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A B S T R A C T

Material development processes are highly iterative and driven by the experience and intuition of the
researcher. This can lead to time consuming procedures. Data-driven approaches such as Machine Learning
can support decision processes with trained and validated models to predict certain output parameter. In
a multifaceted process chain of material synthesis of electrochemical materials and their characterization,
Machine Learning has a huge potential to shorten development processes. Based on this, the contribution
presents a novel approach to utilize data derived from Small-Angle X-ray Scattering (SAXS) of SiO2 matrix
materials for battery anodes with Neural Networks. Here, we use SAXS as an intermediate, high-throughput
method to characterize sol–gel based porous materials. A multi-step-method is presented where a Feed Forward
Net is connected to a pretrained autoencoder to reliably map parameters of the material synthesis to the SAXS
curve of the resulting material. In addition, a direct comparison shows that the prediction error of Neural
Networks can be greatly reduced by training each output variable with a separate independent Neural Network.
1. Introduction

Machine Learning (ML) as a subarea of Artificial Intelligence (AI)
is currently distributing in various application fields e.g. material sci-
ence [1], robotic vision and perception, production control [2] or
predictive maintenance. The reasons are, among others, increasing
computational power and the availability of tools, which enable also
non-experts to use ML-techniques for their application. At the same
time, the world is accelerating its electromobility efforts, necessitating
continuous improvement efforts in battery technology to achieve range,
weight and cost targets.

Integrating Machine Learning techniques into various fields of bat-
tery technology describes a future-oriented data-driven approach,
which can contribute to faster as well as more targeted development
of battery cells as complex electrochemical material systems.

A comment in Nature Materials in October 2020 from Aykol et al.
stated that data-driven Machine Learning approaches can contribute to
a full exploration of the potential in the application and optimization of
battery technologies. At the same time the authors mention that there is
a need for experimental data to enable the power of data-driven tools.
Here, accessible data with a transparency of experimental setup and
conditions as well as a high sample size are the crucial factors [3].

In material development processes (MDP), the experience and intu-
ition of the researcher influence the decision e.g. for the next iteration
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of synthesis parameter. This can lead to time consuming procedures.
Data-driven approaches as Machine Learning can support these com-
plex processes in the way to train models to predict outputs from
certain steps in the MDP. In this field the utilization of small data-sets
for model training compared to a huge solution space is challenging as
well as the multifaceted process chain from material synthesis to the
electrochemical characterization of the cell performance.

Based on this motivation the contribution wants to review the
actual state of data-driven methods in battery technology briefly after
a short introduction into material class synthesis and Small-Angle X-
ray Scattering (SAXS) characterization [4]. Then, we present a novel
approach to utilize data derived from SAXS of SiO2 matrix materials
for battery anodes with Neural Networks. Here, we use SAXS as an
intermediate, high-throughput method to characterize sol–gel based
porous materials within the synthesis process. The measured SAXS
curves contain information of the particular structure of the material
between 0.1 nm and 100 nm e.g. the porosity and pore size of the
disordered sol–gel based matrix. The novelty of the presented approach
is the utilization of SAXS to provide a fast fingerprint of structural
properties of a huge amount of potential SiO2 matrix materials and use
the derived data to train Neural Networks.

The aim of the presented Machine Learning approach with Neural
Networks is to predict SAXS curves of resulting materials from specific
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927-0256/© 2022 The Author(s). Published by Elsevier B.V. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.commatsci.2022.111984
Received 12 May 2022; Received in revised form 19 September 2022; Accepted 12
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

December 2022

https://www.elsevier.com/locate/commatsci
http://www.elsevier.com/locate/commatsci
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
https://gitlab.vlab.fm.fhws.de/philipp.seitz/machinelearningandsaxs
mailto:jan.schmitt@fhws.de
https://doi.org/10.1016/j.commatsci.2022.111984
https://doi.org/10.1016/j.commatsci.2022.111984
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2022.111984&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computational Materials Science 218 (2023) 111984P. Seitz et al.
synthesis parameters to reach pre-defined morphological properties for
the first step in anode processing i.e. the provision of an optimized
SiO2 matrix for 𝑆𝑖 deposition in a later processing state. Doing this,
a multi-step method is presented where at first the minimum number
of hidden neurons of an autoencoder is found to reliably map the
SAXS curve. Then a feed forward net is trained to predict the hidden
neuron values by synthesis parameters as input variables. These values
represent material property data as well as process data from the
synthesis. This combination of separate Neural Networks is efficient in
terms of computational power on the one side and makes it possible
to forecast the SAXS curve by data from previous steps in the MDP on
the other hand. With this, the traditional trial and error, experience-
based principle can be replaced with a structured approach and support
the development of innovative anode materials as the first of several
complex sub-steps to the final battery. Furthermore the Neural Nets
open up possibilities to detailed investigations in its trained output
parameter space, e.g. can this be used to find specific input parameters
which predict optimized outputs to find materials with ideal structural
properties. In addition, a direct comparison of predicting higher dimen-
sional output variables with a trained single Neural Net and a trained
Net System which predicts each output variable by separately trained
single Neural Nets will be made.

