GiB 0.04 GiB 0.02 GiB 0.21 GiB
traffic % 42.9% 41.4% 10.8% 2.8% 0.2% 0.1% 1.8%
files 113,737 385,927 67,138 39,498 4,557 6,212 8,689

Table 2: Traffic distribution within P72

Our expectation of the used image formats was confirmed as we mainly found jpeg images
(4.59 GiB / 233,858 files) followed by png (0.67 GiB / 77,382 files) and gif (0.09 GiB /
74,687 files). Those formats already have a high entropy of nearly 8-bit per symbol (byte) and
thus are not suitable for further compression. All following tests will use a 24 hour slice P24 of P72.
Unfortunately, most of the xml traffic was occupied by two files, requested every minute. After
removing those files, to ensure a variety of different payloads, P24 contained only 25 xml files with
500 KiB in size. Therefore, xml tests use the larger window of P72 containing 68 files using
2.7 MiB. This amount still is negligible compared to other content-types and xml test results
should be handled with care. Figure 1 shows the traffic distribution on the web server Ms1 within
the extracted range of P24. The distribution on the analyzed web server strongly depends on the
time of day and allows higher compression at nightly hours. The average traffic of one day
consists of about 50% well suited for compression. Table 3 and Figure 1 depict the detailed traffic
composition.

 html js css json xml
traffic 2,033.1 MiB 550.9 MiB 148.7 MiB 6.6 MiB 2.6 MiB
traffic % 74.1% 20.1% 5.4% 0.2% 0.1%
files 33,570 26,444 15,264 1,979 68
avg filesize 62.1 KiB 21.3 KiB 10.0 KiB 3.4 KiB 39.1 KiB

Table 3: Extracted content-types within P24

2.2.2 Traffic latency

The left half of Figure 2 shows the histogram for html content latencies of P72 between 0 and
1000 milliseconds. 108761 values matched this latency range which is about 95.6% of the
complete payload P72 (see Table 3). Q25 = 6 claims that many responses were delivered almost
instantly. The right half shows the histogram for low latencies between 0 and 15 milliseconds.
Starting at 8 milliseconds, the number of entries per bin almost seems to be stable. Therefore, we
decided to split between static and dynamic contents using a threshold of 10 milliseconds. Table
4 depicts the results, using this threshold for P24.

 html js css json xml
num static 25.3% 96.2% 94.0% 3.5% 2.0%
size static 12.8% 93.0% 87.3% 7.6% 1.2%

Table 4: Static / Dynamic distribution per content-type within P24

Frank Ebner, Volker Schneider

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 9

Page 4 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

 0k

10k

20k

30k

40k

 0 200 400 600 800 1000

p
a
y
lo

a
d
s

latency (in milliseconds)

total: 108761Q
 0

.2
5

Q
 0

.5
0

Q
 0

.7
5

 0k

 2k

 4k

 6k

 8k

 0 2 4 6 8 10 12 14

p
a
y
lo

a
d
s

latency (in milliseconds)

total: 31240Q
 0

.2
5

Q
 0

.5
0

Q
 0

.7
5

tr
a
ff
ic

 d
is

tr
ib

u
ti
o
n

tr
a
ff
ic

 (
in

 K
iB

/s
)

time

html

css

js

json

images

other

traffic

 0%

20%

40%

60%

80%

100%

00:00 04:00 08:00 12:00 16:00 20:00 00:00

 0

 20

 40

 60

 80

 100

 120

Figure 1: Distribution and amount of HTTP traffic (30 minutes average) on Ms1

Figure 2: Response latencies for html payloads within P72

2.3 Conclusion

On the tested server Ms1 the amount of compressible payload is in fact considerable. It is
composed of html, js, and css which account for about 56.5% of the total traffic. In addition, only
one tenth of the html traffic is based on static content indicating a negligible overhead for
compressing a significant amount of payload.

3 COMPRESSION ANALYSIS

In this section we select five existing compression libraries and evaluate them using the web
traffic P24 from section 2.2. In addition to the existing compression libraries we examine the
effectiveness of two custom compression methods in section 3.2 and 3.3. The results serve as
input for choosing the most appropriate compression algorithms for the energy tests in section 4.

Before presenting the compression libraries we need some definitions that will be relevant
throughout this section. We define the terms compression ratio ∆N, compression speed Sc, and
reduction speed Sr as in Equation 1 where tc is the time the compressor C needed for
compressing N uncompressed bytes to n compressed bytes.

Frank Ebner, Volker Schneider

10 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider Page 5

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

 = 	 
  = 	 

  = 	 
 (1)

Compressibility depends on the input’s entropy (see Equation 2) which is about the average
number of bits needed to describe one of its code words (e.g. one byte, one word, one sentence)
[Blelloch]. Most compression algorithms thus are based on either a form of entropy encoding, like
Huffman coding [Huffman 1952], and / or some kind of dictionary, like those of the Lempel-Ziv
family [Ziv and Lempel 1977]. As these compressors have no a priori knowledge of the to-be-
compressed payloads they usually are adaptive to provide good compression ratio. However the
adaptive behavior is CPU intensive as the data structures which provide high searching speeds
must constantly be updated e.g. when gzip’s sliding window changes [Bell and Kulp 1993]. Thus
we will take a closer look at a static entropy encoder / dictionary to check the feasibility of static
algorithms using a priori knowledge and analyze obtainable compression ratios.

