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Indoor Localization Using Step and Turn Detection Together 
with Floor Map Information

Lukas Köping, Frank Ebner, Marcin Grzegorzek, Frank Deinzer
University of Applied Sciendes Würzburg-Schweinfurt,
Pattern Recognition Group, University of Siegen

In this work we present a method to estimate an indoor position with the help of smartphone 
sensors and without any knowledge of absolute positioning systems like Wi-Fi signals. Our 
system uses particle filtering to solve the recursive state estimation problem of finding the po-
sition of a pedestrian. We show how to integrate the information of the previous state into the 
weight update step and how the observation data can help within the state transition model. 
High positional accuracy can be achieved by only knowing that the pedestrian makes a foot 
step or changes her direction together with floor map information.

Categories and Subject Descriptors: Indoor Localization

Additional Key Words and Phrases: Particle Filter, Step Detection, Turn Detection

1 INTRODUCTION

Indoor localization considers the problem of finding the position of a person, robot or, more 
general, of a target object inside buildings. While Global Navigation Systems (GNSS) like GPS 
solved the localization problem in outdoor areas almost completely, this technique cannot be 
used indoor. This is because walls, windows, roofs and other obstacles attenuate the GNSS 
signals too heavily. However, a successful realization of an indoor localization system would 
pave the way for dozens of new applications. Imagine the possibility of guiding firemen th-
rough smoky buildings leading them directly to people in emergency situations. In commer-
cial scenarios one can think of systems that guide customers through big shopping malls or 
museums to name a few.

A distinction must be made between indoor localization systems for pedestrians and indoor 
localization systems for robots. In the latter case the intention of movement is known to the 
system, e.g., if the robot wants to go left or right in the next time step. In pedestrian systems 
this is typically an unknown factor. Additionally, robots can be equipped with dozens of sen-
sors, allowing to receive different forms of information of the environment like laser scans or 
video sequences and processing this information directly on an embedded high-performance 
computer. On the other side, pedestrian indoor localization systems can only rely on sensor 
data collected by devices like smartphones, since it is unlikely that people will agree to wear 
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additional devices. This assumption might be softened in case of emergency teams for whom 
it is common to wear additional equipment, nevertheless, it would be asked too much from 
firemen to wear heavy laser scanners with them. Furthermore, the whole processing must be 
doable on a small device with the additional restriction of low energy consumption.

In this work we will introduce an approach that utilizes only sensor data of a smartphone. The 
process of indoor localization will be formulated as a state estimation problem in a dynamic, 
non-linear system. Since state estimations rarely can be calculated in an analytically closed 
form, we will use particle filtering as an approximation technique. For this, we will use floor 
maps as a priori information.

The paper is organized as follows. Section 2 gives a brief overview over indoor localization 
systems. Section 3 summarizes recursive state estimation and particle filtering. In addition we 
give a theoretical formulation for the integration of observation data into the state transition 
model and for the integration of old state information into the weight update step. Section 
4 matches the recursive state estimation with indoor localization. In section 5 we show some 
experimental results. Finally, section 6 summarizes our work and illustrates future work.

2 RELATED WORK

Today‘s indoor positioning systems mostly make use of absolute positioning with Wi-Fi sig-
nals. In an on-line phase the received signal strengths (RSS) are measured at different locations 
and listed in a radio map. During the localization process the signal strengths at the current 
position of the target object are measured and compared against the radio map entries. For 
this, [Bagosi and Baruch 2011] evaluated different methods of matching the current finger-
print against the signal strength map. Among them, deterministic approaches like the Cen-
troid, K nearest neighbour and weighted K nearest neighbour were compared against a pro-
babilistic Gaussian method, showing the latter one outperforming all the other methods and 
working with an average error rate of 1 meter.

On the other side, dead reckoning systems [Woodman and Harle 2008; Link et al. 2011; Wang 
et al. 2012; Zhang et al. 2013] estimate the current position with respect to a starting or refe-
rence point. Inertial navigation for example relies on the information of gyroscopes, accelero-
meters and magnetometers to infer a position by using Newton‘s laws of motion. However, 
even small errors in measurement will sum up during integration at every time step and final-
ly lead to heavily defective positional estimations [Köping et al. 2012]. It was shown that the 
integration of floor map information together with methods like map-matching can improve 
this approach [Davidson 2010]. Nevertheless, the positional estimation of dead reckoning sys-
tems must be corrected by external signals [Woodman and Harle 2008]. A popular approach 
in this context is to combine Wi-Fi localization and readings from inertial sensors. A major 
drawback of this method lies in the development of a signal strength map - a process that has 
to be repeated periodically to incorporate environmental changes.