Due to this, the contribution is structured as follows: After intro-
ducing the sol–gel material class, its synthesis process as well as the
SAXS characterization method (see 2, we give a brief literature review
in Section 3 of Machine Learning approaches in battery technology and
material development. Section 4 introduces the multi-step approach
for the application of Neural Networks to predict SAXS curves from
substance and process data is presented in detail. Section 5 shows
results of this approach, which are critically discussed in Section 6. The
paper closes with a conclusion and further research issues.

2. Material class, synthesis and SAXS characterization

2.1. Material class and synthesis

Sol–gel derived nanoporous silica materials (silica aerogels) are
investigated since the work of Kistler in the 1930s [5]. High porosities
of 50% up to > 95% with dominant mesoporosity (pore size 2–50 nm)
are outstanding structural properties of this material class making them
candidates for applications e.g. in thermal insulation, filtration, as
adsorbers or electrodes [6].

The porous silicas for the current investigation of matrix materials
with SAXS and ML were targeting an unusual combination in pore
size and porosity, i.e. aiming for small mesopores and high porosi-
ties simultaneously. The silicas were synthesized by a 2-step process
following the approach described in [7] and [8] - see also Fig. 1.
The raw materials used are Tetraethoxysilane (TEOS) as silica source,
ethanol as solvent, high-purity water for hydrolysis, hydrochloric acid
and ammonia solution to adjust the pH. To provide a set of porous silica
samples for the ML-approach and a relevant variation in structural
properties, a Design of Experiments (DoE) with 7 factors (synthesis
parameters) was set up. To cover a large range of parameter variations
and reduce the overall amount of samples, an onion model with 50
variations was chosen instead of a full factorial design.

The combination with SAXS analytics and Machine Learning should
give more insights to explore the structures of novel battery anode
matrix materials, allowing a huge synthesis and process feature space
to be screened effectively e.g. to propose recipe data in terms of an
optimal pore size and pore volume.
2

Fig. 1. Scheme of the sol–gel process. After removal of the pore liquid (drying) a 3-
dimensional solid network with pores and particles in the nanometer range is obtained
as shown in the TEM-image.

Fig. 2. Scattering curve of a typical sol–gel derived silica gel. The scattering pattern
represents a fingerprint of the structural properties containing information about
specific surface area, pore size, pore volume (density) and structural arrangement of
atoms, pores and particles.

2.2. SAXS characterization

SAXS is a non-destructive and fast characterization method for
structural analysis in the range of ca. 0.1 nm to 100 nm. The charac-
terization was performed with a SAXSpoint 1.0 instrument from Anton
Paar using 𝐶𝑢 𝐾𝛼 radiation (wavelength 1.54�̊�) at two sample detector
distances of 109 and 562 mm. Analysis was performed on the dry
gels after degassing to avoid artefacts from adsorbed species according
to the recommendations given by Scherdel et al. [9]. The scattering
intensity was normalized to the mass-specific scattering cross-section
m−1𝑑𝜎∕𝑑𝛺 in units of cm2g−1sr−1, using a glassy carbon reference with
a well-known scattering cross-section as standard. Thus, the scattering
curves (example in Fig. 2) can be compared without restrictions with
each other and contain information about specific surface area, pore
size, pore volume (density) and structural arrangement of atoms, pores
and particles as well. In other words, the scattering curves provide a
structural fingerprint of the porous silica materials under investigation.

Compared to gas adsorption analysis (e.g. for BET surface area and
pore size), SAXS allows significantly shorter measurement times (min-
utes) [10], the analysis of closed porosity as well (inaccessible for the
analysis gas) and does not change the sample properties (e.g. deforma-
tion, absorption) during characterization. Therefore, the combination
of SAXS analytics and Machine Learning is a promising tool for a fast
and reliable material development. This should give more insights to
explore the structures of novel battery anode matrix materials, allowing
a huge synthesis and process feature space to be screened effectively
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e.g. to propose recipe data in terms of optimal structural proper-
ties (specific surface area, pore size, pore volume and combinations
thereof).