 = 	 ∑ 		 
 = 	 ∑ −		 (2)

3.1 General Purpose Algorithms

This section presents the five compression libraries chosen for the initial payload analysis. Each
library is referred to as “algorithm” for better readability, although we chose a concrete
implementation with a specific version and configuration. All algorithms are lossless and intended
for general purpose usage. Overall the choice was biased towards algorithms known for fast
compression and decompression speed.

3.1.1 gzip

The GNU zip (gzip) is a combination of the GNU zip file format and data compressed with
DEFLATE algorithm. It can be created using the gzip program or the zlib library. gzip is allowed
as an encoding format by the HTTP/1.1 standard [Fielding et al. 1999] and defined in [Deutsch
1996b]. The current RFC draft for the upcoming HTTP/2.0 standard [Belshe et al. 2013] does not
add new compressed encoding formats, although there have been attempts [Butler et al. 2008] to
introduce new formats into the current standard in the past. gzip serves as a reference regarding
compression and speed. It supports different compression levels from 1 (fastest) to 9 (best ratio)
and can use huffman-only compression strategy. We will refer to different configurations of gzip:
gzip1, the fastest compression level; gzip6, the default compression level; gzip9, the level providing
the best compression ratio; gziphuffman, using only Huffman coding. HTTP/1.1 allows the usage of
deflate content encoding, also known as zlib format [Deutsch 1996c] with DEFLATE compression,
in addition to gzip. We will focus on gzip since deflate encoding is reported to be the more reliable
choice across different servers and browsers.

3.1.2 LZMA

Lempel–Ziv–Markov chain algorithm (LZMA) is a compression algorithm that uses a dictionary
compression scheme. It is known for its high compression ratio for most contents. LZMA is used
as the default compression method of the 7z format. The reference implementation was placed in
the public domain in 2008. Although the API provides options to customize the compression and
decompression experience (level 1-9), the usage of default parameters leads to high memory
requirements especially for compression. The manual page for the xz program gives a rough
estimate of the memory requirement for level 1 as 9 MiB for compression and 2 MiB for
decompression. Level 4 would require about 48 MiB for compression and 5 MiB for
decompression. The analysis of the web traffic focused on using LZMA at level 1 with a CRC64
checksum. Default values were used for all other arguments. This configuration is hereafter
referred to as lzma1. We chose LZMA to have a reference with regards to compressibility of the
traffic data.

Frank Ebner, Volker Schneider

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 11

Page 6 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

3.1.3 LZO

Lempel–Ziv–Oberhumer (LZO) is a compression algorithm that focuses on fast decompression.
Its default algorithm requires only 64 KiB memory for compression. The compression is known to
be fast while favoring speed over a higher compression ratio. LZO is licensed under the GPLv2+.
Its area of application includes compression in the Btrfs file system, optional data stream
compression in OpenVPN, and Linux Kernel compression. The API provides algorithms of
different flavors. The traffic analysis used the LZO1X-1 algorithm as recommended by the official
LZO FAQ when aiming for speed. This configuration is hereafter referred to as lzo1. Initial tests
were also conducted using LZO1X-999 but failed to provide significantly better compression ratio.

3.1.4 LZ4

LZ4 is an algorithm for fast compression and decompression. It offers two kinds of API, default
and high compression mode (HC). The traffic analysis used LZ4 r94 in its default configuration
hereafter referred to as lz4. The algorithm’s source code is published under the 2-clause BSD
license. Although the project is relatively young, it has seen wide adoption lately. It is actively
used in GRUB, the ZFS file system and is supported for Kernel compression since Linux 3.11.

3.1.5 QuickLZ

QuickLZ is another fast compression algorithm. It is licensed under the GPL but also offers
commercial licensing. The algorithm provides three compression levels that allow the user to
choose between compression or decompression speed. In addition, it offers the usage of a history
buffer for improved compression ratio and an option for memory safe decompression for corrupt
input data (15-20% slower). The analysis was performed with library version 1.5.0 configured with
level 1 (fastest compression speed), a streaming buffer of 100000 bytes and no extra memory
safety. This configuration is referred to as quicklz1 for the rest of this document.

In addition to the general purpose algorithms we examined the feasibility of non-adaptive
compression using one representative of dictionary and entropy coding, respectively. For the
latter, we decided to settle for the well-known Huffman coding.

3.2 Huffman coding

Our implementation builds the necessary (static) Huffman table by counting the symbols within
several training files. While the Compressor was optimized for speed, decompression was only
implemented to ensure the algorithm is working correctly. Hence, Huffman coding will not be part
of the energy tests in section 4 and its decompression speeds are omitted in section 3.4. Since
we try to provide a static tree for many documents (e.g. for all html files with English content), it
makes sense to exchange the required tree once in advance only and use it for several
transactions. Therefore our implementation will not include the used tree within its output, saving
some additional bytes. Within this document several Huffman trees will be used whereby
huffmanhtml and huffmanjs are trees derived from all html / js payloads of P24 (see section 2.2).
Huffmangen will be, in general, any Huffman tree derived from any sort of payload using the
algorithm described above. All resulting compression ratios are compared with those of an
adaptive tree used by gzip in Z_HUFFMAN_ONLY mode [Deutsch 1996a].

