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Abstract
This paper is devoted to studying non-commensurate fractional order planar systems.
Our contributions are to derive sufficient conditions for the global attractivity of non-
trivial solutions to fractional-order inhomogeneous linear planar systems and for the
Mittag-Leffler stability of an equilibrium point to fractional order nonlinear planar sys-
tems. To achieve these goals, our approach is as follows. Firstly, based on Cauchy’s
argument principle in complex analysis, we obtain various explicit sufficient con-
ditions for the asymptotic stability of linear systems whose coefficient matrices are
constant. Secondly, by using Hankel type contours, we derive some important esti-
mates of special functions arising from a variation of constants formula of solutions to
inhomogeneous linear systems. Then, by proposing carefully chosen weighted norms
combined with the Banach fixed point theorem for appropriate Banach spaces, we
get the desired conclusions. Finally, numerical examples are provided to illustrate the
effect of the main theoretical results.
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1 Introduction

Fractional calculus and fractional order differential equations are research topics that
have generated a great amount of interest in recent years. For details on their various
applications in science and engineering,we refer the interested reader to the collections
[2, 3, 16, 20, 21] and the references therein.

To our knowledge, the first contribution in the qualitative study of fractional order
autonomous linear systems was published by Matignon [15]. In that paper, using
Laplace transforms and the final value theorem, the author has obtained an algebraic
criterion to ensure the attractiveness of solutions. The BIBO (bounded input, bounded
output) stability for non-commensurate fractional order systems, i.e. for systemswhose
differential equations are not all of the same order, was investigated by Bonnet and
Partington [4], and their result shows that the systems are stable if and only if their
transfer function has no pole in the closed right hand side of the complex plane.

Starting from [4], a new difficult task appears: finding the conditions to ensure that
the poles of the characteristic polynomial of the system lie on the open left side of
the complex plane. Trigeassou et al. [22] have proposed a method based on Nyquist’s
theorem. In particular, they have derived Routh-like stability conditions for fractional
order systems involving at most two fractional derivations. Unfortunately, for higher
numbers of differential operators, this approach seems to be unsuitable by its numerical
implementation. After that, Sabatier et al. [18] have introduced another realization
of the fractional system. This realization is recursively defined and involves nested
closed-loops. Based on this realization, they have obtained a recursive algorithm that
involves, at each step, Cauchy’s argument principle on a frequency range and removes
the numerical limitation in [22] mentioned above.

In addition to the algorithmic approach as in [18], a number of analytic approaches
have been used to investigate the zeros of characteristic polynomials of systems of
fractional order systems. In [13], the stability and resonance conditions are established
for fractional systems of second order in terms of a pseudo-damping factor and a
fractional differentiation order. The method in [13] has been successfully extended in
[28] for a wide class of second kind non-commensurate elementary systems. By the
substitution method, a variation of constants formula and the properties of the Mittag-
Leffler function in the stable domain, in [10], the authors have shown the asymptotic
stability for fractional order systems with (block) triangular coefficient matrices. By
combining a variation of constants formula, properties of Mittag-Leffler functions,
a special weighted norm type and Banach’s fixed-point theorem, Tuan and Trinh
[25] have proved the global attractivity and asymptotic stability for a class of mixed-
order linear fractional systems when the coefficient matrices are strictly diagonally
dominant and the elements on the main diagonal of these matrices are negative. Using
the positivity of the system and developing a novel comparison principle, Shen and
Lam [19] have considered the stability and performance analysis of positive mixed
fractional order linear systems with bounded delays. Tuan et al. [26] have established
a necessary and sufficient condition for the asymptotic stability of positive mixed
fractional-order linear systems with bounded or unbounded time-varying delays.

Although there have been some articles on mixed fractional order systems as listed
above, in our view, the qualitative theory of non-commensurate fractional order sys-
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tems is still a challenging topic whose development is in its infancy. Even in the
simplest case when the coefficient matrix is constant, the current results seem to be far
away from a complete characterization of the stability of these systems. In particular,
the entire theory for non commensurate systems is far less well developed than the
corresponding theory for commensurate systems (i.e. systems all of whose associated
differential equations are of the same order) that have been extensively discussed, e.g.,
in the papers mentioned above or in [7, 8] and the references cited therein.

For these reasons, we study in this paper the fractional-order planar system with
Caputo fractional derivatives

C Dα
0+x(t) = Ax(t) + f (t, x(t)), t > 0, (1.1)

x(0) = x0 ∈ R
2, (1.2)

where α = (α1, α2) ∈ (0, 1]2 is a multi-index, A ∈ R
2×2 is a square matrix and

f : [0,∞) × R
2 → R

2 is a vector valued continuous function. It is worth noting
that for the case f = 0, in [6], by constructing a smooth parameter curve and using
Rouché’s theorem, Brandibur and Kaslik have provided criteria for the asymptotic
stability and for the instability of solutions, respectively. However, these conditions are
not explicit and are quite difficult to verify.Motivated by [6], our aim is as follows. First,
we want to give sufficient simple and clear conditions that can guarantee the Mittag-
Leffler stability of the system (1.1) in the homogeneous case. Then, by establishing
a variation of constants formula, estimates for general Mittag-Leffler type functions,
and proposing new weighted norms, we show the asymptotic behaviour of the system
when the vector field f is inhomogeneous or represents small nonlinear noise around
its equilibrium point.

The paper is organized as follows. Section 2 contains a brief summary of existence
and uniqueness results for solutions tomulti-order fractional differential systems and a
variation of constants formula for solutions to fractional order inhomogeneous linear
planar systems. Section 3 deals with some properties of the characteristic function
to a general fractional order homogeneous linear planar system whose coefficient
matrix is constant. Section 4 is devoted to studying important estimates for special
functions arising from the variation of constants formula for the solutions. Our main
contributions are presented in Section 5 where we show the asymptotic behaviour of
solutions to fractional-order linear planar systems and the Mittag-Leffler stability of
an equilibrium point to fractional nonlinear planar systems. Numerical examples are
provided in Section 6 to illustrate the main theoretical results.

To conclude the introduction, we present some notations that will be used through-
out the rest of the paper. In R

2, we define the norm ‖ · ‖ by ‖x‖ := max{|x1|, |x2|}
for every x ∈ R

2. For any r > 0, the closed ball of radius r centered at the origin
0 in R

2 is given by B(0, r) := {x ∈ R
2 : ‖x‖ ≤ r}. The space of all continuous

functions ξ : [0,∞) → R
2 is denoted byC([0,∞);R2). For any ξ ∈ C([0,∞);R2),

let ‖ξ‖∞ := supt≥0 ‖ξ(t)‖. Then, we use the notation C∞([0,∞);R2) := {ξ ∈
C([0,∞);R2) : ‖ξ‖∞ < ∞} to designate the subspace of C([0,∞);R2) that com-
prises the bounded continuous functions on [0,∞).
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Asymptotics of non-commensurate planar systems 1327

For α ∈ (0, 1] and J = [0, T ] or J = [0,∞), we define the Riemann-Liouville
fractional integral of a function f : J → R as

I α
0+ f (t) := 1

Γ (α)

∫ t

0
(t − s)α−1 f (s)ds, t ∈ J ,

and the Caputo fractional derivative of the order α ∈ (0, 1] of a function f : J → R

as

C Dα
0+ f (t) := d

dt
I 1−α
0+ ( f (t) − f (0)), t ∈ J \ {0},

where Γ (·) is the Gamma function and d
dt is the usual derivative. Letting α =

(α1, α2) ∈ (0, 1] × (0, 1] be a multi-index and f = ( f1, f2) with fi : J → R,
i = 1, 2, be a vector valued function, we write

C Dα
0+ f (t) :=

(
C Dα1

0+ f1(t),
C Dα2

0+ f2(t)
)

.

See, e.g., [9, Chapter 3] and [27] for more details on the Caputo fractional derivative.

2 Preliminaries

2.1 Existence and uniqueness of global solutions and exponential boundedness
of solutions

Consider the two-component incommensurate fractional-order initial value problem
with Caputo fractional derivatives

C Dα
0+x(t) = f (t, x(t)), t > 0, (2.1a)

x(0) = x0 ∈ R
2, (2.1b)

where α = (α1, α2) ∈ (0, 1]2 is a multi-index and f : [0,∞) × R
2 → R

2 is a
continuous function. To make the exposition of this paper self-contained, we recall
two important results about the solutions to this two-dimensional initial value problem.

Theorem 1 (Existence and uniqueness of global solutions) Suppose that the function
f : [0,∞) × R

2 → R
2 is continuous and that, for some constant L > 0, it satisfies

the Lipschitz condition

‖ f (t, x) − f (t, x̂)‖ ≤ L‖x − x̂‖, ∀t ∈ [0.∞), x, x̂ ∈ R
2

with respect to its second variable. Then, for any initial value x0 ∈ R
2, the two-

component incommensurate fractional-order system (2.1) has a unique global solution
ϕ(·, x0) on the interval [0,∞).
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Proof See [24, Theorem 2.2 and Remark 2.3]. 	

Theorem 2 (Exponential boundedness of global solutions) Suppose that the function
f satisfies the assumptions of Theorem 1. Moreover, let there exist a constant γ > 0
such that

sup
t≥0

e−γ t
∫ t

0
(t − s)αi−1‖ f (s, 0)‖ds < ∞.

Then, for any initial value x0 ∈ R
2, the two-component incommensurate fractional-

order system (2.1) has a unique global solution ϕ(·, x0) ∈ C
([0,∞),R2

)
and

‖ϕ(t, x0)‖ ≤ Meγ t , ∀t ≥ 0,

where M is some positive constant which depends on x0.

Proof See [24, Theorem 2.4]. 	


