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1. INTRODUCTION

Fractional calculus, nowadays an established mathemati-
cal discipline, plays a pivotal role in understanding com-
plex physical and mathematical phenomena. The applica-
tion of fractional calculus extends to various fields such as
physics, engineering, finance, and signal processing, among
others. For a comprehensive introduction and exploration
of its applications, we refer to Podlubny (1999), Kilbas
et al. (2006) and Diethelm (2010). Fractional integrals, a
fundamental concept within this domain, have been exten-
sively studied and applied for solving real-world problems.

In certain scenarios, discovering analytical solutions for
problems involving fractional order operators can be chal-
lenging or even practically impossible. Hence a large
number of different approaches have been proposed for
numerical approximation of fractional order differential
and integral operators. Due to the intrinsic non-local na-
ture of fractional order differential and integral operators,
achieving their numerical evaluation in the conventional
representation presents a significantly heightened com-
putational challenge compared to assessing their integer
order counterparts. This challenge pertains to both run-
time efficiency and memory demands, particularly when
evaluating at multiple points. For instance, conventional
algorithms such as fractional linear multi-step methods
in Lubich (1985) and Adams method in Diethelm et al.
(2002, 2004) may pose computational challenges due to
their reliance on numerical approximations incurring a
computational cost of O(P?) and a storage cost of O(P),
where P represents the number of evaluation points.

In this case, employing diffusive representations of frac-
tional operators presents a dynamic and sustainable so-
lution to address the issue at hand. Utilizing diffusive
representations of fractional differential and integral oper-
ators offers a practical avenue for crafting highly efficient
numerical algorithms aimed at their approximate assess-
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ment with less memory footprint O(1) and arithmetic com-
plexity O(P), which aligns with the techniques commonly
employed in solving problems with integer order operators.
For more comprehensive information on diffusive represen-
tation, please refer to Montseny (1998), Diethelm (2022)
and Diethelm (2023Db).

In this research, we delve into the realm of fractional
integrals, focusing on their diffusive representations. These
representations serve as a bridge between theoretical un-
derstanding and practical applications. Building upon the
foundational work by Diethelm (2023a), we present novel
variants of these diffusive representations, pushing the
boundaries of efficiency and accuracy in numerical com-
putation of fractional integrals.

Our objective is to enhance the existing diffusive represen-
tations, offering improved algorithms for approximating
fractional integrals numerically. By doing so, we aim to
provide researchers and practitioners with powerful tools
to handle the intricate calculations associated with frac-
tional integrals. These enhanced numerical methods open
doors to solving complex problems with a higher degree of
precision and efficiency, thus advancing the applicability
and impact of fractional calculus in diverse domains. In
the subsequent sections, we elucidate the existing diffusive
representations, introduce our novel variant, and showcase
how these variants pave the way for highly efficient numer-
ical algorithms. Additionally, we outline potential future
directions in this exciting area of research.

2. MATHEMATICAL BACKGROUND

Our aim is to explore novel variants of diffusive represen-
tation for Riemann-Liouville fractional integrals of order
a € (0,1) for functions f € Cla,b] (where a,b € R such
that a < b) with a starting point at a represented as

19f(t) = ﬁ / (t— 7)* f(r)dr. (1)



As discussed in Diethelm (2023a), the diffusive represen-
tation of (1) can be formulated as an integral involving
an auxiliary bivariate function such that the integration is
performed with respect to a single variable, within a fixed
range. This characteristic allows for numerical computa-
tion using a fixed quadrature formula whose arithmetic
complexity does not increase over time. Additionally, the
auxiliary function can be determined as the unique solu-
tion to an initial value problem for a first-order differential
equation, obviating the need to consider memory effects.