3.3 LZW-based dictionary

In order to examine dictionary coding we implemented a LZW based algorithm [Welch 1984] (a
successor of LZ78 [Ziv and Lempel 1978]) which was inspired by the code from [Nelson 1989].
We used a maximum length of M=16 for the dictionary entries and a Trie to retrieve the matches.
Our dictionary allows a maximum of 65536 entries whereas every entry will be compressed by
using its corresponding 16-bit index. LZ77 based algorithms (like gzip) are expensive on the
compression side due to the need to find the longest match from a sliding window [Bell and Kulp
1993]. Using a priori knowledge to create a static dictionary, the missing adaption to changing

Frank Ebner, Volker Schneider

12 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider Page 7

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

payload-content usually degrades the compression ratio. However, compression speed increases
as the data-structures needed for efficient retrieval of the longest dictionary match, can be
precomputed and do not need (expensive) updating during compression [Bell and Kulp 1993].

As the speed of the current implementation requires further optimization, we only analyzed
achievable compression ratios using a static dictionary and omit speed and energy tests. The
language dependency of the dictionary is analyzed by using the four front pages of amazon,
youtube, wikipedia, and facebook. Those websites were chosen because they are common

1
,

translated into the tested languages German, English, and Japanese and the front pages for all
languages differed only in textual content and not in layout or structure. The dictionaries (Dde, Den,
Djp) each use the four front pages of their corresponding language as do the payloads (Pde, Pen,
Pjp). Since those websites heavily use <script> and <style> another dictionary D−script, based
on each language with those tags removed and a dictionary D−content with additionally removed
textual content, will be tested as well.

3.4 Results

3.4.1 Chunk size

The impact of different chunk sizes on the general purpose algorithms was measured to find
proper values for the following energy tests. We compressed the html part of payload P24 (see
2.2) using each of the algorithms. The chunk size is the maximum number of bytes that each
compressor received at once per file. Depending on the file size (see Table 3 for average file
sizes in P24), this means fewer calls to the compressor API with larger to-be-compressed data
chunks. It also leads to less overhead for the compression format because of fewer compressed
data chunks. Larger chunk sizes, however, also require more memory on the system and
increased memory management efforts for the application. Figure 3 and Figure 4 show the
resulting impact on compression ratio and compression speed respectively.

The libraries for gzip and lzma1 provide a stream-like API that performs internal buffering, so
their compression ratio is not affected by the chosen chunk size. Compression speed is slightly
lower for very small chunks, which seems to be the function call overhead of the API.
Decompression is not affected since the compression stream always provides compressed data
chunks of the same size, except for end-of-file situations. With the exception of the necessary
function call overhead, both Huffman based compressors are unaffected by the chunk’s size and
offer slightly faster compression with larger chunks only.

The compression ratio of quicklz1 is slightly worse until reaching chunk sizes of about 4 KiB, but
stays stable from there on. This seems to be caused by the constant format overhead per chunk.
However, the average compression ratio is better than that of e.g. lzo1, which is probably a result
of the optional history-buffer. Unlike the asynchronous stream-like interface of gzip6 and lzma1,
quicklz1 returns a compressed data chunk immediately after each call to the API. Compression
and decompression speed each double between 256 bytes and 64 KiB chunk sizes. This increase
progresses linearly and is too small to be caused by function calls. Instead, the algorithm seems
to be faster when allowed to compress or decompress larger data chunks at once.

lzo1 and lz4 both provide a very simple to use block based API. Every time their API is called to
compress a data block the compressed result is returned directly after the function call. They do
not keep track of internal state between calls nor use a global context. This design benefits
greatly from increased chunk sizes both for compression ratio and speed. It would probably not
be difficult to design a stream-like API similar to the one of gzip6 around these algorithms, so that
they would work efficiently independent of external chunk sizes. But that is outside the scope of
this paper. The compression ratio of the two algorithms is practically identical. Speed-wise
however, lz4 shows superior performance to lzo1, especially for decompression.

1
 http://www.alexa.com/topsites/countries/DE

Frank Ebner, Volker Schneider

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 13

Page 8 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

 0%

20%

40%

60%

80%

100%

 256 512 1024 2048 4096 8192 16384 32768 65536

c
o
m

p
re

s
s
io

n
 r

a
ti
o

chunk size (bytes)

 gzip 6
quicklz1

gzip huffman

huffmanhtml
lzo1
lz4

lzma 1

 0

100

200

300

400

500

600

 256 512 1024 2048 4096 8192 16384 32768 65536

c
o
m

p
re

s
s
io

n
 s

p
e
e
d
 (

M
iB

 /
 s

e
c
)

chunk size (bytes)

gzip 6
quicklz1

gzip huffman

huffmanhtml

lzo1
lz4

lzma 1

Figure 3: Chunk size impact on html compression ratio using P24 (less is better)

Figure 4: Chunk size impact on html compression speed using P24 (more is better)

3.4.2 Content type

Given the results of the previous tests we decided to settle for a chunk size of 64 KiB for the
compression tests split by content type. The measurements were performed on the payload P24
using machine Ma1. The compression tests were performed using an extension of the NetAnalyzer
tool (see section 2.1). Although the compression itself is single-threaded, we used
pthread_setaffinity_np to bind the compression thread to one core. This increased
reproducibility and reduced the number of cache misses [Love 2003].

The results of the content type tests in Table 5 to Table 7 complement the measurements
shown in Figure 3 and Figure 4. Best results are shown in bold. These tables include stats for the
fastest (gzip1) and best (gzip9) gzip compression level. For us, the takeaway from these tests is:
lzma1 and gzip9 provide the best compression ratio, which is consistent with what Figure 3
indicated for html-only data. quicklz1, lzo1, and especially lz4 are superior when focused on
speed. As expected, the compression ratio of both static Huffman codings huffmanhtml and
huffmanjs is inferior to that of the adaptive version used in gzip [Crochemore and Lecroq 2010].