2.2 The variation of constants formula for the solutions

Consider the non-homogeneous two-component incommensurate fractional-order lin-
ear system

C Dα
0+x(t) = Ax(t) + f (t), t > 0 (2.2a)

with initial condition

x(0) = x0 ∈ R
2, (2.2b)

where α = (α1, α2) ∈ (0, 1]2, A = (
ai j
) ∈ R

2×2 is a square real matrix and
f = ( f1, f2)T : [0,∞) → R

2 is a continuous function such that

‖ f (t)‖ ≤ Meγ t , ∀t ≥ 0 (2.3)

for some M > 0 and some γ > 0. Then, we have

∫ t

0
(t − s)αi−1| fi (s)|ds ≤ M

∫ t

0
(t − s)αi−1eγ sds

= −Meγ t

γ αi

∫ t

0
(γ (t − s))αi−1 e−γ (t−s)d(γ (t − s))

= Meγ t

γ αi

∫ γ t

0
ταi−1e−τdτ

≤ MΓ (αi )

γ αi
eγ t .
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Due to Theorems 1 and 2, for any initial condition x0 ∈ R
2, the system (2.2) has a

unique exponentially bounded solution in C
([0,∞),R2

)
. Taking the Laplace trans-

form on both sides of the system (2.2), we obtain the algebraic system

{
(sα1 − a11)X1(s) − a12X2(s) = sα1−1x01 + F1(s)

−a21X1(s) + (sα2 − a22)X2(s) = sα2−1x02 + F2(s)
, (2.4)

where Xi (s) and Fi (s), i = 1, 2, are the Laplace transforms of xi (t) and fi (t), respec-
tively. By Cramer’s rule, we see that

X1(s) = x01 (s
α1+α2−1−a22sα1−1) + x02a12s

α2−1 + F1(s)(sα2 −a22) + a12F2(s)

Q(s)

= sα1+α2 − a22sα1

sQ(s)
x01 + sα2

sQ(s)
x02 + sα2 − a22

Q(s)
F1(s) + a12F2(s)

Q(s)
, (2.5)

and

X2(s) = x02 (s
α1+α2−1−a11sα2−1) + x01a21s

α1−1 + a12F1(s) + F2(s)(sα1−a11)

Q(s)

= sα1+α2 − a11sα2

sQ(s)
x02 + a21sα1

sQ(s)
x01 + a21F1(s)

Q(s)
+ sα1 − a11

Q(s)
F2(s), (2.6)

where Q(s) := sα1+α2 − a11sα2 − a22sα1 + det A. Put

Rλ(t) = L−1

{
sl(α)−λ

sQ(s)

}
(t), λ ∈ {0, α1, α2} , (2.7a)

Sβ(t) = L−1

{
sl(α)−β

Q(s)

}
(t), β ∈ {α1, α2, l(α)} (2.7b)

with l(α) := α1 + α2. Then, with each i ∈ {1, 2}, we obtain

L−1

{
sl(α)−β

Q(s)
Fi (s)

}
(t) = L−1 {L {Sβ

}
(s)L { fi } (s)

}
(t)

= L−1 {L {Sβ ∗ fi
}
(s)
}
(t)

= Sβ ∗ fi (t), β ∈ {α1, α2, l(α)} ,

where “∗” is the Laplace convolution operator.
From the arguments above, we can derive our first new result that shows a precise

analytic representation of the unique solution to the initial value problem (2.2).

123



1330 K. Diethelm et al.

Lemma 1 On the interval [0,∞), the non-homogeneous linear two-component incom-
mensurate fractional-order system (2.2) has the unique solution

ϕ(·, x0) =
(

ϕ1(·, x0)
ϕ2(·, x0)

)

with

ϕ1(t, x
0) =

(
R0(t) − a22Rα2(t)

)
x01 + a12Rα1(t)x02

+
(
(Sα1 − a22Sl(α)) ∗ f1

)
(t) + a12

(
Sl(α) ∗ f2

)
(t), (2.8)

ϕ2(t, x
0) = a21Rα2(t)x01 +

(
R0(t) − a11Rα1(t)

)
x02

+ a21
(
Sl(α) ∗ f1

)
(t) +

(
(Sα2 − a11Sl(α)) ∗ f2

)
(t). (2.9)

3 Some properties of the characteristic function

As mentioned in the introduction, in this paper we only focus on incommensurate
systems, i.e. on systems of the form (1.1) with α1 �= α2, because the case α1 = α2
has already been discussed in detail elsewhere. Thus, without loss of generality, we
assume 0 < α1 < α2 ≤ 1. It will turn out, see Section 5, that such systems possess
characteristic functions of the form

Q(s) = sα1+α2 − asα2 − bsα1 + c (3.1)

with certain a, b, c ∈ R whose properties play an essential role in the analysis of the
asymptotic behaviour of the solutions. In fact, we shall show in Section 5 that the
crucial point is the location of the zeros of functions of this type: One needs to know
whether or not all the function’s zeros are in the open left half of the complex plane.
In this context, one result has already been shown by Brandibur and Kaslik [5]:

Lemma 2 Assume that a, b ≤ 0, and c > 0. Then, all zeros of Q are in the open
left-half complex plane regardless of α1 and α2.

Proof See [5, Proposition 1(b)]. 	

The conditions of Lemma 2 are quite restrictive though, and therefore this statement

can only be applied to a very limited class of systems. In the remainder of this section
we shall therefore now develop some new alternative sufficient criteria for asserting
a “good” distribution of the zeros of the characteristic function that can cover many
further cases. Our first auxiliary statement in this context reads as follows.

Lemma 3 Let 0 < α1 < α2 ≤ 1 and a, b, c ∈ R. Then, the following statements hold
for the function Q defined in (3.1).
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(i) If c < 0 then Q has at least one positive real zero.
(ii) If s ∈ C is a zero of Q then its complex conjugate is also a zero of Q.
(iii) Let 0 < ω < π . Then, Q has only a finite number of zeros in the set C = {z ∈

C : | arg (z)| ≤ ω}.
(iv) If c > 0, then s = iω with ω > 0 is a zero of Q if and only if

{
a = ρ2ω

α1 − cρ1ω−α2 ,

b = cρ2ω−α1 − ρ1ω
α2 ,

(3.2)

where

ρ1 = sin α1π
2

sin (α2−α1)π
2

, ρ2 = sin α2π
2

sin (α2−α1)π
2

. (3.3)

Proof (i) and (ii) are obvious.
(iii) First, we assume that c �= 0. Then Q(0) �= 0. Due to the continuity of Q at

0, we can find ε which is small enough such that Q has no zero in {z ∈ C : |z| < ε} .

Moreover, because |Q(s)| ≥ |s|α1+α2 − |a| · |s|α2 − |b| · |s|α1 − |c|, we have that
lim|s|→∞ |Q(s)| = ∞ uniformly for all arg s. This implies that there is a positive
real number R such that Q has no zero in the domain {z ∈ C : |z| > R} . Hence,
all zeros of Q in {z ∈ C : | arg (z)| ≤ ω} (if they exist) belong to the set
Ω := {z ∈ C : ε ≤ |z| ≤ R, | arg (z)| ≤ ω} . Notice that Ω is a compact set and Q
is analytic on this domain. If now Q has infinitely many zeros in Ω then, because of
the compactness of Ω , the set of zeros has a cluster point. This implies, in view of the
analyticity of Q, that Q(s) = 0 for all s which contradicts the definition of Q. Hence,
Q has only a finite number of zeros in Ω . This shows that Q has only a finite number
of zeros in the domain C if c �= 0.

To deal with the case c = 0, we write

Q(s) = sα1
(
sα2 − asα2−α1 − b

) = sα1 P(s)

where P(s) = sα2 − asα2−α1 − b. By repeating the above arguments for P , the proof
is complete.

(iv) See [5, Proposition 1, Part 3b]. 	

Corollary 1 Assume that a, b, c > 0 and that one of conditions

(i) c(ρ2
2 − ρ2

1 ) < ab < c(ρ2
2 + ρ2

1 ),
(ii) ab ≤ c (ρ2 − ρ1)

2,

is satisfied where ρ1, ρ2 are defined in (3.3). Then, the function Q defined in (3.1) has
no purely imaginary zero.

Proof Consider the system (3.2). Since ρ2 �= 0, this system is equivalent to

⎧⎨
⎩

ωα1 = a

ρ2
+ c

ρ1

ρ2
ω−α2 ,

ρ1aωα2 + ρ2bωα1 = c(ρ2
2 − ρ2

1 ).

(3.4)
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1332 K. Diethelm et al.

Thus, we obtain

aρ1ω
α2 + bcρ1ω

−α2 + ab − c(ρ2
2 − ρ2

1 ) = 0. (3.5)

Setting X = ωα2 , equation (3.5) takes the form

aρ1X
2 +

[
ab − c(ρ2

2 − ρ2
1 )
]
X + bcρ1 = 0. (3.6)

The discriminant of the quadratic equation (3.6) is

Δ =
(
ab − c(ρ2

2 − ρ2
1 )
)2 − 4abcρ2

1

= a2b2 + c2(ρ2
2 − ρ2

1 )
2 − 2abc(ρ2

1 + ρ2
2 )

=
(
ab − c(ρ2

1 + ρ2
2 )
)2 − 4c2ρ2

1ρ
2
2

=
(
ab − c(ρ1 + ρ2)

2
) (

ab − c(ρ2 − ρ1)
2
)

.

(i) Clearly, if c(ρ2
2 − ρ2

1 ) < ab < c(ρ2
2 + ρ2

1 ), then Δ < 0. Hence, the quadratic
equation (3.6) has no real roots. This implies that the system (3.2) has no root ω > 0.
This together with Lemma 3(ii) and 3(iv) shows that Q has no purely imaginary zero.
(ii) If ab ≤ c (ρ2 − ρ1)

2, the quadratic equation (3.6) has two (not necessarily distinct)
real roots. Because 0 < ρ1 < ρ2, we have (ρ2 − ρ1)

2 < ρ2
2 − ρ2

1 . This implies that
ab − c(ρ2

2 − ρ2
1 ) < 0. Moreover, a, b, c, ρ1 > 0, thus the two roots of the quadratic

equation (3.6) are negative. Hence, in view of the relation X = ωα2 with 0 < α2 ≤ 1
between the solution X of (3.6) and the solution ω of (3.2), the system (3.2) has no
root ω > 0. Using Lemmas 3(ii) and 3(iv), we see that Q has no purely imaginary
zero. 	


Recall that if c ≤ 0, then Q has at least one non-negative real zero, which precludes
any kind of stability. Thus, in this section, we only consider the case c > 0. As shown
above, because Q has only a finite number of zeros in the domain C, there exists a
constant R > 0 which is large enough such that Q has no zero in {z ∈ C : |z| ≥ R} .