Definition 1. Let £ be a non-empty open interval. A
strictly monotonically increasing function ¢ :  — (0, c0)
is called an admissible transformation if it possesses the
following two properties:

(a) v € CL (),

(b) lim, info ¥ (r) = 0 and lim,_gup o ¥(r) = +o0.
Theorem 1. For a given admissible transformation v :
Q — (0,00), the Riemann-Liouville integral of order o €
(0,1) for the function f € Cfa,b], where a,b € R, can be
articulated in the following diffusive representation

o f(t) = /Q o(t, ) dr, @)

where

o(t,7) = cat (r) ((r)) / =N () dr,  (3)

1

with constant ¢, = 77 sinma.

Moreover, for a fixed value of r € €, the function ¢(-,r) is
characterized as the unique solution to the following initial
value problem for first-order differential equation on the
interval [a, b]

%éi’ D p )t + et (@) D),

¢(a,r) = 0.

Proof. The proof of the theorem can be straightforwardly
deduced from the proof presented in Diethelm (2023a,
Theorems 1 and 2), specifically for the case n =1. O

(4)

In literature, numerous approaches have been devised to
articulate the fractional integral of a provided function.
For instance, in the work by Li (2010), the author com-
puted the fractional integral by employing an integral
representation of the convolution kernel. She proceeded
to devise an effective quadrature for this integral repre-
sentation and incorporated it into a fast time-stepping
technique. In Beylkin and Monzén (2010), the authors
applied the Poisson’s summation formula to discretize
the integral representations of power functions to obtain
their approximations by exponential functions. Later on,
in McLean (2018), the author extended the idea of Beylkin
and Monzén (2010) by introducing an alternative integral
representation of the power function. In the study Baffet
(2019), the Gauss-Jacobi quadrature rule was utilized to
approximate the kernel of the fractional integral through
a linear combination of exponentials.

The main objective of this paper is to devise a diffu-
sive representation that facilitates more efficient numerical
handling of the integral (2) than traditional approaches.
For this, we have examined an important special case of ad-
missible transformation v(-) such that the corresponding

bivariate function ¢(t,-) demonstrates an exponential de-
cay at the endpoints of the domain 2. This behavior holds
significant value from an approximation theoretic perspec-
tive which allows us to use truncated trapezoidal scheme
or the Gauss-Laguerre numerical quadrature scheme for
integrating the function ¢. Moreover, it is imperative to
have knowledge of the integrand ¢(t,-), which we have
achieved by numerically solving the associated first-order
differential equation (4) through Euler’s Backward method
or the trapezoidal method.

3. NOVEL VARIANTS OF DIFFUSIVE
REPRESENTATION OF FRACTIONAL INTEGRALS

In this section, we discuss a diffusive representation to the
integral (2) using the well-known exponential function as
an admissible transformation. We prove that in this new
representation the integrand ¢(t, ) showcases exponential
decay as r tends towards +oo. This characteristic, coupled
with a smoothness result, allows a highly efficient numer-
ical integration.

Theorem 2. Consider a function f € C|a,b], where a,b €
R such that ¢ < b, and a € (0,1). Let us define the
function ¢(t,r) as

t
o(t,7) =cae(1’“)r/ o~ T f(7) dr. (5)

for all » € R and ¢ € [a,b]. The following properties can
then be observed:

(i) The function ¢(-,7) is characterized as the unique
solution to the following initial value problem for first-
order differential equation on the interval [a, b]

W1 —eot,1) + cac®="110),

¢(a,r) = 0.
(ii) For any t € [a,b],
er = [ ot (7
(iii) For any t € [a, b], the integrand ¢(¢,-) € C°(R).

(iv) For any t belonging to the interval [a, b], there exists
a real constant C' such that:

|(t,r)| < Ce™"

(6)

as r — 0o, (8)

and
lp(t, )| < Cel=" s r — —co0. (9)

Proof. By selecting ¢(r) = e" with = (—o0, 00) in (2)
and (3), the proof of the Theorem can be directly deduced
from the results presented in Diethelm (2023a). O

As emphasized in Diethelm (2023a), the accuracy of the
numerical approximation for the integral (7) is signifi-
cantly influenced by two key aspects of the integrand.
The first crucial aspect is the smoothness of the integrand,
while the second pertains to the asymptotic behavior of the
integrand as the integration variable approaches the inte-
gration limit. In the context of a diffusive representation,
these two critical aspects of the integrand are profoundly
influenced by the choice of the admissible transformation,
which in this case is given by the exponential function.