3. Brief literature review

The rising number of process parameters in complex process chains
and the requirement to develop new materials faster needs alternative
approaches to speed up development processes and increase e.g. battery
performance [11]. In this context many different ML algorithms have
been applied in various fields of material science to

• find new materials or promising material combinations,
• classify materials or properties by recognizing patterns or
• predict structural or performance properties from data subsets.

The overall objective is the piecewise replacement of ‘‘experience-’’
nd ‘‘intuition-based’’ decision-making with data-driven methods [12].
his has huge potential to shorten MDP. Oftentimes, analytical relation-
hips cannot be applied due to the large number and interrelations of
nfluencing factors, e.g. during the materials’ synthesis and processing
nd its resulting physical properties. Hence, the challenge is to fit
r interpret the results of (intermediate) characterization methods in
erms of their structure-process-performance relationship. Here, ML
an make a significant contribution [13]. Further, the development of
anoporous materials, as sol–gel materials, by digitization techniques,
s strengthened by the statement of Schmidt et al. as Machine Learning
s ‘‘one of the most exciting tools that have entered the material science
oolbox’’ [14].

We propose the application of ML in battery technology by the
tilization of SAXS characterization as a fast intermediate method to
valuate structural parameters during the synthesis process. Hence, the
iterature review briefly addresses both aspects, ML and SAXS in battery
echnology in the following two paragraphs.

.1. Machine learning in battery technology

Research activities in the broad field of battery technology rise,
specially through the emerging effort of the global electromobility.
imilarly, AI technologies are called as enablers of innovation [15].
he utilization of ML, as a sub-domain of AI, for battery research

s addressed in research but not yet widespread [3]. In Table 1 the
elated research is summarized according to the life-cycle phases and
he general research issue and model quality indicator.

Kauwe et al. [16] present how Machine Learning tools can be
xploited to predict the properties of battery materials. A data-set of
athode materials and various statistical models are used to predict
he specific discharge capacity at 25 cycles. Nakayma et al. [17]
ntroduce two efficient high-throughput computational approaches to
xplore materials for the ionic conductor of all-solid state batteries.
hey combine regression based ML and Bayesian optimization to eval-
ate numerous calculated crystalline structures. Also Sendek et al. do
esearch in the field of data-driven discovery of solid Li-ion conducting
aterials [19]. A general overview on the application of ML in material
iscovery and design is given in [20] with an application example
f battery monitoring. In [18] ML (ANN, RF) is used to predict the
roperties of the crystalline system which have a strong correlation to
he physical properties. Takagishi et al. [21] make use of ANN and,
sing three-dimensional virtual structures to design battery electrodes.

The research of ML supported battery production is less represented.
iang et al. [22] address the understanding of the influence of the elec-
rochemical performance of battery particles’ evolving (de)attachment
ith the conductive matrix. Here, the authors use ML for a deeper

tatistical analysis. The research group of Herrmann et al. [23] use ML
o find interdependencies within the cell production steps. They find
he relevant production features with DT and RF algorithms in relation
3

o the resulting cell performance.
In the battery usage phase, Lucu et al. [24] develop a data-driven
ageing model for Li-ion batteries with the Gaussian Process framework.
Here, the ability of the Gaussian Process model is to learn from new
data observations and thus to provide more accurate and confident
predictions. Also Richardson et al. [25] use Gaussian Progression Re-
gression (GPR) as a data-driven diagnostic technique. They estimate
in-situ capacity by voltage measurements over short periods of gal-
vanostatic operation. In [26] data from impedance spectroscopy as an
intermediate method are used to build a GPR model to forecast the
states of health, states of charge and battery temperatures. The GPR
model takes the entire impedance spectrum as input, without further
feature engineering, and automatically determines which spectral fea-
tures predict degradation e.g. the capacity and remaining useful life.
In [27] a Deep Feedforward Neural Networks (DNN) is used for battery
state of charge (SOC) estimation, while the training data is generated in
the lab by applying drive cycle loads at various ambient temperatures
to a Li-ion battery so that the battery is exposed to variable dynamics.
An adapted ANN algorithm is used by Hannan et al. [28] to predict
SOC. The results show that the proposed method is accurate and robust,
as it can accurately examine SOC under different operating conditions.
The state of health (SOH) estimation with Support Vector Machines
(SVM) as a nonlinear frequency response analysis is shown in [29]. The
model has a strong correlation to Lithium-ion battery degradation at
mid-frequency range from 1 Hz to 100 Hz.