On the other hand, Q is continuous at 0 with Q(0) > 0, so we can find a small constant
ε > 0 such that Q(z) �= 0 in {z ∈ C : |z| ≤ ε}.We define an oriented contour γ formed
by four segments:

γ1 := {s = iω : ε ≤ ω ≤ R} ; γ2 :=
{
s = Reiϕ : −π

2
≤ ϕ ≤ π

2

}
;

γ3 :=
{
s = εeiϕ : −π

2
≤ ϕ ≤ π

2

}
; γ4 := {s = iω : −R ≤ ω ≤ −ε} .

Clearly, if Q has no purely imaginary zero, then all zeros in the closed right hand side
of the complex plane {s = r(cosφ + i sin φ) ∈ C : r ≥ 0, φ ∈ (−π, π ]} of Q (if
they exist) must lie inside the contour γ . Based on Cauchy’s argument principle in
complex analysis, we see that n(Q(C), 0) = Z − P, where n(Q(C), 0) is the number
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of encirclements in the positive direction (counter-clockwise) around the origin of
the the Nyquist plot Q(γ ), Z and P are the number of zeros and number of poles
of Q inside the contour γ in the s-plane, respectively. Due to the fact that Q is
analytic inside γ , we have P = 0 and thus n(Q(C), 0) = Z . This implies that if
Q has no purely imaginary zero, then all roots of the equation Q(s) = 0 lie in the
open left-half complex plane if and only if n(Q(C), 0) = 0. Notice that Q(0) > 0,
lim|s|→∞ |Q(s)| = ∞, Q(iω) = Q(−iω) and �Q(iω) = −�Q(−iω). It is easy
to see that n(Q(C), 0) = 0 if Q(iω) > 0 for any ω > 0 that satisfies �Q(iω) = 0.
Consider ω > 0 and put

h1(ω) := (Q(iω))

= ωα1+α2 cos
(α1 + α2)π

2
− aωα2 cos

α2π

2
− bωα1 cos

α1π

2
+ c, (3.7)

h2(ω) := �(Q(iω))

= ωα1+α2 sin
(α1 + α2)π

2
− aωα2 sin

α2π

2
− bωα1 sin

α1π

2
. (3.8)

If there exists some ω > 0 such that h2(ω) = 0, then

sin
(α1 + α2)π

2
h1(ω)

= sin
(α1 + α2)π

2
h1(ω) − cos

(α1 + α2)π

2
h2(ω)

= aωα2

(
sin

α2π

2
cos

(α1 + α2)π

2
− cos

α2π

2
sin

(α1 + α2)π

2

)

+ bωα1

(
sin

α1π

2
cos

(α1 + α2)π

2
− cos

α1π

2
sin

(α1 + α2)π

2

)

+ c sin
(α1 + α2)π

2

= c sin
(α1 + α2)π

2
− aωα2 sin

α1π

2
− bωα1 sin

α2π

2
.

Thus, the variable ω > 0 satisfies the system

{
h2(ω) = 0
h1(ω) = c − aωα2q1 − bωα1q2

(3.9)

with

q1 = sin α1π
2

sin (α2+α1)π
2

, q2 = sin α2π
2

sin (α2+α1)π
2

. (3.10)

It is then clear from our assumptions on α1 and α2 that q1, q2 > 0. Based on the
analysis above, we obtain some sufficient conditions that ensure that the function Q(·)
has no zero lying in the closed right half of the complex plane.
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Lemma 4 Let 0 < α1 < α2 ≤ 1. Assume that a = 0, b > 0 and

c > (bq1)
α1/α2 bq2. (3.11)

Then, all zeros of Q lie in the open left-half of the complex plane.

Proof Because a = 0 and b > 0, we see that h2(ω0) = 0 if and only ifω0 = (bq1)1/α2 .
From (3.9), we have h1(ω0) = c−(bq1)α1/α2 bq2. By the assumption (3.11), we obtain
h1(ω0) > 0. This implies that all zeros of Q lie in the open left-half of the complex
plane. 	

Lemma 5 Let 0 < α1 < α2 ≤ 1. Assume that b = 0, a > 0 and

c > (aq2)
α2/α1 aq1. (3.12)

Then, all zeros of Q lie in the open left-half complex plane.

Proof Since b = 0 and a > 0, it is easy to show that h2(ω0) = 0 if and only if
ω0 = (aq2)1/α1 . From (3.9), it follows that h1(ω0) = c − (aq2)α2/α1 aq1. By the
assumption (3.12), we see that h1(ω0) > 0 which implies that all zeros of Q lie in the
open left-half of the complex plane. 	

Lemma 6 Let 0 < α1 < α2 ≤ 1. Assume that a, b, c > 0. Then, all zeros of Q are in
the open left-half of the complex plane if one of the following conditions holds:

(i) aq2 + bq1 > 1 and aq2 ((a + b)q2)α2/α1 + b(a + b)q22 ≤ c.
(ii) aq2 + bq1 ≤ 1 and aq1 + bq2 < c.

Proof We have

h′
2(ω) = (α1 + α2)ω

α1+α2−1 sin
(α1 + α2)π

2
(3.13)

− aα2ω
α2−1 sin

α2π

2
− bα1ω

α1−1 sin
α1π

2

= ωα1−1
(

(α1 + α2)ω
α2 sin

(α1 + α2)π

2

− aα2ω
α2−α1 sin

α2π

2
− bα1 sin

α1π

2

)

= ωα1−1g2(ω)

where

g2(ω) := (α1 + α2)ω
α2 sin

(α1 + α2)π

2
− aα2ω

α2−α1 sin
α2π

2
− bα1 sin

α1π

2
.

(3.14)

Notice that

g′
2(ω) = α2(α1 + α2)ω

α2−1 sin
(α1 + α2)π

2
− (α2 − α1)α2aωα2−α1−1 sin

α2π

2
.
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It is not difficult to check that g′
2(ω) < 0 in (0, ω1) and g′

2(ω) > 0 in (ω1,∞),

where ω1 =
(

α2−α1
α1+α2

aq2
)1/α1

. Due to the fact that g2(0) = −α1b sin
α1π
2 < 0, and

limω→+∞ g2(ω) = +∞, the equation g2(ω) = 0 has a unique root ω2 ∈ (0,∞).

Moreover g2(ω) < 0 in (0, ω2) and g2(ω) > 0 in (ω2,∞). Hence, h2 is decreas-
ing in (0, ω2) and increasing in (ω2,∞). On the other hand, h2(0) = 0 and
limω→+∞ h2(ω) = +∞. This shows that the equation h2(ω) = 0 has a unique
root ω3 ∈ (0,∞) and then h2(ω) < 0 for all ω ∈ (0, ω3) and h2(ω) > 0 for all
ω ∈ (ω3,∞).

(i) If aq2 + bq1 > 1, then h2(1) < 0. This implies that ω3 > 1. Moreover, due to
α1 < α2 ≤ 1, we have

h2(ω) > ωα1+α2 sin
(α1 + α2)π

2
− (a + b)ωα2 sin

α2π

2
(3.15)

for every ω > 1, and thus h2
(
((a + b)q2)1/α1

)
> 0. This implies that 1 < ω3 <

((a + b)q2)1/α1 . Hence, if

c ≥ aq2 ((a + b)q2)
α2/α1 + b(a + b)q22 ,

due to q2 > q1 > 0,we obtain c > aω
α2
3 q1+bωα1

3 q2,which together with (3.9) leads
to h1(ω3) > 0. The proof of this part is complete.
(ii) If aq2 + bq1 ≤ 1, then h2(1) ≥ 0. This implies that 0 < ω3 ≤ 1. Due to
c > aq1 + bq2, we have c > aω

α2
3 q1 + bωα1

3 q2. This together with (3.9) shows that
h1(ω3) > 0. The proof is finished. 	

Lemma 7 Assume that a < 0 and b, c > 0. Then, all zeros of Q are in the open
left-half complex plane if one of the following conditions holds:

(i) aq2 + bq1 > 1 and (bq1)α1/α2 bq2 ≤ c.
(ii) aq2 + bq1 ≤ 1 and bq2 ≤ c.

Proof As shown in the proof of Lemma 6, we have h′
2(ω) = ωα1−1g2(ω) where g2 is

as in (3.14). Notice that

g′
2(ω) = α2(α1 + α2)ω

α2−1 sin
(α1 + α2)π

2
− (α2 − α1)α2aωα2−α1−1 sin

α2π

2
> 0

for ω ∈ (0,∞). Due to the facts that g2(0) = −α1b sin
α1π
2 < 0 and

limω→+∞ g2(ω) = +∞, the equation g2(ω) = 0 has a unique root ω1 ∈ (0,∞).
Moreover g2(ω) < 0 in (0, ω1) and g2(ω) > 0 in (ω1,∞). This shows that h2 is
decreasing on (0, ω1) and increasing on (ω1,∞). On the other hand, since h2(0) = 0
and limω→+∞ h2(ω) = +∞, the equation h2(ω) = 0 has a unique root ω2 ∈ (0,∞)

and h2(ω) < 0 for all ω ∈ (0, ω2) and h2(ω) > 0 for all ω ∈ (ω2,∞).

(i) If aq2 + bq1 > 1 then h2(1) < 0. Thus ω2 > 1. Moreover, since a < 0, we have

h2(ω) > ωα1+α2 sin
(α1 + α2)π

2
− bωα1 sin

α1π

2
,
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and thus h2
(
(bq1)1/α2

)
> 0. This implies that 1 < ω2 < (bq1)1/α2 . From that if

(bq1)
α1/α2 bq2 ≤ c,

we obtain c > aω
α2
2 q1 + bωα1

2 q2, which together with (3.9) leads to h1(ω2) > 0.
(ii) If aq2 + bq1 ≤ 1, then h2(1) ≥ 0. Thus 0 < ω2 ≤ 1. Due to c ≥ bq2, we see that
c > aω

α2
2 q1 + bωα1

2 q2. The proof is completed. 	