While the general representation (2) and its special case
(5) have proven to be very useful in analytical consider-
ations (Montseny, 1998), it has been observed (McLean,
2018) that there are certain advantages from the numerical
approximation perspective in handling the operators in a
slightly different way. Specifically, for ¢ > a + h with some
h > 0 it is useful to split up the hereditary integral from
(1) into a local part Ly ;, f(t) and a history part H'), f(t)
according to

13f(t) = Lo n (1) + Hep £ (1)

where
I 1
Lgft:—/ t—7)*"f(r)dr 10
W0 =g [ =T o)
and
B )= gy | =7 pwar )
The local part Lg , f can usually be handled directly, but

the history part Hg') f (t) benefits from a representation
that is analog to the diffusive form for the full Riemann-
Liouville integral discussed above. Specifically, the follow-
ing relationships hold.
Theorem 3. Let f € Cla,b] with some real numbers a < b,
and let a € (0, 1). Moreover, assume that 1 : Q@ — (0, 00)
is an admissible transformation and that 0 < h < b — a.
Then, for every ¢t € [a + h,b], the history part of the
Riemann-Liouville integral of order « of the function f can
be expressed in the form of the diffusive representation
1,00 = [ it dr (120)
Q

with
pu(t, hyr) = et (1) (1b(r)) =

t—h
< [ expl=(t = i) )

The function p from (12b) has the following properties:

(12b)

(a) For any r € Q, the function u(-,h,r) is the unique
solution on the interval [a + h,b] to the first order
differential equation

- _¢(T)M(tv hv T)
+cat (r)(0(r)) e M f(t — h)

subject to the initial condition
wla+ h,h,r)=0. (13b)
(b) If the transformation function v satisfies ¢ € C*(£2)
with some k € N then, for any ¢ € [a + h, b], we have
p(t, h,-) € C*1(Q).
(c) If the transformation function v satisfies v € C*°(Q)
then, for any ¢ € [a+h, b], we have u(t, h,-) € C>(Q).
(d) If f € Ca, b; with some ¢ € Ny then, for any r € Q,
M('a h,?") eC +1[a + ha b]
(e) For any fixed t € [a+ h, b], there exist some constants
C1,C5 > 0 such that

|t by )| < Crg! (r)(w(r)) e
for r — sup Q

—

vH-

B
=<

~—
|

(13a)

(14)

and

lu(t, hyr)| < Cotp' (1) (¢(r))~*  for r — inf Q. (15)

Remark 4. With respect to Theorem 3 (e), we note that
the asymptotic estimate (15) for » — inf  shows the same
rate of decay for this history term as the corresponding
result for the full Riemann-Liouville integral (Diethelm,
2023a, part 2 of Theorem 5). Our estimate (14) for
r — sup 2, however, shows a much faster decay than the
corresponding result for the full integral from Diethelm
(2023a, part 1 of Theorem 5). To the best of our knowledge,
this fact has not been fully exploited in the construction
of numerical methods yet.

Proof. The proof of the representation (12) for the his-
tory part of the Riemann-Liouville integral is completely
analog to the proof of the corresponding relation for the
complete Riemann-Liouville integral provided in Diethelm
(2023a, Section V.A).

To show the properties of the function p, we proceed as
follows: The differential equation in (a) can be verified by
a direct differentiation of the function p with respect to
the first argument; the initial condition is an immediate
consequence of the representation (12b).

Ttems (b) and (c) also follow from (12b).

For part (d), we use the notation M (t) = u(t, h,r) for some
arbitrary but fixed r € 2 and h > 0. Then, the differential
equation (13a) can be rewritten as M'(t) = G(t, M(t))
where G(t, 2) = —(r)2 -+ et (r) () ~*e ) f(1— 1),
Clearly, under the assumption of (d), G € C*([a + h,b] x
R). and therefore a standard argument from the theory
of differential equations (Coddington and Levinson, 1955,
Chapter 1, Theorem 1.2) yields the claim.