Frank Ebner, Volker Schneider

14 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider Page 9

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

 html xml css js json
gzip1 0.157 0.151 0.242 0.371 0.319
gzip6 0.137 0.131 0.201 0.325 0.282
gzip9 0.136 0.128 0.191 0.325 0.280
gziphuffman 0.640 0.624 0.640 0.652 0.673
quicklz1 0.195 0.186 0.302 0.453 0.403
lzo1 0.216 0.206 0.319 0.481 0.420
lz4 0.208 0.200 0.337 0.494 0.410
lzma1 0.130 0.121 0.209 0.323 0.294
huffmanhtml 0.668 0.692 0.730 0.780 0.772
huffmanjs 0.757 0.790 0.727 0.692 0.782

Table 5: Compression ratio for P24 using 64 KiB chunks (less is better)

 html xml css js json
gzip1 56.8 63.7 37.4 29.8 27.2
gzip6 30.3 34.3 20.1 17.3 17.3
gzip9 24.4 25.9 16.6 12.4 14.5
gziphuff 49.0 56.6 46.0 49.3 38.5
quicklz1 216.7 234.9 113.7 110.6 77.9
lzo1 420.0 411.2 224.3 190.2 195.6
lz4 505.5 507.6 270.0 220.9 229.9
lzma1 13.7 15.8 8.8 6.7 7.0

Table 6: Compression speed (in MiB/s) for P24 using

64 KiB chunks (more is better)

 html xml css js json
gzip1 230.2 242.4 119.9 118.7 112.0
gzip6 256.5 285.1 143.3 141.9 139.0
gzip9 257.2 281.0 150.2 137.3 144.2
gziphuff 116.9 136.8 104.0 110.4 95.1
quicklz1 362.7 441.8 216.3 174.3 173.1
lzo1 570.4 602.8 291.0 256.4 328.1
lz4 1120.8 1150.3 660.5 712.8 711.5
lzma1 62.2 71.3 32.4 25.9 26.7

Table 7: Decompression speed (in MiB/s) corresponding to

Table 6 (more is better)

Table 5 and Table 6 indicate a correlation between compression ratio and (de)compression
speed for some of the algorithms. Therefore we calculated the Bravais-Pearson correlation
coefficient between those values using equation 3. The correlation for Huffman based
compressors strongly depended on the used payload types, resulted in entirely different values
for aforementioned tests, and will be omitted. Table 8 shows that dictionary based compressors
have a strong negative correlation between compression ratio and compression speed. Highly
compressible files will also consume less time for compression. Moreover, decompression almost
showed similar correlation values.

ℎ = 	 ∑ 
∑ ⋅	∑ 

  = 	 
 ∑   = 	 

 ∑  (3)

lzma1 lz4 gzip9 gzip1 lzo1 gzip6 quicklz1
-0.952 -0.944 -0.941 -0.937 -0.924 -0.908 -0.896

Table 8: Bravais-Pearson correlation between compression ratio and compression-speed

In order to reduce the number of possible testing-combinations and to make them comparable
with previous results, the two following tests for Huffman and dictionary coding will focus on html
payloads only.

3.4.3 Huffman coding

Table 5 concluded that the compression ratio of a static Huffman tree, derived from the
complete html traffic of P72, is similar to the ratio of an adaptive gzip. The language dependency
of Huffman coding in general is analyzed using the payloads Pde, Pen, Pjp and their corresponding
Huffman trees referred to as huffmangen. While compression ratios for English and German
payloads are almost identical, Japanese payloads seem less compressible using Huffman coding,
due to their higher entropies (see Table 9).

Frank Ebner, Volker Schneider

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 15

Page 10 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

 Pde Pen Pjp
huffmangen 69.0% 68.8% 74.7%
gziphuffman 67.3% 67.1% 71.4%

Table 9: Huffman compression ratio per language

 Dde Den Djp D-script D-content
Pde 40.2% 45.3 46.2 48.6% (+8.4%) 51.4% (+2.8%)
Pen 44.1% 40.2 45.8 47.7% (+7.5%) 50.4% (+2.7%)
Pjp 56.1% 58.5 40.7 49.6% (+8.9%) 56.5% (+6.9%)
P24 48.3% 49.8 52.7 47.9% (-0.4%) 52.2% (+4.3%)

Table 10: LZW-dictionary compression ratio depending on payload

3.4.4 Dictionary

Table 10 shows that P24 can be compressed to 48.3% using the dictionary Dde which is superior
to the 66.7% offered by the Huffman tree. English and German websites can be compressed with
another language’s dictionary at a small overhead of 5%. However, Japanese websites heavily
depend on the language component within the dictionary to achieve good compression ratios.
The last two columns respectively use the scriptless / contentless dictionary (see section 3.3) for
the language of each row. For P24 those two variants are based on the German dictionary
because it offered the best compression ratio. Removing scripts and styles from a dictionary of a
language results in a compression ratio degraded by about 8%, indicating an extensive usage of
<script> and <style> tags within the examined websites. It should be far more efficient to
move those contents to external files, at least when using a LZW-based dictionary. P24 seems to
prove this hypothesis as the compression ratio using D−script is slightly better (0.4%) than that of
Dde. However, LZ77 based compressors will, most likely, behave differently as they use a local
dictionary instead of a global one. Additionally removing any textual content from each dictionary
of a language only keeping the html tags (named D−content) increased the compression ratio by
another 3% for German / English texts and about 7% for Japanese contents. This indicates that a
language-independent static dictionary for html payloads is feasible but slightly less efficient.