4 Estimates for the functionsR� andSˇ

This section is devoted to the derivation of some important and new estimates of the
functions Rλ and Sβ on (0,∞) and to some first applications of these estimates. We
recall the definitions of these functions from (2.7), viz.

Rλ(t) = L−1

{
sl(α)−λ

sQ(s)

}
(t), λ ∈ {0, α1, α2} ,

Sβ(t) = L−1

{
sl(α)−β

Q(s)

}
(t), β ∈ {α1, α2, l(α)} ,

where l(α) = α1 + α2 and Q(s) = sα1+α2 − a11sα2 − a22sα1 + det A.

Lemma 8 Let α1, α2 ∈ (0, 1] and denote ν = min{α1, α2}. Assume there are no zeros
of the characteristic function Q in the closed right-half complex plane. Then, the
following estimates hold for λ ∈ {0, α1, α2} and β ∈ {α1, α2, l(α)}:

Rλ(t) = O(t−ν) as t → ∞, (4.1)

Sβ(t) = O(t−ν−1) as t → ∞, (4.2)

Sβ(t) = O(tν−1) as t → 0. (4.3)

Moreover,

∫ ∞

0
|Sβ(t)|dt < ∞. (4.4)

The proof of the lemma is quite lengthy and technical. Therefore, in order not to
distract the reader and to make it easier to focus on the main results, we provide the
proof in Appendix A at the end of the paper.

Our first application of Lemma 8 deals with estimates for the convolution of Sβ

and a continuous function.

Theorem 3 Let α1, α2 ∈ (0, 1] and β ∈ {α1, α2, l(α)}. For each continuous function
g : [0,∞) → R, we put

Fβ
g (t) := Sβ ∗ g(t) =

∫ t

0
Sβ(t − s)g(s)ds (4.5)
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and

F̄β
g (t) := |Sβ | ∗ |g|(t) =

∫ t

0
|Sβ(t − s)| · |g(s)|ds. (4.6)

Assume that all zeros of the characteristic function Q are in the open left-half complex
plane. Then, the following statements hold.

(i) If g is bounded then F̄β
g and Fβ

g are also bounded.

(ii) If limt→∞ g(t) = 0 then limt→∞ F̄β
g (t) = limt→∞ Fβ

g (t) = 0.
(iii) If there exists some η ≥ 0 such that g(t) = O(t−η) for t → ∞ then

F̄β
g (t) = O(t−μ) and Fβ

g (t) = O(t−μ) for t → ∞

where μ = min {α1, α2, η} .

Proof We denote ν = min{α1, α2}. Since, by definition, |Fβ
g (t)| ≤ F̄β

g (t), the claims

for Fβ
g immediately follow from those for F̄β

g , and therefore it suffices to explicitly
prove the latter.

Statement (i) is merely the special case of η = 0 of part (iii).
To prove (ii), we note that F̄β

g (t) ≥ 0 by definition. Therefore, it is sufficient to
show that for every ε > 0 there exists a constant T̃ = T̃ (ε) such that

F̄β
g (t) ≤ ε for all t > T̃ . (4.7)

Since this is trivially fulfilled if g(t) = 0 for all t , we from now on assume that
g(t) �= 0 for some t , and hence ‖g‖∞ > 0.

Our first observation is then that, from (4.2) and (4.3), we know that there exists
some constant C > 0 such that

|Sβ(t)| ≤
{
Ct−ν−1 for t ≥ 1,

Ctν−1 for t ≤ 1.
(4.8)

Given an arbitrary ε > 0, due to our assumption on g we may then find some T̂ > 0
such that |g(t)| < νε/(3C) for all t > T̂ . Using these values T̂ and C , we then define

T̃ = T̂ + max

⎧⎨
⎩1,

(
3C‖g‖∞T̂

ε

)1/(ν+1)
⎫⎬
⎭ .

For t > T̃ ≥ T̂ + 1, we can then write

F̄β
g (t) =

∫ T̂

0
|Sβ(t − s)| · |g(s)|ds +

∫ t−1

T̂
|Sβ(t − s)| · |g(s)|ds

+
∫ t

t−1
|Sβ(t − s)| · |g(s)|ds

= F1(t) + F2(t) + F3(t). (4.9)
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Our goal now is to show that, under these assumptions, Fj (t) ≤ ε/3 for j = 1, 2, 3,
which implies (4.7) and thus suffices to prove part (ii) of the theorem. In this context,
we see that

F1(t) =
∫ T̂

0
|Sβ(t − s)| · |g(s)|ds ≤ ‖g‖∞C

∫ T̂

0
(t − s)−ν−1ds

≤ ‖g‖∞CT̂ (t − T̂ )−ν−1 <
ε

3
.

because here t − s ≥ t − T̂ > T̃ − T̂ ≥ 1, so that we may use the first of the bounds
given in (4.8). In the penultimate step, we have bounded the integral by the product
of the length of the integration interval and the maximum of the integrand, and in the
last step, we have used the fact that t > T̃ and the definition of T̃ .

Furthermore,

F2(t) =
∫ t−1

T̂
|Sβ(t − s)| · |g(s)|ds ≤ νε

3C
C
∫ t−1

T̂
(t − s)−ν−1ds

= νε

3

1

ν

(
1 − (t − T̂ )−ν

)
<

ε

3

because here s ≥ T̂ , so that |g(s)| ≤ νε/(3C), and t − s ≥ 1, so we may once again
use the first bound of (4.8).

Finally,

F3(t) =
∫ t

t−1
|Sβ(t − s)| · |g(s)|ds ≤ νε

3C
C
∫ t

t−1
(t − s)ν−1ds = νε

3

1

ν
= ε

3

where now t and s are such that we may invoke the second bound of (4.8) but, as in
the previous step, s ≥ T̂ , so that once again |g(s)| ≤ νε/(3C). This completes the
proof of part (ii) of the theorem.

For the proof of (iii), we note that (4.8) is valid in this case too. Moreover, since
we are interested in the asymptotic behaviour of F̄β

g (t) for large t , we may assume
without loss of generality that t ≥ 2. Then we write

F̄β
g (t) =

∫ 1

0
|Sβ(t − s)| · |g(s)|ds +

∫ t/2

1
|Sβ(t − s)| · |g(s)|ds

+
∫ t−1

t/2
|Sβ(t − s)| · |g(s)|ds +

∫ t

t−1
|Sβ(t − s)| · |g(s)|ds

= F4(t) + F5(t) + F6(t) + F7(t), (4.10)

and we need to show that Fj (t) = O(t−μ) for j = 4, 5, 6, 7.
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In this connection, we first note that, by assumption,

|g(t)| ≤ C ′t−η ∀t ≥ 1 (4.11)

with some C ′ > 0, so that the upper branch of (4.8) implies

0 ≤ F4(t) ≤ C‖g‖∞
∫ 1

0
(t − s)−ν−1ds = C‖g‖∞

ν

(
(t − 1)−ν − t−ν

)

<
C‖g‖∞

ν
(t − 1)−ν = O(t−ν) = O(t−μ)

and

0 ≤ F5(t) ≤ CC ′
∫ t/2

1
(t − s)−ν−1s−ηds ≤ CC ′

∫ t/2

1
(t − s)−ν−1ds

= CC ′

ν

(
(t − 1)−ν − (t/2)−ν

)
<

CC ′

ν
(t − 1)−ν = O(t−ν) = O(t−μ)

as well as

0 ≤ F6(t) ≤ CC ′
∫ t−1

t/2
(t − s)−ν−1s−ηds ≤ CC ′

(
t

2

)−η ∫ t−1

t/2
(t − s)−ν−1ds

= 2ηCC
′

ν
t−η
(
1 − (t/2)−ν

)
< 2ηCC

′

ν
t−η = O(t−η) = O(t−μ).

For the remaining part we need to invoke the second branch of (4.8) in combination
with (4.11) to derive

0 ≤ F7(t) ≤ CC ′
∫ t

t−1
(t − s)ν−1s−ηds ≤ CC ′(t − 1)−η

∫ t

t−1
(t − s)ν−1ds

= CC ′

ν
(t − 1)−η = O(t−η) = O(t−μ),

thus completing the proof. 	

As an immediate application of Theorem 3(iii), we can conclude that

F̄β
g1(t) = O(t−ν) as t → ∞ for g1(t) = min{1, t−ν}. (4.12)

Moreover, assuming ν < 1 and setting

g2(t) = t−ν − g1(t) =
{
t−ν − 1 for t ∈ [0, 1],
0 for t > 1,

we can obtain (using Lemma 8 and the classical relation between the incomplete
Beta function and the hypergeometric function 2F1, cf. [1, eq. (6.6.8)]) the following
bounds:
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– If t ≥ 2 then we have

F̄β
g2(t) =

∫ 1

0
|Sβ(t − s)|(s−ν − 1)ds ≤ C

∫ 1

0
(t − s)−ν−1s−νds

= Ct−2νB1/t (1 − ν,−ν)

= C

1 − ν
t−ν−1

2F1(1 − ν, 1 + ν; 2 − ν; t−1) ≤ C ′t−ν−1 (4.13)

with some C ′ > 0.
– If t ∈ [1, 2] then

F̄β
g2(t) =

∫ 1

0
|Sβ(t − s)|(s−ν − 1)ds ≤ C

∫ 1

0
(t − s)ν−1s−νds

= CB1/t (1 − ν, ν)

= C

1 − ν
tν−1

2F1(1 − ν, 1 − ν; 2 − ν; t−1) ≤ C ′′t−ν (4.14)

with some C ′′ > 0.

Since F̄β
g1(t) + F̄β

g2(t) = F̄β
g1+g2(t), we can summarize the observations of

eqs. (4.12), (4.13) and (4.14) in the following way:

Remark 1 Assuming that ν = min{α1, α2} < 1, there exists a constant C such that,
for all t ≥ 1 and β ∈ {α1, α2, l(α)},

tν
∫ t

0
|Sβ(t − s)| 1

sν
ds ≤ C . (4.15)

5 Asymptotic behaviour of solutions to non-commensurate fractional
planar systems

In this section we will study the asymptotic behaviour of solutions to fractional-
order linear planar systems and the Mittag-Leffler stability of an equilibrium point to
fractional nonlinear planar systems, thus presenting the main new results of our work.