An example of the application of ML in the recycling phase is given
by Senthilselvi et al. [30]. CNN are used to classify images for metal
recycling. The model has been trained by pure metal images, while it
is tested by captures images.

The brief literature review shows the broad application of ML tech-
niques in the field of battery technology. Especially the SOC and SOH
prediction are a major field of research. The usage of data derived from
intermediate methods as impedance spectroscopy or SAXS, as shown in
this contribution, is less represented. However, the approach offers the
possibility to actively manipulate the development process, as no data
from already manufactured cells are used. Our contribution focus the
first step of battery development as matrix materials determine the later
performance of the battery due to its structural properties. Hence, ML
is applied to one of the very early in the process chain of the MDP.
Here, the SAXS method gives the opportunity for a fast and complete
characterization of the relevant structures.

3.2. SAXS analytics for battery technology

As seen in the previous chapter ML is applied for battery technology
in various fields. We will propose an approach, which utilizes data from
SAXS curves to train a model by an ANN system to predict the SAXS
curves from input parameters.

SAXS and ML has been used in several fields of natural science
successfully. Chen et al. [31] used extreme gradient boosting (XGBoost)
to predict key structural parameters from SAXS of biological macro-
molecules in the case of double-stranded ribonucleic acid (dsRNA) du-
plexes. Just like Franke et al. [32] trained a simple k-nearest neighbour
method to classify biological macromolecules as compact, extended and
flat and to extract information about their maximal particle diame-
ter. [33] investigated which ML-methods where the most accurate ones
to extract structural information of SAXS measurements from eleven
predefined structural models for common nanostructures resulting in
the prior used XGBoost by [31].

In the context of battery research SAXS has also been used to
provide a deeper insight into the atomic and pore structures. Saurel
et al. [34] focus on three groups of carbonaceous materials: nonporous,
microporous and carbide-derived carbons. The SAXS results lead to an
improved analytical model description compared to traditional ones.
In [35] SAXS is used in-situ to monitor the structural changes of poly-

mer nanocomposites upon heating. In [36] similar work is done with
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Table 1
Clustered publications for ML in battery technology.
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Model quality Abbreviations

[16] X KRR
SVR
RFR

𝑅2 = 0, 51 KRR = Kernel Ridge Regression
SVR = Supported Vector Regression
RFR = Random Forrest Regression
𝑅2 = Coefficient of determination

[17] X GPR 𝑅2 > 0, 8 GPR = Gaussian Progression Regression

[18] X RF
ANN

𝐴𝑐𝑐 = 80% RF = Random Forest
ANN = Artificial Neural
Network
Acc = Accuracy

[19] X LR 𝐴𝑐𝑐 = 50% LR = Logistic Regression

[20] X MLFFS 𝑅2 = 0, 96 MLFFS = Multi-Layer Filtering Feature Selection

[21] X ANN 𝑅2 = 0, 99 ./.

[22] X CNN .∕. CNN = Convolutional Neural Networks

[23] X DT
RF

𝑅2 = 0, 75 DT = Decision Tree

[24] X GPR 𝑅𝑆𝑀𝐸 = 1, 09 RSME = Root-Mean-Squared Error

[25] X GPR 𝑅𝑀𝑆𝑃𝐸 = 0, 49 RSPE = Root mean squared % error

[26] X GPR 𝑅2 = 0, 92 ./.

[27] X DNN 𝑀𝐴𝐸 = 1, 1% DNN = Deep Neural Network
MAE = Mean absolute error

[28] X RNARX 𝑅𝑆𝑀𝐸 = 0, 59 RNARX = Recurrent nonlinear autoregression

[29] X SVM 𝑅2 = 1 SVM = Supporte Vector Machines

[30] X CNN 𝐴𝑐𝑐 > 80% ./.
Na-ion battery materials. Berhaut et al. [37] study silicon/graphite-
based composite anodes during the lithiation process. With SAXS they
obtain the nanostructural variations of the silicon phase (SAXS) for a
complete picture of the lithium repartition of the prelithiated silicon
anode.