3.4.5 General optimizations

Previous tests indicated a huge amount of tabs and spaces within the payloads. Supplementary
tests were conducted to analyze whether additional bytes can be saved by replacing indentation
tabs with spaces. We examined a fraction of payload P24 created by using only those files which
solely use tabs for indentation and filtering duplicates referred to as Ptab. Table 11 points out those
new results. The values state that it doesn’t matter whether to use one space or one tab for
indentation when working with common compression algorithms. However, using four spaces for
indentation is inefficient and increases the traffic by about 4% even when using gzip compression.

 original tab -> 1 space tab -> 2 space tab -> 4 spaces
none 50,626 50,626 (0.0%) 55,026 (+8.7%) 63,826 (+26.1%)
huffmanstatic 33,775 32,958 (-2.4%) 34,494 (+2.1%) 36,694 (+8.6%)
gziphuffman 32,996 32,370 (-1.9%) 33,626 (+1.9%) 35,363 (+7.2%)
gzip1 10,070 10,065 (0.0%) 10,191 (+1.2%) 10,464 (+3.9%)

Table 11: Impact of tab/space indentation on the compression (in bytes) of payload Ptab

Inspired by the growing output size when using multiple spaces for indentation, we also applied
a simple minification to the previously tested payload Ptab by removing all \r, \n, \t and multiple
consecutive whitespaces (see Table 12). However, our simple implementation will, most likely,
break javascript code, style sheets or <pre> blocks. Moreover, many additional operations as
comment-removal or variable-renaming could be applied to further enhance the minification.
Widely used CMS and templates pose another challenge for minification. Using those, it is not
easily possible to minify a website beforehand as it is composed of numerous elements.
Minification within the compressor would be a far better solution here, probably at the cost of
lowered compression speeds.

Frank Ebner, Volker Schneider

16 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider Page 11

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

 uncompressed huffmanstatic gziphuffman gzip1
original 50,626 33,757 32,996 10,070
minified 45,317 (-10.5%) 30,214 (-10.5%) 29,744 (-9.9%) 9,673 (-3.9%)

Table 12: Impact of minification on the compression (in bytes) of payload Ptab

3.5 Conclusion

The gzip6 algorithm offers a good trade-off between compression ratio and speed. lzma1
showed strong compression ratio but was also the slowest option throughout the measurements
with the highest memory consumption. For some content types gzip9 even provided slightly better
compression ratio than lzma1. For these reasons LZMA level 1 and higher might not be suitable
for low-latency real-time data compression or decompression. lzo1 and lz4 are both fast and show
similar characteristics (need large chunk size) while lz4 offers superior speed. Given an
appropriate chunk size (32 KiB and above), lz4 would also be preferred over quicklz1 as it is faster
and provides competitive compression ratio. In a scenario where a large chunk size is not an
option and good compression is more important than speed, quicklz1 might be a viable alternative.

Static compression algorithms, using a priori knowledge, offer competitive compression ratio
and have room for additional optimization as they rarely need data-structure adjustments during
compression. Those algorithms may use data structures otherwise too costly (like Patricia-Tries
[Morrison 1968]) to reduce memory consumption rendering them practical for embedded systems
where memory and CPU time is expensive. Albeit there are many adjustable variables which
need further investigation in order to provide a set of rules for some content-type which
maximizes the compression ratio. It is possible to save additional bytes by using minification
which could be considered a lossy compression algorithm. Minification is applicable to all of the
analyzed compressible content-types (html, js, css, xml, json) and can be quite complex, e.g.
when renaming variables to shorter sequences. If suitable, pre-minification should be applied at
the cost of edit ability.

4 ENERGY TESTS

This section will pick a subset of the previously evaluated algorithms and measure energy
consumption relative to one another using real life the traffic we analyzed before. The goal of
these tests is to show how much the energy consumption of different compression algorithms
vary. We tried to eliminate many disruptive factors to measure the algorithms’ energy
consumption in terms of their CPU and network utilization.

4.1 Hardware

The setup of our energy tests consists of three separate hardware devices: the server, the
client, and a switch linking them together. The client and server are machines originally intended
for regular desktop use; see Table 13 for their specification. They are linked using a regular
100 MBit switch which will be of no concern to the test.

Machine CPU RAM HDD
Mec Intel Atom N2800 2 GB DDR3 Seagate Momentus 5400.6 250 GB
Mes Intel Core 2 Duo E6550 2 GB DDR2 800 Seagate Momentus 5400.6 250 GB

Table 13: Computers used for energy tests. Mec works as the client, Mes works as the server

We tried to eliminate possibly interfering factors to achieve a uniform consumption
measurement for idle mode. Unnecessary components like on-board audio, LPT and RS232 ports
were disabled in the BIOS. Also, cpufreq configured for ondemand was used to reduce the

Frank Ebner, Volker Schneider

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 17

Page 12 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

machines’ (idle) power consumption. Both test machines are using Gentoo Linux running kernel
version 3.8 optimized for each machine’s CPU.

We used two Voltcraft Energy Logger 4000 devices to measure the consumed energy. They are
connected between the mains socket and the device to be measured. While the energy logger’s
display provides a precision of 0.1 watts, the exported binary data leads to a lower precision of
about 0.23 watts when using an average voltage of 230 volts (230.0V 0.001A = 0.23W).

4.2 Software

The energy tests were run by a tool we wrote for this purpose. NetAnalyzer served well for
analysis but for energy tests we needed a program with as little overhead as possible. It can
either be run in client or server mode and was deployed on both test machines Mec and Mes.