In the last few years the use of smartphones continuously rose because they provide most of 
the necessary sensors like accelerometers, gyroscopes, magnetometers, Wi-Fi modules, Blue-
tooth and cameras. Additionally, smartphones constitute a practical way for people to navigate 
through buildings, since they do not have to wear additional, unhandy devices like laptops or 
laser scanners with them. [Link et al. 2011] uses step detection and path matching to infer a 
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position. A step is detected by utilizing specific patterns in accelerometer data. The detected 
step and its heading are matched against an expected route, which is a path, suggested by the 
system. It describes the shortest distance between the user’s current position and its desired 
destination. For this, they propose two different path matching algorithms that utilize dyna-
mic programming techniques and incorporate detected steps, the heading and map informa-
tion. [Zhang et al. 2013] uses a modified Kalman filter to achieve accurate orientation. During 
localization also step detection as well as step length detection is performed. In contrast to 
[Link et al. 2011], where step length is derived from a person‘s height, [Zhang et al. 2013]‘s 
system estimates step length with the help of accelerometer data. In [Wang et al. 2012] the 
dead-reckoning system is stabilized by so called internal landmarks. These are special loca-
tions on a map, where characteristic signals can be measured. For example elevators and stairs 
reveal unique signal curves in accelerometer data. Given that such a characteristic signal is 
measured, it is possible to reset the defective position estimation and use this location as new 
starting point for dead-reckoning position.

3 RECURSIVE STATE ESTIMATION

Recursive state estimation is a technique to infer a hidden state q
t at a given time t with the 

help of observations ot. Typically this technique is often found in the field of robotics, where 
different states like, e.g., the robot‘s position must be estimated given some sensor measure-
ments [Thrun et al. 2006]. Thereby, qt contains all relevant information to describe the present 
system and the set of all observations up to time t can be written as 〈o〉t  = {ot‘ | 0 ≤ t‘≤ t}. Often 
enough the goal is to estimate a most probable state  at time t:

                                                                                                                                                                     (1)

Given Bayes rules, p(qt|〈o〉t) can be written as
                                                                                              

                                                                                                      (2)

It describes the probability density of a state at time t given a series of observations. A conve-
nient way to rewrite (2) is given by [Deinzer 2005]:

(3)

Three essential parts can be identified in (3). The likelihood of an observation while in a given 
state is denoted as p(ot|qt), the state transition probability as p(qt|qt-1) and p(qt-1|〈o〉t-1) contains 
the information of all previous time steps.

In our approach we deviate from the standard form given by (3) and integrate observation 
data into the state transition model: The information of the pedestrian making a foot step or 
changing its direction will be used to estimate a new state:

p(qt|qt-1, ot-1)                                                        (4)
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In addition to that, state information of the previous time step qt-1 is added to p(ot|qt). For 
this, the position of the last time step is used to evaluate the current position. In section 4 this 
approach is described in more detail. Formally, the integration of the last time step‘s informa-
tion leads to:

p(ot|qt,qt-1)        (5)

Subsequently we will show how to integrate (4) and (5) into (3). Our state at time t does not 
only depend on the current observation but also on the previous state, so that we are looking 
for p(qt|〈o〉t, qt-1):

For (6) the definition of the conditional probability is used, while (8) is the result of applying 
the Multiplication Theorem of Probabilities. (8) can than be reduced to (9), whereby the de-
nominator is a constant and denoted as k in (10). Using Markov‘s assumption, p(ot|qt, 〈o〉t-1,

qt-1) is rewritten as p(ot|qt, qt-1). This is true since the probability of a current observation
is independent of previous observations. Applying the Total Law of Probability for  
p(qt|qt-1, 〈o〉t-1) finally results in p(qt|qt-1, ot-1).

Since an analytical solution for densities of the form of (13) exists only in rare cases, a com-
mon approach to approximate such densities is particle filtering [Arulampalam et al. 2002; 
Gordon et al. 1993; Isard and Blake 1998; Doucet and Johansen 2011]. A particle  
represents a potential state at time t, whereby N different particles are used. Every particle is 
defined as tuple

                                                                                                                                                     (14)
 is the represented state of particle is the weight of the particle telling about its im-

portance. Additionally, weights are normalized so that

                                                                                                                                               (15)

The posterior density is then equivalent to

                                                                                                                                                                     
(16)
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where δ(∙) is Dirac‘s delta function and N → ∞ holds true. Practically, in the particle filter at 
every time step new particles are drawn according to

                                                                         (17)

which is called the state transition step. In the evaluation step every particle is then weighted 
with

                                                                                                (18)

Finally, in a resampling step a new particle generation for the next time step t+1 is generated 
by drawing N new particles according to

                                                                           (19)