The combination of SAXS and ML is, to the best knowledge of the
authors, a novel approach to optimize matrix material synthesis. Our
multi-step method to design ANN for an optimal prediction of SAXS
data and hence suggest optimized synthesis parameter is presented in
detail in the next sections.

4. Multi-step method

In the following we present the general concept of the multi-step
method in the use of ML and a straight forward approach to its
construction. It is afterwards applied to the use case of predicting SAXS
curves from given synthesis/process parameters.

4.1. General method

Looking for the best predictions, complex solutions arise by mak-
ing adjustments to the training algorithms and specializations of the
network structure. Kamarthi et al. [38] adapt the backpropagation
algorithm by extrapolating weights to reduce training time. In [39] a
low-rank factorization to decrease the number of network parameters
and also save training time is developed. Yeganeh and Shadma [40]
removes useless weights with a generic algorithm and Hunter et al. [41]
investigates different network topologies, which also require different
training algorithms (see [42]) due to their different basic structures,
since the effective Marquardt–Levenberg algorithm can only be used
for MLPs [41].

In the course of the presented application, we developed a straight
forward implementable method to form a complex as well as fast
4

trainable predictive construct using standard ML-methods. Due to the
unknown degree of non-linearity of the parameter spaces we concen-
trate on using ANNs since they are not restricted to a specific degree
of linearity [43,44]. It may be useful to subdivide a big ANN into mul-
tiple small ANNs respectively ML-methods depending on intermediate
results and their best prediction method appearing in the application.
This partitioning of ANNs leads to increasing intrinsic complexity with
simultaneously significant reduction of training time. In this way, many
different ML methods or ANN topologies can be examined in terms of
their quality in a short time and an optimal internal structure can thus
be found.

In the case of ANN, the multi-step method also opens up possibilities
to derive structure to their inherent black box property. By dividing
the respective process steps into individual independent networks,
clear tasks are defined and in the event of a problem it is possible
to intervene specifically in individual regions without influencing the
other networks of the overall structure.

According to [45] it leads to better results if a separate net is
trained for each output variable to be predicted instead of using a
single net that maps all output variables simultaneously. In this way,
for each available intermediate step, not only individual nets but entire
independent net-systems are created, which have the same input and
jointly generate the input for the adjacent net-system or ultimately the
total output of the overall system, which can be a net too. Fig. 3 shows
the scheme of the basic idea. The input variables flow into each of
the adjacent nets, which perform their own processing and collectively
form the input for the next net-system in the chain. Each net can
produce one or more output variables.

4.2. General design

A systematic approach is required to design a functional overall net
structure. It may be that necessary training values at network junctions
can only be determined during setup, as they are generated as input
or output by adjacent trained networks. Therefore, it is necessary to
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Fig. 3. General scheme of the multi-step method. Each intermediate step for which
usable data is available in the process chain can be represented by several nets
(e.g. from 1 to 3 via ML-System 2). As with a single FFN, the pure input variables (1)
flow into the system and ultimately lead to the sought final output (5) via apparent
intermediate results (3).

specify the type, distribution and task of the respective nodes of the
network in advance. In the following, the individual steps to reliably
achieve a structured net are presented in general (see Fig. 4):

1. Define Procedure
Define all potential nodes, their internal ML method, connections
to neighbouring nodes, and conditional training order.

2. Train and Optimize
Train and validate the nodes according to the appropriate
method in the previously defined order and optionally optimize
their topology.

3. Merge
Link inputs and outputs of all nodes in their intended order.

4. Predict
Once all the individual nodes have been trained, optimized and
fully interconnected, the prediction of sought output variables is
now possible.

4.3. Defining procedure in SAXS use-case

In our use-case of finding correlations between synthesis/process
parameters and the resulting SAXS curve, the division into two in-
termediate Neural Network steps was meaningful. On the one hand
we choose an autoencoder, which can represent the searched SAXS
curve based on a few main features. On the other hand, a network
system of standard Feed Forward Nets (FFN) should map the available
input parameters as output to the hidden neurons of the mentioned
autoencoder.