4.2.1 Client mode configuration

When the tool is run in client mode the user can set various parameters to control the server’s
behavior. We used P24 (see section 2.2) for our energy tests to ensure real-world traffic. P24 does
not only consist of the original payload but also includes meta information about the time stamp of
each request. The client parses those meta information to be able to decide which file to request
at a time. The tool allows for the payload to be sent in a shorter interval using a replay speed
option which makes the test process less time consuming while preserving the original request
distribution. P24 was used for the energy tests, so the original request time frame was 24 hours.
We chose a replay speed of 3x to make each of the tests finish after 8 hours instead of 24.
Section 2.2 has shown that the production server we analyzed was not running under full load. In
fact P24 consists of only about 2.7 GiB of compressible data over a time period of 24 hours. This
was not enough traffic for our measurements. We decided to simulate more load by sending each
request multiple times, so each file was repeatedly requested 26 times in a row. The repeated
requests of one file were equally spread over the time between two real requests. A chunk size
option tells the server the size of chunks to use when reading a file and pass it to the compression
algorithms (see 3.4). The compressed chunk is then sent to the client. We decided to run the
energy tests using the three most diverse algorithms evaluated in section 3: gzip6, lzma1, and lz4.
In addition tests were also run without compression for reference, referred to as none.

4.2.2 Server mode configuration

The server mode is initialized with a link to the actual payload P24 on the local file system. P24
consists of payload that the NetAnalyzer exported, where each HTTP response’s payload was
exported as a single file. Every time a client connects and requests a file, the server reads the file
from the file system (xfs) using the given chunk size, compresses it with the appropriate
compression algorithm and sends the data to the client one compressed chunk after another.
Each access to the local file system made by the server (reading chunks) used the direct IO flag
O_DIRECT. This forces the operation system to always access the drive directly without using the
file system cache even when the same file is read repeatedly. While this is unusually in
production environments, it ensures better reproducibility.

4.2.3 Protocol overhead

The energy tests contain a protocol overhead on top the actual payload. The client’s overhead
consists of the client telling the server which file to send, chunk size and compression algorithm.
The server on the other hand sends the client the length of the following compressed chunk. This
overhead, however, is negligible as it makes up only 0.25% of the whole communication for client
and server combined for gzip6 compression with a chunk size of 64 KiB. Table 14 presents the
most important energy test configuration options that were explained in this section.

Frank Ebner, Volker Schneider

18 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider Page 13

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

Test Runtime 8 hours
Repeat count 26x
Chunk size 64 KiB
Compression none, gzip6, lzma1, lz4
Data P24 (2.7 GiB, 75,278 files)
Content types html, js, css (see Table 3 for distribution details)

Table 14: Energy test parameters and statistics

4.3 Results

Table 15 (left) shows the power consumption measurements collected for the client Mec. The
tests were run using the configuration described in Table 14: 69 GiB of uncompressed payload
spread over 1.9 Mio separate connections over a time frame of 8 hours. The actual amount of
bytes sent over the network was less when using compression, but the number of connections
stayed the same. The client received the data being sent from the server and decompressed it.
The difference in energy consumption between compression algorithms was barely measurable
with our equipment. Most of the values are located in an area only about 0.3 watts wide, which is
just slightly higher than the measurement accuracy of our energy logger (see section 4.1).

The values presented in Table 15 (left) show noticeable trends. The idle consumption is in fact
the lowest, although not by much, and lzma1 decompression measurements are the highest.
Although Table 16 shows that the client spent about 100min (6010s) for decompressing data
using lzma1. Table 15 indicates almost no increase in energy consumption compared to lz4
decompression, which kept decompression only about 7min (426s) over a time frame of 8 hours.

The server measurements presented in Figure 5 are more diverse, since the server is
responsible for the compression workload. The idle measurement is almost a straight line within
the energy logger’s accuracy. The traffic distribution of P24 can be recognized by looking at the
graph, especially for lzma1, which consumes considerably more energy than the other algorithms.
gzip6 replicates the payload traffic although by a smaller degree than lzma1. The values for none
and lz4 both show nearly identical progression but are lower than gzip6 and lzma1 at any time.
These impressions are confirmed by the energy consumption details in Table 15 (right).
Compressing payload with lz4 does not increase the energy consumption of our server, the data
rather shows it might even be less costly (44.90 watts vs. 44.80 watts). This might be an effect of
the reduced network traffic caused by compression, which leads to the theory that energy-wise
the traffic savings from lz4 compression are higher than costs of the compression itself.

In addition to the measurements made by the energy logger, we analyzed the CPU usage of the
client and server machines during the energy tests. The rationale behind this was to verify that
power consumption and CPU utilization were consistent. The CPU usage was recorded by
continuously reading the output of /proc/stat on each system. Figure 6 and Figure 7 show the
CPU usage over time on the client. Table 17 (left) lists more details on the CPU usage with user
and irq (software and hardware interrupts combined) values separated. For the server, Figure 8,
Figure 9, and Table 17 (right) present the same information respectively.