4 RECURSIVE STATE ESTIMATION IN INDOOR LOCALIZATION

Our approach uses recursive state estimation with particle filtering as realization to infer the 
position of a pedestrian at a given time t with the help of different sensor data collected by a 
smart phone. If particle filtering is used, one must be aware of the state‘s dimension, since it 
has a vast impact on the number of samples to be simulated. For our approach it is enough to 
incorporate the x- and y-coordinate of the searched position as information, so that

                                                                              (20)

The incoming sensor data at time t is treated as observation ot, thereby ot consists of

                                                                                                                      (21)

where stept and turnt are both boolean variables and stept = true, if it was detected that the 
target object made a footstep in the last time step and turnt=true, if the target object made a 
left or right turn in the last time step. If a turn was detected the direction of the change can 
be determined by the peak value in the turn detection process (see chapter 4.1). αt denotes 
the heading information. The heading information is initialized at the beginning of the po-
sition tracking at a known starting position. We assume to know the initial direction of the 
pedestrian‘s body regarding the floor map. This direction usually can be estimated due to the 
context, e.g., if the pedestrian walks upstairs, her body direction is known at the end of the 
stairway and can be used as heading information. Another possibility initializing the heading 
information is to use the orientation data at a given time step, which today is easily available 
on every smartphone.

4.1 Step and Turn Detection
Step detection: We use a step detection process to estimate if our target object made a move in 
the last time interval, whereat the method we use is described in detail in [Link et al. 2011]. Ba-
sically, the linear acceleration towards the ground is measured. In this signal a step is detected 
by picking a data point, which exceeds a certain threshold. In addition this data point must be 
greater than one of its following data points by a certain amount, whereby the following data 
point must lie within a given time interval. After a certain dead time, in which no step can be 
recognized, the step detection process starts from the beginning (see Fig.1).
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Fig. 1. Step detection process: The blue curve represents the linear acceleration

in ground direction. Red dots represent detected steps.

Turn detection: In addition to the step detection process, turn detection is integrated into 
our system. Based on the gyroscope data of the smartphone it is possible to recognize if the 
target object made a left or right turn or is still walking straight. Although the smartphone 
orientation data offers similar information, this data cannot be reliably used for pedestrian 
localization systems. This is because the geomagnetic sensors suffer heavily from small influ-
ences outgoing from the building‘s characteristic or parts of the building, e.g., metal doors or 
metal railing, not to mention computers or monitors. The gyroscope on the other side does 
not suffer from such influences. This is why a left or right turn can easily be detected in the 
data signal of the smartphone‘s yaw angle. For this, we can use a similar approach like in the 
step detection process:

We denote g
t as a data point of the gyroscope at the measurement time t, which tells how 

fast the phone is turning around a given axis and is given in . We are then looking for a 
measurement gt, which is bigger by a threshold Δg than one of the measurements in the time 
interval (t; t + Δt]. If a measurement gt was found, a new turn can only be detected after a time 
tnoTurn. To distinguish between left and right turns, we can use the sign of gt. If gt is positive a 
left turn is detected, otherwise a right turn is detected. We have achieved good results using  
= 1.0     , Δt = 300ms and tnoTurn = 2500ms. Furthermore, we assume detected turns to have an 
angle of 90°. While this might not be realistic in most cases, such a rough estimation is enough 
as input for the recursive state estimation. If a turn was detected, the global heading αt in ot is 
updated accordingly by adding or subtracting 90°.

Fig. 2. The estimation of turns is shown using the gyroscope signal. 

Positive peaks are left turns, while negative peaks are right turns.

4.2 State Transition and Weight Update
State transition: The state transition simulates a possible movement of a pedestrian during 
two time steps. A crucial information that is integrated into this model is the knowledge taken 
from floor maps. Utilizing this information, the movement estimation can be restricted due 
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to walls, doors or other obstacles. In addition to that, we assume pedestrians to move with a 
typical walking speed, which results in an average step length. The step detection process is 
integrated into the state transition model such that we differentiate between two cases when 
drawing a new particle:

                                          (22)

where μstep denotes the average step length of a pedestrian and is assumed to be 70 cm, σstep is 
the standard deviation and assumed to be 50cm, μnoStep to be the mean value when no step was 
detected and σnoStep to be the standard deviation in this case, and assumed to be 0 cm and 10 
cm respectively. dt is the walking distance between two time steps. 

One must be aware that drawing from both distributions also takes floor map information 
into account. This means that particles cannot cross walls and, therefore, all distance measu-
rements from one point to another also must incorporate this restriction [Köping et al. 2012]. 
In the phase of the state prediction we do not rely on any heading information, which leads 
the particles to spread in every possible direction.