Finally, for (e) we see that (12b) implies
|ult, by ) < o sup [f(7)]- 4 (r)(9(r)) T (r)

T€[a,b

t—h 1 (t—a)p(r)
J(r) = / e~ (=¥ qr = / e " dp.
a h

V() Jhpor)

Thus, when r — inf Q and hence ¥ (r) — 0, then (since
the integrand is always less than 1)

( P e ,
J(r) < / =t—a—h,
) (1) Jhwer P

and so (15) follows. For r — sup {2 on the other hand, we
find that

1 o0 1
J _ P dp= — ()
"< 5o /We =

which proves (14). O

The result of Theorem 3 can be extended to the case of
general a > 0, a ¢ N. We shall discuss this extension in a
separate paper in the future.

3.1 Kernel Function Approzimation by Exponential Sums

Now we derive the exponential sum approximation to the
kernel function of the integral represented by (7). Here we
utilize the well established trapezoidal rule to discretize
the integral. This rule provides an explicit discretization
of the integral over the unbounded domain, expressed as
a sum of exponentials. Our integrand in (5) exhibits the



crucial property of exponential decay, as outlined in The-
orem 2(iv). This property permits the effective utilization
of the trapezoidal rule. For a deeper understanding of the
exponential sum approximation, one may refer to the work
of Beylkin and Monzén (2010) and McLean (2018).

Utilizing the proof presented in Diethelm (2023a, Theorem
1), we can express the value of IS f(t) as

t 00 (1-a)
IS (%) :ca/ /0 (tuT) e "yt f(r) dudr.

By making the substitution u = (¢t — 7)e", we arrive at

IZf(t) = ca /t /_DO ell=a)r exp[—(t — 7)e"]f(7)drdr

which can be further written as

t
170 = o [ Kt =11
where the kernel K (t) is given by
K(t) = / el=)re=" qr for t€[0,b—al. (16)

Now applying the trapezoidal rule to discretize the infinite
integral with step size h > 0, we obtain

K(t)%h Z e(lfoz)nhefte"‘h

n—=—oo

> ~
= Z u?ne_ﬁ"t
n=—oo

where

W, = hel="hand B, = ek, (17)
If now t is restricted to a compact interval [4,b — a] with
0 <d <b—a< oo, we can proceed in this approach to
obtain a finite exponential sum approximation

N
K(t) ~ Z e Pt
n=—M
for the kernel with suitably chosen M, N € N.

for t e [0,b— a] (18)

Beylkin and Monzén (2010) discussed an innovative re-
duction algorithm based on Prony’s method, specifically
designed for cases with excessively many terms and small
exponents in the exponential sum approximation to a ker-
nel function. This suggests that employing Prony’s method
allows for a substantial reduction in the number of terms in
the exponential sum in (18) without compromising accu-
racy. Consequently, numerical algorithms designed using
this exponential sum approximation for approximating
the fractional integral demonstrate markedly enhanced
efficiency when compared to existing numerical methods.

3.2 Truncation Error Estimation of the Kernel Function

When conducting practical computations, particularly in
numerical analysis and real-world applications, finite com-
putational resources necessitate the use of truncated sums.
In such cases, we need to approximate the truncation error
for the exponential sum defined in (18). In this section,
we assess the estimation of the two components of the
truncation error:

Theorem 5. If t € [0,b— a], the exponents and weights are
given by (17) and

teNh >1—a> te*Mh,

then -
Z e Prt < t(ia)F(l —a,teM)
n=N+1
and
—-M-1 ) 1
> e Pt < preery (F(l —a)-T(1- a,tth)>

where I'(-,-) denotes the upper incomplete Gamma func-
tion.