5.1 Asymptotic behaviour of solutions to fractional linear planar systems

Consider the non-homogeneous linear two-component incommensurate fractional-
order system

C Dα
0+x(t) = Ax(t) + f (t), t > 0, (5.1a)

x(0) = x0 ∈ R
2, (5.1b)
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where α = (α1, α2) ∈ (0, 1] × (0, 1] is a multi index, A = (
ai j
) ∈ R

2×2 is a
square real matrix and f = ( f1, f2) is a continuous vector valued function which is
exponentially bounded on [0,∞).

Theorem 4 Suppose that all zeros of the characteristic function

Q(s) = sα1+α2 − a11s
α2 − a22s

α1 + det A

of the problem (5.1a) lie in the open left-half of the complex plane. Then, the following
statements hold.

(i) If f is bounded, then for any x0 ∈ R
2 the solution to (5.1) is also bounded.

(ii) If limt→∞ f (t) = 0 then the solution to (5.1) tends to 0 when t → ∞ for any
x0 ∈ R

2.
(iii) If ‖ f (t)‖ = O(t−η) as t → ∞ with some η > 0 then every solution x of (5.1a)

behaves as ‖x(t)‖ = O(t−μ) for t → ∞ where μ = min {α1, α2, η} .

Proof The proof is straightforward by combining Lemmas 1 and 8 and Theorem 3. 	

Based on Theorem 4 and Lemmas 2, 4, 5, 6 and 7, we obtain the following corollary.

Corollary 2 Let

q1 = sin α1π
2

sin (α1+α2)π
2

and q2 = sin α2π
2

sin (α1+α2)π
2

.

The statements of Theorem 4 (i), (ii) and (iii) are true if one of the following conditions
is satisfied.

(i) a11, a22 ≤ 0 and det A > 0.
(ii) a11 = 0, a22 > 0, det A > 0 and

(a22q1)
α1/α2a22q2 < det A.

(iii) a22 = 0, a11 > 0, det A > 0 and

(a11q2)
α2/α1a11q1 < det A.

(iv) a11, a22, det A > 0 and one of the following conditions holds:

(iv)1 a11q2+a22q1 > 1 and a11q2 ((a11 + a22)q2)α2/α1+a22(a11+a22)q22 ≤ det A;
(iv)2 a11q2 + a22q1 ≤ 1 and a11q1 + a22q2 < det A.

(v) a11 < 0, a22, det A > 0 and one of the following conditions holds:

(v)1 a11q2 + a22q1 > 1 and (a22q1)α1/α2 a22q2 ≤ det A;
(v)2 a11q2 + a22q1 ≤ 1 and a22q2 ≤ det A.
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5.2 Mittag-Leffler stability of fractional nonlinear planar systems

We now look at a different class of systems. Specifically, we now allow the differential
equations to contain nonlinearities, but we do require them to have the structure of an
autonomous system, i.e., we consider a fractional nonlinear planar system of the form

C Dα
0+x(t) = Ax(t) + f (x(t)), t > 0, (5.2a)

x(0) = x0 ∈ Ω ⊂ R
2, (5.2b)

where α = (α1, α2) ∈ (0, 1] × (0, 1] is a multi-index, A = (ai j ) ∈ R
2×2 is a square

real matrix, Ω is an open subset of R2 containing the origin and f : Ω → R
2 is

locally Lipschitz continuous at the origin such that f (0) = 0 and limr→0 l f (r) = 0
with

l f (r) := sup
x,y∈B(0,r), x �=y

‖ f (x) − f (y)‖
‖x − y‖ .

In the context of first order differential equations, it is natural to talk about expo-
nential stability; an appropriate generalization of this classical notion to the fractional
order setting is the concept of Mittag-Leffler stability. In the case of a commensurate
system, this can be defined as follows (cf., e.g., [14, Definition 4.1]):

Definition 1 The trivial solution of the system (5.2a) with α1 = α2 ∈ (0, 1) is said to
be Mittag–Leffler stable if there exist some b, λ > 0, some B ⊂ R

2 and some locally
Lipschitz function m : B → [0,∞) with the property m(0) = 0 such that, for all
x0 ∈ B,

‖ϕ(t, x0)‖ ≤
[
m(x0)Eα1(−λtα1)

]b
(5.3)

for all t ≥ 0, where ϕ(·, x0) denotes the solution of the initial value problem (5.2).

In view of the well known asymptotic properties of the Mittag-Leffler function
for t → 0 and for t → ∞, [12, Section 3.4], the property (5.3) can essentially
be reformulated in the form of the requirement that ‖ϕ(t, x0)‖ remains bounded for
t → 0 and exhibits an (at least) algebraic decay to zero as t → ∞ whenever x0 is
sufficiently close to 0. Therefore, it seems natural to extend this definition to the case
of non-commensurate fractional differential equation systems that is relevant in our
context in the following way:

Definition 2 The trivial solution of (5.2a) isMittag-Leffler stable if there exist positive
constants γ,m and δ such that for any initial condition x0 ∈ B(0, δ), the solution
ϕ(·, x0) of the initial value problem (5.2) exists globally on the interval [0,∞) and

max{ sup
t∈[0,1]

‖ϕ(t, x0)‖, sup
t≥1

tγ ‖ϕ(t, x0)‖} ≤ m.
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Our aim is to prove the following theorem.

Theorem 5 Suppose that all zeros of the characteristic function Q(s) = sα1+α2 −
a11sα2 −a22sα1 +det A lie in the open left-half of the complex plane. Then, the trivial
solution of differential equation (5.2a) is Mittag-Leffler stable. More precisely, there
exist constants δ, ε > 0 such that for any ‖x0‖ < δ, the unique solution ϕ(·, x0) of
the initial value problem (5.2) exists globally on [0,∞) and supt≥1 t

ν‖ϕ(t, x0)‖ ≤ ε

with ν = min{α1, α2}.
As shown above, we see that Lemmas 2, 4, 5, 6 and 7 give sufficient conditions

which ensure that the characteristic function Q has no zero in the closed right hand
side of the complex plane. Thus, by combining these lemmas and Theorem 5, we
obtain the result below.

Corollary 3 Let

q1 = sin α1π
2

sin (α1+α2)π
2

and q2 = sin α2π
2

sin (α1+α2)π
2

.

The statement of Theorem 5 is true if one of the following conditions is satisfied:

(i) a11, a22 ≤ 0 and det A > 0.
(ii) a11 = 0, a22 > 0, det A > 0 and

(a22q1)
α1/α2a22q2 < det A.

(iii) a22 = 0, a11 > 0, det A > 0 and

(a11q2)
α2/α1a11q1 < det A.

(iv) a11, a22, det A > 0 and one of the following conditions holds:

(iv)1 a11q2+a22q1 > 1 and a11q2 ((a11 + a22)q2)α2/α1+a22(a11+a22)q22 ≤ det A;
(iv)2 a11q2 + a22q1 ≤ 1 and a11q1 + a22q2 < det A.

(v) a11 < 0, a22, det A > 0 and one of the following conditions holds:

(v)1 a11q2 + a22q1 > 1 and (a22q1)α1/α2 a22q2 ≤ det A;
(v)2 a11q2 + a22q1 ≤ 1 and a22q2 ≤ det A.

Proof of Theorem 5 From the assumption of the theorem that f is locally Lipschitz
continuous at the origin, we can find a constant ε0 > 0 such that the function f is
Lipschitz continuous on B(0, ε0). Denote by f̂ a Lipschitz extension of f toR2. This
means that f̂ is globally Lipschitz continuous and f̂ (x) = f (x) on B(0, ε0). We now
focus on the system

C Dα
0+x(t) = Ax(t) + f̂ (x(t)), t > 0, (5.4a)

x(0) = x0. (5.4b)
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Then, for any x0 ∈ B(0, ε0), its unique solution ϕ̂(·, x0) = (ϕ̂1(·, x0), ϕ̂2(·, x0))T on
[0,∞) satisfies the relationships

ϕ̂1(·, x0) =
(
R0(t) − a22Rα2(t)

)
x01 + a12Rα1(t)x02

+
(
(Sα1 − a22Sl(α)) ∗ f̂1(ϕ̂(·, x0))

)
(t)

+ a12
(
Sl(α) ∗ f̂2(ϕ̂(·, x0))

)
(t), (5.5a)

ϕ̂2(t, x
0) = a21Rα2(t)x01 +

(
R0(t) − a11Rα1(t)

)
x02

+ a21
(
Sl(α) ∗ f̂1(ϕ̂(·, x0))

)
(t)

+
(
(Sα2 − a11Sl(α)) ∗ f̂2(ϕ̂(·, x0))

)
(t). (5.5b)

To show the Mittag-Leffler stability of the trivial solution to the original system, we
will prove that for any small initial value vector, the unique solution of the system
(5.4) is contained in the space C∞([0,∞);R2) which is equipped with the norm

‖ξ‖w := max{ sup
t∈[0,1]

‖ξ(t)‖, sup
t≥1

tν‖ξ(t)‖}.

It is easy to see that Cw([0,∞);R2) := {ξ ∈ C∞([0,∞);R2) : ‖ξ‖w < ∞} is a
Banach spacewith the norm ‖·‖w . For ε > 0, let BCw(0, ε) := {ξ ∈ C∞([0,∞);R2) :
‖ξ‖w ≤ ε}.

Based on the representation in eq. (5.5), we establish a Lyapunov–Perron type
operator Tx0 on the space Cw([0,∞);R2) in the following way: For any ξ ∈
Cw([0,∞);R2), let

(Tx0ξ)1(t) :=
(
R0(t) − a22Rα2(t)

)
x01 + a12Rα1(t)x02

+
(
(Sα1 − a22Sl(α)) ∗ f̂1(ξ(·))

)
(t) + a12

(
Sl(α) ∗ f̂2(ξ(·))

)
(t),

(Tx0ξ)2(t) := a21Rα2(t)x01 +
(
R0(t) − a11Rα1(t)

)
x02

+ a21
(
Sl(α) ∗ f̂1(ξ(·))

)
(t) +

(
(Sα2 − a11Sl(α)) ∗ f̂2(ξ(·))

)
(t).