A fundamental statement about Neural Networks is the universal
approximation approach. It states that any continuous function can
be approximated arbitrarily close by an FFN with exactly one hidden
layer with sufficient number of hidden neurons [43,44]. The autoen-
coder is designed to do just that. Here, during training, the data set
of measured functions is projected onto a certain number of hidden
neurons and then returned to the original representation with the best
possible match. The more hidden neurons are involved, the smaller the
projection error. Here, the goal is to get by with as few hidden neurons
as possible. To address the question of ‘‘sufficient’’ amount, several
autoencoders are trained for different numbers of hidden neurons and
their mean square projection error (MSE) is determined by

𝑀𝑆𝐸 = 1
𝑁

⋅
𝑁
∑

𝑖=1
(𝑓𝑖 − 𝑦𝑖)2 (1)

with 𝑁 as the number of data-points. 𝑓𝑖 as the predicted value from
the ML model and 𝑦 as the true data point 𝑖.
5

𝑖

The sufficient number is reached when the MSE difference to the
next larger hidden layer size falls below a threshold value, converges
strongly towards zero or deteriorates again.

Once a sufficient number of hidden neurons is found, an autoen-
coder can be trained whose hidden neurons are used as output setpoints
for the preceding FFN.

Regarding item Define Procedure the following design order re-
sults (see also Fig. 5) :

• The overall network consists of two networks connected in series.
One network of FFNs and one autoencoder.

• The number of FFNs is only determined after the required number
of hidden neurons has been established for the autoencoder. Thus,
it is essential to first optimize and train the autoencoder. Then, for
each known hidden neuron value, a separate FFN can be trained
and its optimal topology determined.

• Each FFN equally receives the input variables available for the
process and is connected to exactly one hidden neuron each as a
one-dimensional output.

Since the output dimension of a FFN is significantly reduced from
several hundred curve points to very few hidden neuron values by the
post-connection of the autoencoder each training can be performed in
an exceedingly short time and many different network topologies can
be compared. The FFN networks found in this way, in conjunction with
the previously trained autoencoder, form the entire prediction chain,
which maps a resulting SAXS curve from incoming synthesis/process
parameters.

5. Results

In this section, we evaluate the multi-step method according to the
systematic approach defined in Section 4.2 and the individual steps
taken to create the overall net-system and discuss the results. Nets
and autoencoder where trained in MATLAB R2021a. Furthermore, a
comparison of results in the use of a single network and a net-system
is made.

5.1. Defining procedure

As shown in Fig. 5, the aim is to form a total system of FFN and
autoencoder. In this case, the training could not be performed straight
forward, since intermediate results were missing during the transition
from FFN to the final output, as the hidden neuron values of the au-
toencoder to be trained are determined from its chosen structure. Thus,
before training of the FFN starts, the autoencoder and the required size
of the hidden layer had to be determined, which thus defined the target
sizes and target values for the output of the FFNs in training. Once the
number of hidden neurons was determined, a fixed autoencoder could
be trained that would be used to specify the output parameters of the
preceding FFNs and also later for final prediction.

Now that the output is also known, it is possible to invest in finding
the best possible topology of the preceding FFN system and address
issues of partitioning and structure.

5.2. Train nodes

5.2.1. Autoencoder
To determine the minimum number of hidden neurons to be used

in the autoencoder, the mean value of the MSE was calculated from
10 trained autoencoders and the absolute improvement at different
hidden layer sizes was compared. Here, a sigmoid encoding function
and a linear decoding function lead to the best results. There is a
continuous decrease of the MSE with increasing size of the hidden
layer. Comparing the MSEs by subtracting the following value 𝑖+1 from
the actual one 𝑖, we notice an abrupt improvement deceleration at the
number of 6 neurons with a low standard deviation as seen in Fig. 6.
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Fig. 4. Systematic approach to design a functional overall structure of the multi-step method.
Fig. 5. Scheme of the multi-step method in the use-case. A system of several FFNs
(2) each maps the input variables (1) to one ore more of the hidden neurons of
the autoencoder, which in turn forms and outputs the resulting SAXS curve from the
incoming values (3).

Fig. 6. MSE differences from actual to next hidden layer size of the autoencoder. For
more than 6 hidden neurons there are no bigger improvements further on.

It shows increasing the intrinsic information with > 6 hidden neurons
has no more significant benefit and the SAXS curve can be described
sufficiently in this way.

The examination of the mapping areas of the predicted SAXS curves
for the individual neurons does not lead to any useful insight. As shown
in Fig. 7 features interpreted by the autoencoder are not obvious, closed
subsections as they would be subdivided according to a human logical
assessment. Rather, the mapping results collectively from the interac-
tion of several to all neurons. Occasionally, some points show up that
are not represented by one single neuron, but no useful interpretation
can be derived.