Overall, the CPU usage and energy measurements are not only consistent with each other, we
also noticed good reproducibility during the test.

 kWh voltage avg (σ) watt avg (σ) kWh voltage avg (σ) watt avg (σ)
idle 0.095 222.6 (1.45) 11.99 (0.092) 0.348 223.4 (1.44) 43.82 (0.200)
none 0.096 222.9 (0.90) 12.09 (0.107) 0.357 223.7 (0.90) 44.90 (0.362)
gzip6 0.096 222.8 (1.05) 12.05 (0.112) 0.365 223.6 (1.05) 45.92 (0.734)
lzma1 0.096 222.6 (1.36) 12.14 (0.105) 0.379 223.4 (1.37) 47.62 (1.313)
lz4 0.096 221.9 (1.35) 12.08 (0.102) 0.356 222.7 (1.35) 44.80 (0.383)

Table 15: Energy consumption details using options described in Table 14 on Mec (left) and Mes (right)

Frank Ebner, Volker Schneider

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 19

Page 14 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

43.0

44.0

45.0

46.0

47.0

48.0

49.0

50.0

51.0

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

w
a
tt

time (hh:mm)

idle none gzip lzma lz4

Figure 5: Power consumption using options described in Table 14 on Mes (30min average)

4.4 Conclusion

The measurements on our client machine Mec did not provide significant results. The reason
might be decompression being so cheap in general (see Table 7) or because our client machine
was already very energy efficient. Probably both factors were responsible, but we were not able to
conclusively determine the exact degree of each.

 uncompressed (MiB/s) compressed (MiB/S) compr. time (s) decompr. time (s)
none 2.467 - - -
gzip6 2.467 0.440 2933 1451
lzma1 2.467 0.427 5985 6010
lz4 2.467 0.673 235 426

Table 16: Network traffic using options from Table 14 for compression on Mes (left) and decompression on Mec (right)

Figure 6: CPU usage over time using Table 14 on Mec with none (left) and gzip6 (right)

Figure 7: CPU usage over time using Table 14 on Mec for lzma1 (left) and lz4 (right)

Frank Ebner, Volker Schneider

20 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider Page 15

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

C
P

U
 u

s
a
g
e

 0

 0.1

 0.2

 0.3

 0.4

 0.5

0h 2h 4h 6h 8h

The measurements on the server machine Mes show that the power consumption development
of gzip6 and lzma1 is clearly dependent on the traffic distribution. Although being relatively energy
inefficient, both offer good compression ratio. LZ4, however, did not lead to an increased energy
consumption or CPU usage compared to tests without compression. LZ4 lead to higher user
space utilization during compression but the system spent less time handling interrupts (see user
and irq column in Table 17). Compared to tests without compression, our theory is that the
increased power consumption for lz4 compression was balanced by the saved network traffic.

Figure 8: CPU usage over time using Table 14 on Mes for none (left) and gzip6 (right)

Figure 9: CPU usage over time using Table 14 on Mes for lzma1 (left) and lz4. (right)

 all (%) user (%) irq (%) all (%) user (%) irq (%) iowait (%)
none 5.437 0.581 0.885 5.944 0.148 0.876 4.490
gzip6 8.000 5.563 0.475 16.223 10.360 0.394 4.554
lzma1 24.423 21.360 0.526 29.826 24.452 0.419 4.593
lz4 6.127 2.364 0.505 5.955 0.907 0.426 4.250

Table 17: CPU usage statistics using options described in Table 14 on Mec (left) and Mes (right)

5 FUTURE WORK

Although we examined the feasibility of static compression methods we did not provide a final
Huffman tree / dictionary usable e.g. for all German websites. This could be a subject for
supplementary analysis to come up with a suitable solution.

Our energy tests concluded that the energy consumption of LZ4 is similar to using no
compression. More sophisticated measuring equipment could conclude whether it is possible for
compression to even reduce energy consumption. Another interesting test bed could use wireless
instead of wired connections. The relation between energy savings due to traffic reduction and the
additional energy needed for compression should be more evident than in our test setup.

We examined the complexity needed for data compression but omitted the CPU overhead spent
by the underlying scripting language to generate websites. Further tests should be conducted to
examine the overhead needed for compression using the algorithms directly on the target
systems including dynamic website creation. Those could point out the relation between the

Frank Ebner, Volker Schneider

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 21

Page 16 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

amount of time needed for website creation and compression. This would also require adjusting
web servers and browsers to support the to-be-tested algorithms. Arvind Jain and Jason Glasgow
looked into part of this problem, focusing on why the benefits of content compression often do not
lead to better load times for web pages [Jain and Glasgow 2012].

REFERENCES

BELL, T. C. AND KULP, D. 1993. Longest-match string searching for ziv-lempel compression. Softw., Pract. Exper. 23, 7,

757–771.

BELSHE, M., PEON, R., THOMSON, M., AND MELNIKOV, A. 2013. Hypertext transfer protocol version 2.0. RFC (Draft).

BLELLOCH, G. E. Introduction to data compression. Tech. rep., Carnegie Mellon University.

BUTLER, J., LEE, W.-H., MCQUADE, B., AND MIXTER, K. 2008. A Proposal for Shared Dictionary Compression over HTTP.

Tech. rep.

CROCHEMORE, M. AND LECROQ, T. 2010. Algorithms and theory of computation handbook. Chapman & Hall/CRC, Chapter

Text data compression algorithms, 14–14.

DEUTSCH, P. 1996A. DEFLATE Compressed Data Format Specification version 1.3. RFC 1951 (Informational).

DEUTSCH, P. 1996B. GZIP file format specification version 4.3. RFC 1952 (Informational).

DEUTSCH, P. 1996C. ZLIB Compressed Data Format Specification version 3.3. RFC 1950 (Informational).

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T. 1999. Hyper-text transfer

protocol – http/1.1. RFC 2616 (Standard).