On the interval [0, 1], we have

|(Tx0ξ)1(t)| ≤ (|R0(t)| + |a22| · |Rα2(t)|)|x01 | + |a12| · |Rα1(t)| · |x02 |
+ l f̂ (‖ξ‖∞)‖ξ‖w

∫ t

0

(
|Sα1(s)| + (|a22| + |a12|)|Sl(α)(s)|

)
ds

≤ sup
t∈[0,1]

((
|R0(t)| + |a22| · |Rα2(t)|

)
|x01 | + |a12| · |Rα1(t)| · |x02 |

)

+ l f̂ (‖ξ‖∞)‖ξ‖wC(1 + |a22| + |a12|)
∫ 1

0

1

s1−ν
ds
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≤ sup
t∈[0,1]

((
|R0(t)| + |a22| · |Rα2(t)|

)
|x01 | + |a12| · |Rα1(t)| · |x02 |

)

+ l f̂ (‖ξ‖∞)‖ξ‖w

C(1 + |a22| + |a12|)
ν

(5.6)

and

|(Tx0ξ)2(t)| ≤ |a21| · |Rα2(t)| · |x01 | + (|R0(t)| + |a11| · |Rα1(t)|)|x02 |
+ l f̂ (‖ξ‖∞)‖ξ‖w

∫ t

0

(
|Sα2(s)| + (|a12| + |a11|)|Sl(α)(s)|

)
ds

≤ sup
t∈[0,1]

(
|a21| · |Rα2(t)| · |x01 | + (|R0(t)| + |a11| · |Rα1(t)|)|x02 |

)

+ l f̂ (‖ξ‖∞)‖ξ‖wC(1 + |a21| + |a11|)
∫ 1

0

1

s1−ν
ds

≤ sup
t∈[0,1]

(
|a21| · |Rα2(t)| · |x01 | + (|R0(t)| + |a11| · |Rα1(t)|)|x02 |

)

+ l f̂ (‖ξ‖∞)‖ξ‖w

C(1 + |a21| + |a11|)
ν

. (5.7)

For t ∈ [1,∞), we have

tν |(Tx0ξ)1(t)|
≤ sup

t≥1

( (
tν |R0(t)| + |a22|tν |Rα2(t)|

)
|x01 | + |a12|tν |Rα1(t)| · |x02 |

)

+ l f̂ (‖ξ‖∞)tν

×
∫ t

0

(
|Sα1(t − s)| + (|a22| + |a12|)|Sl(α)(t − s)|

)
s−νsν |ξ(s)|ds

≤ sup
t≥1

( (
tν |R0(t)| + |a22|tν |Rα2(t)|

)
|x01 | + |a12|tν |Rα1(t)| · |x02 |

)

+ l f̂ (‖ξ‖∞)‖ξ‖w (5.8)

× sup
t≥1

tν
∫ t

0

(
|Sα1(t − s)| + (|a22| + |a12|)|Sl(α)(t − s)|

)
s−νds

and

tν |(Tx0ξ)2(t)|
≤ sup

t≥1

(
|a21|tν |Rα2(t)| · |x01 | + (tν |R0(t)| + |a11|tν |Rα1(t)|)|x02 |

)

+ l f̂ (‖ξ‖∞)tν

×
∫ t

0

(
|Sα2(t − s)| + (|a21| + |a11|)|Sl(α)(t − s)|

)
s−νsν‖ξ(s)‖ds
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≤ sup
t≥1

(
|a21|tν |Rα2(t)| · |x01 | + (tν |R0(t)| + |a11|tν |Rα1(t)|)|x02 |

)

+ l f̂ (‖ξ‖∞)‖ξ‖w (5.9)

× sup
t≥1

tν
∫ t

0

(
|Sα2(t − s)| + (|a21| + |a11|)|Sl(α)(t − s)|

)
s−νds.

From (5.8) and (5.9), we obtain the estimates

‖(Tx0ξ)1‖w,1 (5.10)

≤ (‖R0‖w,1 + |a22| · ‖Rα2‖w,1 + |a12| · ‖Rα1‖w,1)‖x0‖
+ l f̂ (‖ξ‖∞)‖ξ‖w

(
C

ν
(1+|a12|+|a22|) + Mα1 + (|a22| + |a12|)Ml(α)

)

and

‖(Tx0ξ)2‖w,1 (5.11)

≤ (‖R0‖w,1 + |a21| · ‖Rα2‖w,1 + |a11| · ‖Rα1‖w,1)‖x0‖
+ l f̂ (‖ξ‖∞)‖ξ‖w

(
C

ν
(1+|a21|+|a11|) + Mα2 + (|a21| + |a11|)Ml(α)

)

where ‖ξ‖w,1 := max{supt∈[0,1] |ξ(t)|, supt≥1 t
ν |ξ(t)|} for any ξ ∈ C∞([0,∞);R)

and Mβ = supt≥1 t
ν
∫ t
0 |Sβ(t − s)|s−νds for β ∈ {α1, α2, l(α)}. By (5.10) and (5.11),

we see that

‖(Tx0ξ)‖w

≤
(
2‖R0‖w,1 + (|a11| + |a12|)‖Rα1‖w,1 + (|a21| + |a22|)‖Rα2‖w,1

)
‖x0‖

+ l f̂ (‖ξ‖∞)‖ξ‖w

×
⎛
⎝C

ν

⎛
⎝2 +

2∑
i, j=1

|ai j |
⎞
⎠+ Mα1 + Mα2 +

2∑
i, j=1

|ai j |Ml(α)

⎞
⎠ .

On the other hand, by virtue of the assumption that limr→0 l(r) = 0, we can choose
ε ∈ (0, ε0) so that

r0 :=
⎡
⎣2C

ν
+ Mα1 + Mα2 +

2∑
i, j=1

|ai j |
(
Ml(α) + C

ν

)⎤
⎦ l f̂ (ε) < 1.

Take

δ = ε(1 − r)

2‖R0‖w,1 + (|a11| + |a12|)‖Rα1‖w,1 + (|a21| + |a22|)‖Rα2‖w,1
,
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then for any initial condition x0 ∈ B(0, δ), we have

‖Tx0ξ‖w ≤ ε, ∀ξ ∈ BCw(0, ε),

that is, Tx0(BCw(0, ε)) ⊂ BCw(0, ε). Moreover, for every ξ, ξ̂ ∈ BCw(0, ε),

‖Tx0ξ − Tx0 ξ̂‖w ≤
⎡
⎣2C

ν
+Mα1+Mα2 +

2∑
i, j=1

|ai j |
(
Ml(α)+C

ν

)⎤
⎦ l f̂ (ε)‖ξ − ξ̂‖w

= r0‖ξ − ξ̂‖w.

Thus, the operator Tx0 is contractive on BCw(0, ε), and by Banach’s fixed point the-
orem, Tx0 has a unique fixed point ξ∗ in this set. Furthermore, this function is the
unique solution to the system (5.4) in BCw(0, ε). Notice that if ξ∗ ∈ BCw(0, ε) then
f (ξ∗(t)) = f̂ (ξ∗(t)) for every t ∈ [0,∞), and thus ξ∗ is also a solution to the system
(5.2). This completes the proof. 	


6 Numerical examples

To complete this paper, we now give some numerical examples to illustrate the main
theoretical results. Specifically, Lemmas 2, 4, 5, 6(i), 6(ii), 7(i) and 7(ii) provide
different sufficient criteria for the zeros of the characteristic function Q to be located
in the desired part of the complex plane. To demonstrate the applicability of these
criteria, we have included an example for each of them except for Lemma 2 because
this result has already been known for some time now [5].

In all the examples below, we use the functions f1 and f2 with

fi (t) =
{
1 if 0 ≤ t < 1,

t−2i if t ≥ 1
(i = 1, 2).

For all cases, we have calculated numerical solutions to verify the theoretical findings.
These solutions have been computed with Garrappa’s MATLAB implementation of
the implicit trapezoidal method described in detail in [11]. This algorithm is known to
have very favourable stability properties which makes it highly suitable for handling
equations like ours over large intervals (which is required in this case to demonstrate
the asymptotic behaviour). The step size has always been chosen as h = 1/200. For
each of the examples, we have provided two plots. The plots on the left always show
the two components of the respective solution on their own. For these plots, the values
of t range between 0 (the initial point) and 100. This interval is sufficiently large
to provide a rough impression of the asymptotic behaviour of the functions and yet
sufficiently small to still allow a reasonable view of their behaviour in the initial phase.
To complement this, we have added (on the right of each figure) a plot of tβx j (t),
j = 1, 2, where the value of β is chosen such that, according to the theoretical
considerations of Theorems 4 or 5 (whichever is applicable in the example under
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Fig. 1 Solution to the differential equation (6.1) from Example 1 with initial conditions x1(0) = 1 and
x2(0) = 2. The left graph shows the components x j (t) of the solutions themselves, the right graph shows

the functions t1/3x j (t)

consideration), tβx j (t) is bounded as t → ∞ for both values of j . The range of t was
chosen larger in this case (specifically, the displayed interval is [0, 300]) to clearly
exhibit the boundedness (or lack thereof in the case of Fig. 3 where the conditions of
Theorem 5 are not fulfilled).

Example 1 Consider the inhomogeneous two-component incommensurate fractional-
order linear system

{
C D1/3

0+ x1(t) = 0.25x2(t) + f1(t),

C D1/2
0+ x2(t) = −2x1(t) + x2(t) + f2(t),

t > 0. (6.1)

In this example, the characteristic function is Q(s) = s5/6 − s1/3 + 0.5. According to
Lemma 4, all zeros of Q lie in the open left-half of the complex plane. Furthermore,
the function f satisfies the assumption stated in Theorem 4. Hence, every solution to
(6.1) tends to the origin as t → ∞ with the rate O(t−1/3). This property is illustrated
in Fig. 1. The left graph shows that the components x1(t) and x2(t) decay to zero; the
right graph visualizes the fact that t1/3x j (t) tends to a nonzero constant for t → ∞
and j = 1, 2, thus demonstrating that the decay behaviour of x j (t) is indeed O(t−1/3).