Proof. The proof directly follows from McLean (2018,
Theorem 2) with appropriate modifications to the condi-
tions and parameters. O

4. EFFICIENT NUMERICAL ALGORITHMS FOR
APPROXIMATE EVALUATION OF FRACTIONAL
INTEGRAL

In this section, we establish two distinct efficient numerical
algorithms for the approximate evaluation of the fractional
integral represented in (7). The first approach involves
utilizing the exponential sum approximation to the kernel
function, as defined in (18). The second approach employs
the Gauss-Laguerre quadrature formula.

4.1 Numerical Algorithm for Approximating Fractional
Integral using Exponential Sum Approximation of the
Kernel Function

For the numerical computation of IS f(t) at the points of
the grid a = tg < t1 < -+ < tp = b, let f(t,) = F"
and define a piecewise constant interpolant F (t) = F™ for
t € Jy = (tn_1,ts), then
tn n
I f(tn) =co | K(tn—7)f(r)dr =Y 20 F (19)
a j=1
where

Znj = ca/ K(t, —7)dr. (20)
Jj

The computational complexity for calculating this sum
within the range of 1 < n < P scales proportionally to P2.
Such quadratic growth can pose challenges, particularly in
scenarios where each F/ represents a large vector rather
than a scalar. In particular, storing F7 in active memory
for all time levels j may not be feasible.

Here we define an efficient algorithm to avoid these chal-
lenges based on the exponential sum approximation to the
kernel K such as

A
K(t) ~ Zwleﬁlt for 0 <t<b—a, (21)
=1

provided that the moderate number of terms A can achieve
adequate accuracy for a choice of § > 0 that is smaller
than the time step At,, = t, — t,_1 for all n. Certainly,
if At, > dthend <t,—7<b—afor0<7<t,_1;
therefore



Hence we express the approximated value of the integral
A

ISF(tn) = 2o F™ + ) @7, (23)
=1
and utilizing the recursive relation
®} =0, (24)
O = Kppy o FP71 4 P800 (n=2,3,...,P),
(25)

we obtain an evaluation scheme that, at time t¢,,, only needs
to exploit information about the immediately preceding
time t,,_1 but not about any earlier point in history.

Thus we can efficiently compute I®F(t,) for n =
1,2,..., P with a satisfactory level of accuracy using a
number of operations proportional to A - P. This ap-
proach yields substantial computational savings compared
to the common O(P?) operation count for traditional ap-
proaches, particularly when A < P. Moreover, we have the
flexibility to overwrite ®]'~' with ®?, and F"~! with F",
effectively reducing the active storage requirement from
being proportional to P to being proportional to A.

4.2 Numerical Algorithm for Approximating Fractional
Integral using Gauss-Laguerre Quadrature Formula

Next, we approximate the integral (7) using the A-
point Gauss-Laguerre quadrature formula. This quadra-
ture method is an open-type Gaussian quadrature rule de-
signed for evaluating integrals, specifically with the weight
function e, over the interval [0, c0). We write

o= [ ot dr

0 %]
:/ o(t,r)dr —|—/ o(t,r)dr
—00 0
=J1+ Jo.
Substituting r = ﬁ inJ; and r = i in Jo, we obtain
1 oo
A = [ ool s/ - a)ds
1-—a
1 oo
+ - / e %e’P(t, s/a) ds.
a Jo

Thus, employing

dt,5) = (ot ~s/(1 - a)) + Lote.5/a) ).

we obtain that

19 (1) = / T et s)ds ~ QR ),

where the expression

A
QR 9] = D wit (i)
1=1
represents the A-point Gauss-Laguerre quadrature formula
with weights leL“ and nodes achL“.

To determine the Gauss-Laguerre nodes z{"1® and the
corresponding weights leL“, we need to find the zeros
of the Laguerre polynomial L, of order A and calculate

the weights using a specific formula:

e Solve Ly(zF1%) =0, for I =1,2,...,A to obtain the
Gauss-Laguerre nodes leL“.

e Use the provided formula to calculate the weights:

GLa
GLa !

O T T @)

For a more comprehensive understanding of Gauss-
Laguerre quadrature formulas, refer to Davis and Rabi-
nowitz (2007).