5.2.2. Feed forward net
For the final linkage of synthesis and process parameters to the

output of the SAXS curve, a connection between the mentioned input
6

parameters and the determined 6 hidden neurons of the autoencoder
was further required. Seven process parameters were chosen as in-
put values, which were variably configured in the synthesis of the
materials:

1. target density 𝜌𝑡𝑎𝑟𝑔𝑒𝑡 (assuming that all silane in the liquid vol-
ume is converted to SiO2)

2. molar ratio of water to TEOS 𝑥𝐻𝑇
3. (calculated) 𝑝𝐻
4. ageing time in multiples of the gelation time
5. 𝑝𝐻 of the pore liquid during ageing
6. temperature 𝑇
7. gas flow during controlled ambient pressure drying

Since the processing and measurement of a single synthesis material
is rather time consuming, the framework of a Design of Experiments
(DoE) was used for generating the necessary training data, which
ensures the highest possible variability with the lowest possible number
of data sets in the input parameters of the experiments. Through the
evaluation of the DoE with onion modification, 50 variabilities of
input synthesis parameters were given, based on which the respective
materials were synthesized, their SAXS curves measured and ultimately
the required FFNs could be trained.

Note: In the further sections, the topology of an FFN is described using
the notation [𝑖𝑙 ℎ𝑙1 ℎ𝑙2 …ℎ𝑙𝑛 𝑜𝑙].
Where 𝑖𝑙 is the number of neurons in the input layer, ℎ𝑙𝑖 is the number of
neurons in the 𝑖th hidden layer and 𝑜𝑙 is the number of neurons in the output
layer of the FFN.

To find the right net topology the usefulness of the division into
single work steps by our multi-step method becomes apparent. The
training of one single net with the same structure as it results in the
division into two separate nets took a similar amount of time as the
training of more than 1000 different divided nets (e.g. one FFN of [7
10 10 10 6 949] compared to two separate nets of [7 10 10 10 6]
and [6 949]). To search for the overall structure with the smallest
approximation error (SSE) we trained all possible structure layouts
from one to three hidden layers and all of their combinations between
1 and 10 neurons. The SSE is defined as

𝑆𝑆𝐸 =
𝑁
∑

𝑖=1
(𝑓𝑖 − 𝑦𝑖)2 (2)

Multiple training per specific network topology is necessary since
each training has different initial conditions and sampling which gen-
erate different results.

In the presented use-case, the best results with the present data sets
were obtained for a network topology of [7 8 6 10 6] and the use of the
𝑡𝑎𝑛ℎ activation function. Fig. 8 shows the SSE of each hidden neuron.
Since the hidden neuron values can only lie in the value range between
0 and 1, the absolute SSE simultaneously reflect relative errors. In the
present case, the average prediction error of all Hidden Neurons was
0.101 ± 0.028 with the smallest mean prediction error in the second
neuron at 0.066±0.059 and the largest in the first neuron at 0.143±0.108.
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Fig. 7. Mapping areas of individual hidden neurons. No logical task partitioning of individual curve segments to individual neurons can be observed. Only the collective signal
output generates a meaningful SAXS curve.
Table 2
Net structures of the optimal found networks to
the respective Hidden neuron. No structural relation-
ships can be identified that provide indications for a
construction rule for optimal network topologies.
Topology Hidden neuron
FFN Autoencoder

[7 7 10 10 1] #1
[7 7 10 9 1] #2
[7 5 4 6 1] #3
[7 9 5 3 1] #4
[7 10 8 5 1] #5
[7 7 3 10 1] #6

5.2.3. Single FFN vs. FFN-system
As mentioned in the beginning of this paragraph, splitting the single

FFN into a network system of FFNs should lead to better results [45].
For this purpose, a separate network was trained for each hidden
neuron of the autoencoder and its respective optimal topology was
determined according to the established procedure of finding the best
single net with the results seen in Table 2. No structural relationships
can be identified that provide indications for a construction rule for
optimal network topologies. Thus, it looks like successive testing of
all possible structures is inevitable to find the best nets. Fig. 8 shows
the comparison of the prediction errors between the single net results
and the net system results. The average prediction error of all hidden
neurons was 0.004 ± 0.011 with the smallest mean prediction error in
the third neuron at 0.002 ± 0.007 and the largest in the sixth neuron
at 0.017 ± 0.082. Compared to the single FFN, this reduced the average
prediction error by 96% with the smallest improvement at 80.8% and
the largest at 97.7%.