Example 2 Consider the two-component incommensurate fractional-order nonlinear
system

{
C D1/3

0+ x1(t) = 0.25x2(t) + x21 (t)x
2
2 (t),

C D1/2
0+ x2(t) = −2x1(t) + x2(t) + x21 (t) + x22 (t),

t > 0. (6.2)

It is not difficult to check that all conditions of Lemma 4 and Theorem 5 are verified.
Thus, the trivial solution to (6.2) isMittag-Leffler stable;more precisely, byTheorem5,
we have to expect an O(t−1/3) decay behaviour for nontrivial solutions with initial
values sufficiently close to those of the trivial solution.
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Fig. 2 Solution to the differential equation (6.2) from Example 2 with initial conditions x1(0) = 0.1 and
x2(0) = −0.2. The left graph shows the components x j (t) of the solutions themselves, the right graph

shows the functions t1/3x j (t)

Fig. 3 Solution to the differential equation (6.2) from Example 2 with initial conditions x1(0) = 1 and
x2(0) = −1. The left graph shows the components x j (t) of the solutions themselves, the right graph shows

the functions t1/3x j (t)

Definition 2 states that the boundedness of the solutions cannot be expected for all
choices of the initial value any more (as had been the case in Example 1) but only for
initial values sufficiently close to (0, 0). Indeed we can see this behaviour in Fig. 2 for
the initial value (0.1,−0.2), whereas Fig. 3 shows that this behaviour is not present
for initial values farther away from (0, 0) such as, e.g., the initial value (1,−1). In
the latter case, the solutions still seem to be bounded, but the decay behaviour appears
to be absent. If one moves the initial values even farther away from the equilibrium
point, then one cannot even expect this boundedness any more.

Example 3 Consider the fractional linear system

{
C D0.6

0+ x1(t) = x1(t) + 2x2(t) + f1(t),
C D0.8

0+ x2(t) = −x1(t) + f2(t),
t > 0. (6.3)
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Fig. 4 Solution to the differential equation (6.3) from Example 3 with initial conditions x1(0) = 1 and
x2(0) = 2. The left graph shows the components x j (t) of the solutions themselves, the right graph shows

the functions t0.6x j (t)

Fig. 5 Solution to the differential equation (6.4) from Example 4 with initial conditions x1(0) = 0.1 and
x2(0) = −0.2. The left graph shows the components x j (t) of the solutions themselves, the right graph

shows the functions t0.6x j (t)

The characteristic function of the system is Q(s) = s1.4 − s0.8 + 2. By Lemma 5,
all zeros of Q lie in the open left-half of the complex plane and the assumptions of
Theorem 4 are satisfied. Hence, every solution to this system converges to the origin as
t → ∞ with an O(t−0.6) convergence rate. As in Example 1, we can also reproduce
this behaviour numerically. The corresponding graphs are plotted in Fig. 4.

Example 4 Consider the system

{
C D0.6

0+ x1(t) = x1(t) + 2x2(t) + x21 (t)x
2
2 (t),

C D0.8
0+ x2(t) = −x1(t) + x21 (t) + x22 (t),

t > 0. (6.4)

Based on Lemma 5 and Theorem 5, we see that the trivial solution of (6.4) is Mittag-
Leffler stable. As in Example 2, this is exhibited—together with the decay behaviour
predicted by Theorem 5—in Fig. 5.
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Fig. 6 Solution to the differential equation (6.5) from Example 5 with initial conditions x1(0) = 1 and
x2(0) = 2. The left graph shows the components x j (t) of the solutions themselves, the right graph shows

the functions t0.3x j (t)

Example 5 Consider the inhomogeneous two-component incommensurate fractional-
order linear system

{
C D0.3

0+ x1(t) = x1(t) − x2(t) + f1(t),
C D0.4

0+ x2(t) = 2x1(t) + x2(t) + f2(t),
t > 0. (6.5)

The system (6.5) has the characteristic function Q(s) = s0.7 − s0.4 − s0.3 + 3. From
Lemma 6 (i) and Theorem 4, it follows that every solution of this system tends to the
origin as t → ∞ as O(t−0.3). Once again, our numerical results, shown in Fig. 6,
support this statement.

Example 6 Consider the two-component incommensurate fractional-order nonlinear
system

{
C D0.3

0+ x1(t) = 0.1x1(t) − 0.4x2(t) + x21 (t)x
2
2 (t),

C D0.4
0+ x2(t) = 0.7x1(t) + 0.2x2(t) + x21 (t) + x22 (t),

t > 0. (6.6)

Its characteristic function is Q(s) = s0.7 − 0.1s0.4 − 0.2s0.3 + 0.3. It follows from
Lemma 6(ii) and Theorem 5 that the trivial solution is Mittag-Leffler stable. Once
again, we can visualize this observation on the basis of numerical results, cf. Fig. 7.

Example 7 Consider the two-component incommensurate fractional-order linear sys-
tem

{
C D0.4

0+ x1(t) = −x1(t) + 2x2(t) + f1(t),
C D0.5

0+ x2(t) = −5x1(t) + 4x2(t) + f2(t),
t > 0. (6.7)

The system (6.7) has the characteristic function Q(s) = s0.9 + s0.5 − 4s0.4 + 6.
According to Lemma 7(i) and Theorem 4, its solution converges to the origin with a
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Fig. 7 Solution to the differential equation (6.6) from Example 6 with initial conditions x1(0) = 0.1 and
x2(0) = −0.2. The left graph shows the components x j (t) of the solutions themselves, the right graph

shows the functions t0.3x j (t)

Fig. 8 Solution to the differential equation (6.7) from Example 7 with initial conditions x1(0) = 1 and
x2(0) = 2. The left graph shows the components x j (t) of the solutions themselves, the right graph shows

the functions t0.4x j (t)

rate O(t−0.4). As above, the numerical data shown in Fig. 8 confirms this theoretical
observation.

Example 8 Consider the two-component incommensurate fractional-order nonlinear
system

{
C D0.4

0+ x1(t) = −x1(t) − 2x2(t) + x21 (t)x
2
2 (t),

C D0.5
0+ x2(t) = 2x1(t) + 2x2(t) + x21 (t) + x22 (t),

t > 0. (6.8)

Its characteristic function Q(s) = s0.9+s0.5−2s0.4+2.According to Lemma 7(ii) and
Theorem5, the trivial solution of (6.8) isMittag-Leffler stable as illustrated graphically
in Fig. 9.
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Fig. 9 Solution to the differential equation (6.8) from Example 8 with initial conditions x1(0) = 0.1 and
x2(0) = −0.2. The left graph shows the components x j (t) of the solutions themselves, the right graph

shows the functions t0.4x j (t)

7 Conclusion

In this paper, we have provided new insight into the behaviour of non-commen-
surate fractional order planar systems. The main new contributions are Theorem 4,
Corollary 2, Theorem 5 and Corollary 3. In Theorem 4 and Corollary 2, we show
sufficient conditions for the global attractivity of non-trivial solutions to fractional-
order inhomogeneous linear planar systems. In Theorem 5 and Corollary 3, we obtain
the Mittag-Leffler stability of an equilibrium point to fractional order nonlinear planar
systems. To achieve these goals, our approach is as follows. Firstly, based on Cauchy’s
argument principle in complex analysis, we obtain various explicit sufficient condi-
tions for the asymptotic stability of linear systems whose coefficient matrices are
constant. Secondly, by using Hankel type contours, we derive some important esti-
mates of special functions arising from a variation of constants formula of solutions to
inhomogeneous linear systems. Then, by proposing carefully chosen weighted norms
combined with the Banach fixed point theorem for appropriate Banach spaces, we get
the desired conclusions. We also provide numerical examples to illustrate the effect
of the main theoretical results.
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Appendix

Appendix A: Proof of Lemma 8

Proof of Lemma 8 Due to the fact that there are no zeros of the characteristic function
Q in the closed right half of the complex plane, from Lemma 3(iii), we can find δ > 0
(which is small enough) such that all zeros of Q are not in the domain | arg(s)| ≤ π

2 +δ.

Let R > 0 be a large enough constant such that

|Q(s)| ≥ 1

2
|s|α1+α2 whenever |s| ≥ R. (A.1)

For μ > 0 and θ ∈ (0, π), we establish an oriented contour γ (μ, θ) formed by three
segments:

– {s ∈ C : |s| ≥ μ, arg s = θ},
– {s ∈ C : |s| = μ, | arg s| ≤ θ},
– {s ∈ C : |s| ≥ μ, arg s = −θ}.

(i) Because all zeros of Q (if they exist) lie on the left of the contour γ (R, π
2 + δ),

using the same argument as in [23, Lemma 4.1], we obtain the representation

Rλ(t) = 1

2π i

∫
γ (R, π

2 +δ)

sl(α)−λ−1est

Q(s)
ds, t > 0, λ ∈ {0, α1, α2} . (A.2)

Choose ε > 0 such that Q has no zero in the ball {s ∈ C : |s| ≤ ε} . From (A.2), we
have

Rλ(t) = 1

2π i

∫
Λ′

t

sl(α)−λ−1est

Q(s)
ds + 1

2π i

∫
γ ( ε

t ,
π
2 +δ)

sl(α)−λ−1est

Q(s)
ds, t ≥ 1

= I1(t) + I2(t), (A.3)

where Λ′
t is the clockwise oriented contour bounding the domain

Ωt :=
{
s ∈ C : ε

t
< |s| < R, | arg s| <

π

2
+ δ
}

,

see Fig. 10. Notice that (sl(α)−λ−1est )/Q(s) is analytic onΩt ∪Λ′
t for all t ≥ 1. Thus,

by applying Cauchy’s theorem, we obtain

I1(t) = 0 for all t ≥ 1.
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Fig. 10 The contours and sets
used in the proof of Lemma 8:
The radii of the green and
magenta circular arcs are ε/t
and R, respectively. The contour
γ (R, π/2 + δ) comprises the
upper blue ray, the magenta
circular arc, and the lower blue
ray and is traversed from top to
bottom; Ωt is the open set
bounded by the magenta and
green boundary lines (so these
magenta and green lines together
form the contour Λ′

t ). Λ1
comprises the upper blue ray and
the upper green line; Λ2 denotes
the union of the lower blue ray
and the lower green line, and Λ3
is the green circular arc

Therefore, for each t ≥ 1, we see that

Rλ(t) = 1

2π i

∫
γ ( ε

t ,
π
2 +δ)

sl(α)−λ−1est

Q(s)
ds

= 1

2π i

∫
Λ1

sl(α)−λ−1est

Q(s)
ds + 1

2π i

∫
Λ2

sl(α)−λ−1est

Q(s)
ds

+ 1

2π i

∫
Λ3

sl(α)−λ−1est

Q(s)
ds

= I3(t) + I4(t) + I5(t) (A.4)

with

Λ1 :=
{
s ∈ C : |s| ≥ ε

t
, arg s = π

2
+ δ
}

,

Λ2 :=
{
s ∈ C : |s| ≥ ε

t
, arg s = −(

π

2
+ δ)

}
,

Λ3 :=
{
s ∈ C : |s| = ε

t
, | arg s| ≤ π

2
+ δ
}

.