Theorem 6. Under the assumptions of Theorem 2,

lim QE™G(t, )] = 12 (1)
for all ¢ € [a, b].

Proof. By Theorem 2(iii), the function ¢(t,-) possesses
multiple differentiability. Combined with the decay prop-
erties demonstrated in Theorem 2(iv), this enables us
to apply a standard convergence result pertaining to
the Gauss-Laguerre quadrature formula (Davis and Rabi-
nowitz, 2007). Consequently, we derive the desired result.

4.3 Implementation and Computational Details

We are now ready to outline the method we propose for
numerically computing I¢ f(t,,), where n =1,2,--- , P. In

this algorithm, the symbol ¢; is utilized to represent the

approximate value of é(leL“, t,,) for the current time step,

corresponding to the presently evaluated value of n.

For given the initial point a € R, the order o € (0,1),
the grid points t,, n = 1,2,..., P and the number of
quadrature nodes A € N,

(1) Forl=1,2,...,A:
a. Compute the Gauss-Laguerre nodes leL“ and the

associated weights leLa.
_.GLa
b. Define the auxiliary terms r; < —

:ELGLQ

and 7 <

c. Initialize ¢; - 0 and ¢; < 0 to denote the initial
condition for the differential equation (4).
(2) Forn=1,2,...,P:
a. set h < t, —t,—1.
b. Fori=1,2,... A:



(i) Update the value of ¢; by solving the corre-
sponding differential equation (4) using the back-
ward Euler method

1 —Q)T,
01 T 0+ heae Tt (26)
(ii) Similarly, update the value of by, by
G W[le + heael' T f(t,)]. (27)

c. Calculate the desired approximate value for I f(¢,,)
using the formula

A
1
T2 ) = 3P expaf) |
=1

o1 + 1&1]-
«

Here we select the backward Euler method, considering
the constant factor that multiplies the unknown function
¢(-,r) in (4), making it necessary to use an A-stable
method. This choice is the simplest among such methods.
Alternatively, one could opt for the trapezoidal method,
another A-stable approach, necessitating adjustments to
the formulas outlined in (26) and (27) as follows:

1 h
“— — _ _alt
o 1+ Ber Kl 2° )Cbl

+ gcae(lfa)n [f(tn) + f(tnl)]:|7 (28)

1 ho,
- 1_77'1
1+ ger K 2° >¢l

+ gcae(l—a)ﬁ [f(tn) + f(tnl)]:| , (29)

respectively. Note that the effective evaluation of the for-
mulas (26)—(29) in the given form may lead to overflows in
some intermediate results. As shown in Diethelm (2023b),
this can be avoided by simple reformulations.

and

éﬂ—

5. CONCLUSION AND FUTURE DIRECTIONS

In this paper, our primary aim has been to craft highly
efficient numerical techniques aimed at the approximate
assessment of Riemann-Liouville fractional integrals with
less computational complexity and memory footprint. For
this, we have embarked on an exploration of innovative
variations in diffusive representations tailored for frac-
tional integrals. We have approximated the kernel function
to the fractional integral by representing it as an expo-
nential sum. This representation can be further optimized
by leveraging Prony’s method to curtail the number of
terms involved. Subsequently, we have harnessed this re-
fined approximation to compute an estimate for the frac-
tional integral. This approach yields a notable reduction
in both computational intricacy and memory usage, of-
fering an enticing prospect for practical implementations.
In addition to the exponential sum approximation, we
have enriched our computational toolkit by developing
the Gauss-Laguerre formula as an alternative method for
approximating fractional integrals.

This research opens several promising avenues for fu-
ture investigations and applications such as extending the
exploration of diffusive representations to other integral

transforms and fractional operators to obtain valuable
insights. Investigating more general forms of admissible
transformations and their impact on the efficiency of nu-
merical algorithms is an interesting direction. Further-
more, a comprehensive analysis of the error bounds and
convergence properties of the numerical algorithms pre-
sented in this paper is essential.
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