Weight update: Information of direction is integrated in the weight update step. At every time 
step t a particle is evaluated as follows: Based upon the position xt-1 and yt-1 of the previous 
state qt-1, a position  for each particle i is computed. This is the position for the 
new state at time t, if it followed a deterministic model. Essentially, this expected position is 
calculated with
                

              (23)
     
    

where l‘ is the step length. Its value depends on whether a footstep was detected or not and, 
therefore, its value is either 0 cm or 70 cm. αt is the global heading information contained in 
ot and Δαt is the change of heading. The value of Δαt is either ±90°, if a left or right turn was 
detected in the last time step, or 0°, if no turn was detected. Finally, we can evaluate each state 
using a bivariate Gaussian

                                                            (25)

where Σ represents the covariance matrix and its values are estimated empirically with  
and correlation of 0.0.

5 EXPERIMENTS

We tested our method with two different walking paths (see Fig. 3), the first one with a total 
distance of 23m and a walking time of about 36 seconds, the second with a total distance 
of 42m and a walking time of about 55 seconds. The sequences contain also periods, where 
the target object stands still to prove that our method is also capable of dealing with no mo-
vement. We walked both sequences 10 times each, to compensate for measurement variance 
of the sensors. All sensor data was collected with a Samsung Galaxy SII smartphone while the 
latter was laying flat on the hand during walking. After recording the data the particle filter 
computation was done on a Core i-5 2520M CPU@2.50GHz and 4.00GB RAM. All particles 

(24)
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were updated every 150ms with a total number of 10,000 particles. Since the calculation for 
one whole run only took few seconds, we expect that an implementation of our system on an 
up-to-date smartphone can calculate a position estimation in real time.  

For estimation of the total error we evaluated the distance between the real position, where 
the walk ended, and the estimated position at the end of the simulation run. On average our 
system produces an error of about 80cm for walk 1 and 92cm for walk 2. The worst position 
estimation had an error of about 1.4m for walk 1 and 1.9m for walk 2, the best estimation 
had an error of 35cm and 30cm for walk 1 and walk 2, respectively. The ground truth data 
was generated by walking from one turning point to the next turning point in a straight line. 

One source of error is the duration of the walk. The errors of wrongly estimated steps and step 
length sum up after some time. This was especially evident during a walk in a circle in the cor-
ridor, where we could not rely on map information too much. Nevertheless it should be menti-
oned that the main reason for the positional error is not necessarily the duration of a walk, but 
the missing information of walls and obstacles while in the long corridor. This is because the 
information of walls and doors often is enough to overcome the detection of too many or too 
little foot steps or a natural variation of step length. In the lower right of Figure 4 this principle 
can be shown. Clearly, either not enough steps are detected or the step length was estimated in-
correctly. Without map information, after the first left turn, the estimated route would be a ho-
rizontal line to the left. Instead the position gets corrected to a position a few meters northwards. 

Figure 4 shows an exemplary positioning estimation. It can be seen that the positional estima-
tion corresponds with the real walking sequence, but the visualization of the estimated path 
crosses a wall. At the beginning some steps are detected. After a detected left turn and some 
newly detected steps particles try to cross the wall, which is not possible because of the map 
information. Nevertheless, because of the distribution of the particles over the map in the 
transition model some particles have the possibility to go far enough and to walk through 
the door. The new estimated position correctly is left of the wall, but simply connecting the 
estimated positions leads to a visualization of the estimated position, which suggests that the 
pedestrian walks through the wall. Such problems may be overcome if an appropriate smoo-
thing algorithm will be applied [Doucet and Johansen 2011]. 

One major drawback of our system is the possibility that a left or right turn is not or wrongly 
detected. This leads to massive errors in the system because the state evaluation assigns a low 
weight to particles, which do not follow the expected route. In consequence these particles 
will most likely disappear after resampling.  
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Fig. 3. Ground truth data for 
walk1 and walk2

Fig. 4. Exemplary walking
path for walk2

Ground Truth Estimated Position for walk 2
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6 CONCLUSION AND FUTURE WORK

In this paper we presented an indoor navigation system based upon the detection of steps 
and turns as well as on floor map information. To improve the weight update step of the 
particle filter we showed that it is possible to weaken the Markov assumption and explicitly 
integrate the information of a previous step. We showed how observation data can be used 
within the state transition model. To improve our system for the future, we plan to extend 
our current turn detection. At this time we are not capable to give a good estimation of the 
angle the pedestrian turned, e.g., by now we cannot detect if someone made a 180° turn. Given 
such information would significantly improve the current system. In addition to that we will 
also integrate a step length detection and enrich our system with new sensors like Wi-Fi and 
cameras. The additional sensors will stabilize the system in situations where a step and turn 
detection is only hard to achive like in escalators and elevators.
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