Put

η := inf
s∈γ (ε, π

2 +δ)∪B(0,ε)
|Q(s)|. (A.5)

For s ∈ Λ1, s = rei(
π
2 +δ) = r(i cos δ − sin δ) with r ≥ ε/t , and therefore

I3(t) = 1

2π i

∫ ∞

ε/t

r l(α)−λ−1ei(l(α)−λ−1)( π
2 +δ)ert(i cos δ−sin δ)(i cos δ − sin δ)

Q̃(r)
dr .
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Here, Q̃(r) = Q(rei(
π
2 +δ)). From (A.5), we have the estimate |Q̃(r)| ≥ η for all

r ≥ ε/t . This implies that

|I3(t)| ≤ 1

2πη

∫ ∞

ε/t
r l(α)−λ−1e−r t sin δdr . (A.6)

By the change of variable r = u/(t sin δ),

∫ ∞

ε/t
r l(α)−λ−1e−r t sin δdr ≤ 1

(t sin δ)l(α)−λ

∫ ∞

0
ul(α)−λ−1e−udu

= 1

(t sin δ)l(α)−λ
Γ (l(α) − λ)

≤ C1,1

t l(α)−λ
. (A.7)

Hence,

|I3(t)| ≤ C1,1

t l(α)−λ
. (A.8)

Similarly, there is a C1,2 > 0 such that

|I4(t)| ≤ C1,2

t l(α)−λ
. (A.9)

For s ∈ Λ3, s = (ε/t)eiϕ with |ϕ| ≤ π
2 + δ, and so

I5(t) = − 1

2π i

∫ π
2 +δ

−( π
2 +δ)

(ε/t)l(α)−λ−1 eiϕ(l(α)−λ−1)eε(cosϕ+i sin ϕ)i(ε/t)eiϕ

Q̂(ϕ)
dϕ

(A.10)

where Q̂(ϕ) = Q( ε
t e

iϕ). From (A.5), we know that |Q̂(ϕ)| ≥ η for all ϕ ∈ [−(π
2 +

δ), π
2 + δ]. Thus

|I5(t)| ≤ 1

2πη

(ε

t

)l(α)−λ
∫ π

2 +δ

−( π
2 +δ)

eε cosϕdϕ ≤ C1,3

t l(α)−λ
. (A.11)

From (A.4), (A.8), (A.9) and (A.11), we obtain

|Rλ(t)| ≤ C

tl(α)−λ
≤ C

tν
(A.12)

for all t ≥ 1 and all λ ∈ {0, α1, α2}, with C := C1,1 + C1,2 + C1,3.
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(ii) For the proof of the seocnd statement, we first look at the case β ∈ {α1, α2}. Here,
we apply the arguments as in the proof of the part (i) above to obtain

Sβ(t) = 1

2π i

∫
γ ( ε

t ,
π
2 +δ)

sl(α)−βest

Q(s)
ds

= 1

2π i

∫
Λ1

sl(α)−βest

Q(s)
ds + 1

2π i

∫
Λ2

sl(α)−βest

Q(s)
ds + 1

2π i

∫
Λ3

sl(α)−βest

Q(s)
ds

with each t ≥ 1. In the same way as above, we can find a constant C2,1 so that the
estimate

|Sβ(t)| ≤ C2,1

t l(α)−β+1
(A.13)

holds for all t ≥ 1 and all β ∈ {α1, α2}. Clearly, t l(α)−β+1 ≥ tν+1 for all t ≥ 1 and
all β ∈ {α1, α2}. Thus,

|Sβ(t)| ≤ C2,1

tν+1 , β ∈ {α1, α2} , t ≥ 1. (A.14)

Next, we consider the remaining case β = l(α). For t ≥ 1, we see

Sl(α)(t) = 1

2π i

∫
γ ( ε

t ,
π
2 +δ)

est

Q(s)
ds

= 1

2π i

∫
γ ( ε

t ,
π
2 +δ)

1

det A
estds

− 1

2π i

∫
γ ( ε

t ,
π
2 +δ)

(sα1+α2 − a11sα2 − a22sα1)est

Q(s) · det A ds

= I6(t) + I7(t) (A.15)

By using the same estimates as in the proof of the part (i) above, there exist constants
C2,2,C2,3 and C2,4 such that

|I7(t)| ≤ C2,2

t l(α)+1
+ C2,3

tα1+1 + C2,4

tα2+1 ≤
∑

2≤i≤4 C2,i

tν+1 , ∀t ≥ 1.

(A.16)

On the other hand, by the change of variable s = u1/μ
t with some μ ∈ (0, 1), we find

I6(t) = 1

2πμi

1

t det A

∫
γ (εμ,μ( π

2 +δ))

eu
1/μ

u(1−μ)/μdu = 1

t det A

1

Γ (0)
= 0, (A.17)
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the last equality being deduced from [17, eq. (1.52)]. Combining (A.15) and (A.16),
for each t ≥ 1, we conclude

|Sl(α)(t)| ≤ C

tν+1 . (A.18)

(iii) For each t ∈ (0, 1) and β ∈ {α1, α2, l(α)}, we have

Sβ(t) = 1

2π i

∫
γ (R, π

2 +δ)

sl(α)−βest

Q(s)
ds

= 1

2π i

∫
Ψt

sl(α)−βest

Q(s)
ds + 1

2π i

∫
γ ( R

t , π
2 +δ)

sl(α)−βest

Q(s)
ds

= I8(t) + I9(t), (A.19)

where Ψt is the boundary of the domain Ut := {
s ∈ C : R < |s| < R/t, | arg s| <

π
2 + δ

}
. Since sl(α)−βest/Q(s) is analytic on Ut ∪ Ψt for t ∈ (0, 1), by applying

Cauchy’s theorem, we obtain I8(t) = 0 for all t ∈ (0, 1). Thus,

Sβ(t) = 1

2π i

∫
γ ( R

t , π
2 +δ)

sl(α)−βest

Q(s)
ds

= 1

2π i

∫
Ψ1

sl(α)−βest

Q(s)
ds + 1

2π i

∫
Ψ2

sl(α)−βest

Q(s)
ds + 1

2π i

∫
Ψ3

sl(α)−βest

Q(s)
ds

= I10(t) + I11(t) + I12(t) (A.20)

where

Ψ1 :=
{
s ∈ C : |s| ≥ R

t
, arg s = π

2
+ δ

}
,

Ψ2 :=
{
s ∈ C : |s| ≥ R

t
, arg s = −(

π

2
+ δ)

}
,

Ψ3 :=
{
s ∈ C : |s| = R

t
, | arg s| ≤ π

2
+ δ

}
.

For s ∈ Ψ1, s = rei(
π
2 +δ) = r(− sin δ + i cos δ) with r ≥ R/t , and so

I10(t) = 1

2π i

∫ ∞

R/t

r l(α)−βei(l(α)−β)( π
2 +δ)ert(− sin δ+i cos δ)

Q̃(r)
(− sin δ + i cos δ)dr

(A.21)

where Q̃(r) = Q(rei(
π
2 +δ)). From (A.1), we have the estimate

|Q̃(r)| = |Q(rei(
π
2 +δ))| ≥ 1

2
|rei( π

2 +δ)|α1+α2 = 1

2
rα1+α2 , ∀r ≥ R

t
. (A.22)
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This implies

|I10(t)| ≤ 1

π

∫ ∞

R/t

r l(α)−βe−r t sin δ

rl(α)
dr ≤ 1

π t sin δ

∫ ∞

R/t

1

rβ+1 dr = C3,1

t1−β
. (A.23)

The second inequality here is obtained by applying the relation e−x ≤ 1/x for x > 0.
Similarly,

|I11(t)| ≤ C3,2

t1−β
. (A.24)

For s ∈ Ψ3, s = (R/t)eiϕ with |ϕ| ≤ π
2 + δ, thus

I12(t) = 1

2π i

∫ π
2 +δ

−( π
2 +δ)

(
R

t

)l(α)−β+1 ei(l(α)−β)ϕeR(cosϕ+i sin ϕ)

Q̂(ϕ)
ieiϕdϕ, (A.25)

where Q̂(ϕ) = Q( Rt e
iϕ). From (A.1), we have

|Q̂(ϕ)| =
∣∣∣∣Q
(
R

t
eiϕ
)∣∣∣∣ ≥ 1

2

∣∣∣∣ Rt e
iϕ
∣∣∣∣
α1+α2

= 1

2

(
R

t

)α1+α2

(A.26)

for all ϕ ∈ [−(π
2 + δ), π

2 + δ], and thus

|I12(t)| ≤ 1

2π

∫ π
2 +δ

−( π
2 +δ)

(
R

t

)l(α)−β+1 |ei(l(α)−β)ϕ | · |eR(cosϕ+i sin ϕ)|
|Q̂(ϕ)| |ieiϕ |dϕ

≤ R1−β

t1−β

1

π

∫ π
2 +δ

−( π
2 +δ)

eR cosϕdϕ ≤ C3,3

t1−β
. (A.27)

From (A.20), (A.23), (A.24) and (A.27), we obtain

|Sβ(t)| ≤ C

t1−β
,∀t ∈ (0, 1), β ∈ {α1, α2, l(α)} . (A.28)

Finally, (4.4) is an immediate consequence of (4.2) and (4.3). 	
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