HUFFMAN, D. A. 1952. A method for the construction of minimum-redundancy codes. Proceedings of the Institute of Radio

Engineers 40, 9 (September), 1098–1101.

JAIN, A. AND GLASGOW, J. 2012. Use compression to make the web faster.

LOVE, R. 2003. Kernel korner: CPU affinity. Linux J. 2003, 111 (July), 8–.

MORRISON, D. R. 1968. Patricia – practical algorithm to retrieve information coded in alphanumeric. J. ACM 15, 4 (Oct.),

514–534.

NELSON, M. R. 1989. LZW data compression. Dr. Dobb’s J. 14, 10 (Oct.), 29–36.

PAPADOGIANNAKIS, A., VASILIADIS, G., ANTONIADES, D., POLYCHRONAKIS, M., AND MARKATOS, E. P. 2012. Improving the

performance of passive network monitoring applications with memory locality enhancements. Comput. Commun. 35, 1

(Jan.), 129–140.

PEON, R. AND RUELLAN, H. 2013. Http/2.0 header compression. RFC (Draft).

POSTEL, J. 1981. Transmission control protocol. RFC 793 (Standard).

POSTEL, J. 1983. The tcp maximum segment size and related topics. RFC 879 (Unknown).

WELCH, T. A. 1984. A technique for high-performance data compression. Computer 17, 6 (June), 8–19.

YANG, L., DICK, R. P., LEKATSAS, H., AND CHAKRADHAR, S. 2010. High-performance operating system controlled online

memory compression. ACM Trans. Embed. Comput. Syst. 9, 4 (Apr.), 30:1–30:28.

ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Transactions on Information

Theory 23, 3, 337–343.

ZIV, J. AND LEMPEL, A. 1978. Compression of individual sequences via variable-rate coding. IEEE Transactions on

Information Theory 24, 5, 530–536.

Frank Ebner, Volker Schneider

22 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

Frank Ebner, Volker Schneider

Page 16 Frank Ebner, Volker Schneider

FHWS Journal of Applied Science, Vol. 1, No. 1, 2013

amount of time needed for website creation and compression. This would also require adjusting
web servers and browsers to support the to-be-tested algorithms. Arvind Jain and Jason Glasgow
looked into part of this problem, focusing on why the benefits of content compression often do not
lead to better load times for web pages [Jain and Glasgow 2012].

REFERENCES

BELL, T. C. AND KULP, D. 1993. Longest-match string searching for ziv-lempel compression. Softw., Pract. Exper. 23, 7,

757–771.

BELSHE, M., PEON, R., THOMSON, M., AND MELNIKOV, A. 2013. Hypertext transfer protocol version 2.0. RFC (Draft).

BLELLOCH, G. E. Introduction to data compression. Tech. rep., Carnegie Mellon University.

BUTLER, J., LEE, W.-H., MCQUADE, B., AND MIXTER, K. 2008. A Proposal for Shared Dictionary Compression over HTTP.

Tech. rep.

CROCHEMORE, M. AND LECROQ, T. 2010. Algorithms and theory of computation handbook. Chapman & Hall/CRC, Chapter

Text data compression algorithms, 14–14.

DEUTSCH, P. 1996A. DEFLATE Compressed Data Format Specification version 1.3. RFC 1951 (Informational).

DEUTSCH, P. 1996B. GZIP file format specification version 4.3. RFC 1952 (Informational).

DEUTSCH, P. 1996C. ZLIB Compressed Data Format Specification version 3.3. RFC 1950 (Informational).

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER, L., LEACH, P., AND BERNERS-LEE, T. 1999. Hyper-text transfer

protocol – http/1.1. RFC 2616 (Standard).

HUFFMAN, D. A. 1952. A method for the construction of minimum-redundancy codes. Proceedings of the Institute of Radio

Engineers 40, 9 (September), 1098–1101.

JAIN, A. AND GLASGOW, J. 2012. Use compression to make the web faster.

LOVE, R. 2003. Kernel korner: CPU affinity. Linux J. 2003, 111 (July), 8–.

MORRISON, D. R. 1968. Patricia – practical algorithm to retrieve information coded in alphanumeric. J. ACM 15, 4 (Oct.),

514–534.

NELSON, M. R. 1989. LZW data compression. Dr. Dobb’s J. 14, 10 (Oct.), 29–36.

PAPADOGIANNAKIS, A., VASILIADIS, G., ANTONIADES, D., POLYCHRONAKIS, M., AND MARKATOS, E. P. 2012. Improving the

performance of passive network monitoring applications with memory locality enhancements. Comput. Commun. 35, 1

(Jan.), 129–140.

PEON, R. AND RUELLAN, H. 2013. Http/2.0 header compression. RFC (Draft).

POSTEL, J. 1981. Transmission control protocol. RFC 793 (Standard).

POSTEL, J. 1983. The tcp maximum segment size and related topics. RFC 879 (Unknown).

WELCH, T. A. 1984. A technique for high-performance data compression. Computer 17, 6 (June), 8–19.

YANG, L., DICK, R. P., LEKATSAS, H., AND CHAKRADHAR, S. 2010. High-performance operating system controlled online

memory compression. ACM Trans. Embed. Comput. Syst. 9, 4 (Apr.), 30:1–30:28.

ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Transactions on Information

Theory 23, 3, 337–343.

ZIV, J. AND LEMPEL, A. 1978. Compression of individual sequences via variable-rate coding. IEEE Transactions on

Information Theory 24, 5, 530–536.

FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013 23

24 FHWS SCIENCE JOURNAL, Jg. 1, Nr. 2, 2013