5.3. Merge

Now, the subsystems had been successfully trained and their respec-
tive topologies optimized, the overall structure could be generated by
linking respective input and output neurons. Each parameter set leads
7

Fig. 8. Comparison of the mean prediction errors with associated standard deviation
in the prediction of the hidden neuron values between Single Net and Net System. The
average prediction error of the Single Net was 0.101 ± 0.028 with the smallest mean
prediction error in the second neuron at 0.066±0.059 and the largest in the first neuron
at 0.143 ± 0.108. On average, with the Net System the prediction error was reduced by
96%. The smallest improvement was 80.8% and the largest 97.7%.

in the prediction through the respective FFN to the attached hidden
neuron of the autoencoder, which then interpreted an associated SAXS
curve from all six hidden neuron values. Fig. 9 shows an example of
the comparison between the measured SAXS curve and its predicted
counterpart using their defined parameter set.

6. Discussion

When the prediction errors were examined more in detail, it was
noticed that in some cases the errors of the net-system had the same
structure as the errors of the single net. If a hidden neuron value
was over-/underestimated in the optimal Single Net, it was also over-
/underestimated in the Network System, only at a smaller distance from
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Fig. 9. Comparison of measured SAXS curve and predicted counterpart with one parameter set of the material synthesis. Top: Prediction result with Single Net. Bottom: Prediction
result with Net System.
the set-point value. This suggests that for the Single Net there also exists
a topology that gives the same results as the Net System found here.
For this, larger numbers of hidden layers and hidden neurons would
have to be further investigated for the FFN, which however again very
quickly results in much more computing time. In the conclusion, the
use of the FFN system is certainly in the advantage, since for the same
computational effort, better results can be produced. Moreover it is not
clear whether the search for the best network topologies should focus
more on wider or deeper networks.

In this way, complex interrelationships, which are no longer an-
alytically comprehensible due to the processing and measurement of
the results, can be reasonably subdivided into small partial predictions,
which, when combined in the current application, yield a resulting
SAXS curve to be predicted on the basis of the synthesis/process
parameters using just a few data sets.

Separating higher dimensional outputs into individual systems, with
each having one output, gave better results under optimal topologies
with improvements up to 97.7% compared to the standard prediction
with one single FFN.

7. Conclusion and further research

With the presented multi-step method many different network struc-
tures can be investigated in a short time and optimized net topologies
for the given task can be found. The comparison of the successively
better results when varying the network topologies indicates a large
dependence on the quality of the predictive ability of the best network
found.

In the development of anode materials, the novel combination
of SAXS, as a fast characterization method and ML proves to be a
symbiosis with high potential. Above all, it can lead to a more targeted
development process from the very beginning and, among others,
8

enables the application of mathematical optimization methods by artifi-
cially adapting the synthesis process (here: matrix materials for battery
electrodes). This provides an opportunity to replace the traditional trial
and error, experience-based, principle with a structured approach and
to support the development of innovative anode materials. In the first of
several complex sub-steps to the final battery, the knowledge obtained
brings confidence. All additional steps up to the final product must be
pursued in the future.

In conclusion, the investigations have shown that the multi-step
method can be successfully used in material development to adapt the
complex synthesis process with standard machine learning methods.
Thus, the possibility is given to provide good estimates based on pure
synthesis parameters with small prediction errors.

In addition of using standard neural networks, the question arises
whether other ML methods or specialized networks such as Bridged
Multilayer Perceptron [41] or Fully Connected Cascade [41] can pro-
vide better results.

With the current results, no correlation between the optimal net-
work topology and the structure of the data could be determined in
initial observations. It may be possible to derive a procedure that
replaces the successive testing of all possible combinations of hidden
layer sizes.

There needs to be further investment in exploring the predictive
capabilities within and beyond the training data. The goal of machine
adaptation of development steps is usually to use them to optimize
specific parameters. In the current case, a trained network could dictate
which parameters would need to be set for a desired SAXS curve.
The idea is to use a trained overall network as a substitute for the
time-consuming synthesis process, and thus, in combination with a
numerical optimization procedure, to find the ideal input parameters
that provide the desired output. Depending on the requirements, the
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optima sought do not necessarily have to lie in the range of possible
interpolation, but may also require the ability to extrapolate.

There is also the question of how much data is sufficient to suc-
cessfully train a regression. Since we worked with DoE, it is not
clear whether the results would also have been possible without DoE,
as this equidistantly covers the search space and thus possibly also
provides the maximum information content with the smallest possible
experimental size.
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