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An Improvement

of a Nonclassical Numerical Method

for the Computation of Fractional Derivatives

Kai Diethelm∗†

Abstract

Standard methods for the numerical calculation of fractional deriva-
tives can be slow and memory-consuming due to the non-locality of the
differential operators. Yuan and Agrawal have proposed a more efficient
approach for operators whose order is between 0 and 1 that differs sub-
stantially from the traditional concepts. It seems however that the ac-
curacy of the results can be poor. We modify the approach, adapting it
better to the properties of the problem, and show that this leads to a
significantly improved quality. Our idea also works for operators of order
greater than 1.

Keywords: fractional derivative; numerical method; Yuan-Agrawal method

1 Introduction

Caputo-type fractional differential operators of order α > 0 with α /∈ N, denoted
and defined by

Dα
∗ y(x) :=

1

Γ(dαe−α)

∫ x

0

(x−τ)dαe−α−1y(dαe)(τ) dτ, (1)

have proven to be important tools in the mathematical modeling of many phe-
nomema in physics and engineering, see, e.g., [1, 2, 3, 4, 5]. Here, d·e denotes the
ceiling function that rounds up to the nearest integer whereas the floor function
b·c rounds down.

The large number of potential applications of such operators imply a sub-
stantial demand for efficient schemes for their numerical handling. A number
of methods for the solution of this problem have been proposed [6, 7, 8, 9]. All
these methods essentially deal with the non-locality of the operator in the same
way, namely by sampling the function y (or y′) on a more or less regular grid in
[0, x]. Typically one needs to find approximations for Dα

∗ y(x) for x in a certain
interval [0, X], i.e. one has to compute these values for many different choices
of x. Since these computations are expensive in terms of run time and memory
required for storing those function values that are re-used, the process is very
costly. For a related problem, Liang et al. [10, 11] have proposed a substantially
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different approach that can be transferred to certain special cases of our prob-
lem here; however their method heavily uses Laplace transform techniques and
is therefore essentially restriced to the treatment of linear problems.

A recent very general nonclassical approach to overcome these difficulties is
due to Yuan and Agrawal [12]. The computational cost of the algorithm is evi-
dent [4, 13, 12], but reports on the quality of the results produced by this scheme
give an unclear picture. Some authors apparently have used it successfully [12];
others criticize it [4, 13] and support their point of view by arguments based on a
mechanical interpretation of the method [13]. We aim to collect information on
the structure and the behavior of the algorithm and to explain how these prop-
erties lead to the unsatisfactory accuracy of the original method. Using these
observations we will propose a relatively simple modification of the algorithm
and demonstrate that this revised scheme behaves significantly better.

2 The original method

Let us first recall the precise definition of the original Yuan-Agrawal method
from [12]. Whereas they have only discussed the case 0 < α < 1, our approach
covers the general case of arbitrary positive α /∈ N. For 0 < α < 1 we recover
the original scheme.

We assume our function y ∈ Cdαe[0, X] in (1) and the order α > 0, α /∈ N,
of the differential operator to be given. Then, the initial value problem

d

dx
φ(w, x) = −w2φ(w, x)

+
2 sinπα

(−1)bαcπ
w2α−2dαe+1y(dαe)(x), (2)

φ(w, 0) = 0,

for a fixed w > 0 contains an ordinary differential equation (because w is fixed).
Moreover it is a linear and inhomogeneous differential equation of order 1 with
constant coefficients. Its solution φ is found to be

φ(w, x) =
2 sinπα

(−1)bαcπ
w2α−2dαe+1

∫ x

0

y(dαe)(τ)

e−(x−τ)w2 dτ. (3)

The relation between this function φ and the Caputo derivative of y is very
simple; it has the form

Dα
∗ y(x) =

∫ ∞
0

φ(w, x) dw. (4)

This can be shown using the method of [13, §2]. Based on eqs. (4) and (2),
Yuan and Agrawal [12, §3] use two parameters h > 0 and n ∈ N to be given
by the user and proceed in two steps to construct their approximation for the
fractional derivative Dα

∗ y(x).
In the first step, let zkn be the kth zero of the Laguerre polynomial of degree

n, assuming the ordering z1n < zkn < · · · < znn. Then, Yuan and Agrawal
compute an approximate solution φh(zkn, x) of the differential equation (2) by a
suitable numerical method for all k and for all x for which an approximate value
of Dα

∗ y(x) is desired. This approach avoids to use the explicit representation
(3) of φ. When choosing a numerical method for the solution of the differential
equation, the user has to take into account one important point: Equation (2)
needs to be solved for w = zkn, k = 1, 2, . . . , n. The absolute value of the
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coefficient of φ on the right-hand side of eq. (2), viz. the number w2, can be
very large as n→∞ for some values of k; e.g., w = znn ≈ 4n [14, eq. (6.32.4)],
and thus w2 ≈ 1600 already for n = 10. Explicit methods are likely to fail under
such conditions because of their insufficient stability unless the step sizes are
chosen extremely small [15, Chap. IV]. To be on the safe side even for relatively
large (and computationally cheaper) step sizes, we will only use A-stable implicit
methods.

The second step performs the actual computation of the fractional derivative
by means of eq. (4) but using the just computed approximation φh instead of
the exact function φ in the integral on the right-hand side. The integration itself
is also done numerically by writing∫ ∞

0

φh(w, x)dw =

∫ ∞
0

e−w[ewφh(w, x)]dw

and using an n-point Gauss (more precisely, Gauss-Laguerre) quadrature rule
[14, §3.4] for the weight e−w with respect to the factor in brackets, thus obtaining

Dα
n,hy(x) :=

n∑
k=1

wkne
zknφh(zkn, x), (5)

with wkn denoting the Laguerre weights, as the final approximation for Dα
∗ y(x).

It has been reported [4, 13] that the accuracy of the results of the original
Yuan-Agrawal method is rather poor. Moreover, Schmidt and Gaul [13, §3] have
applied this method to a fractional model of viscoelasticity and demonstrated
that this is equivalent to using a classical viscoelasticity model with n Maxwell
chains whose relaxation times are w2

kn, k = 1, 2, . . . , n. Thus the relaxation times
cannot be chosen by the user, and they are distributed only over a relatively
small subinterval of (0,∞). Schmidt and Gaul have solved the model problem

cDα
∗ x(t) + kx(t)=f(t), x(0)=0, t∈ [0, 1.35 · 109], (6)

(the equation of motion of a massless one-dimensional fractional Kelvin-Voigt
model subject to the external force f(t) [13, §2]) with c = 100, k = 10, α = 0.3
and

f(t) =

{
0 for t = 0,
f0 else,

with f0 = 1. (7)

The equations were solved by the trapezoidal method with mesh points tj =

10−4
∑j−1
k=0 1.005k (j = 0, 1,. . . , 5000). The results were rather poor [13, Figs.

3–5]. For example, the creep process of the exact fractional Kelvin-Voigt model,
given by x(t) = f0k

−1(1 − Eα(−ktα/c)) (Eα is the Mittag-Leffler function of
order α), covers more than 14 decades while the Yuan-Agrawal approximation,
even for n = 15, is limited to less than 8 decades. This reflects the unfavorable
distribution of the relaxation times.

To understand and improve the behavior of the scheme it is useful to look
at the asymptotics of the integrand function φ in eq. (4). In this context, Lu
and Hanyga [4, eqs. (32) and (33)] have observed

φ(w, x) ∼ w2α−2dαe+1 as w → 0, (8)

φ(w, x) ∼ w2α−2dαe−1 as w →∞, (9)

where a(v) ∼ b(v) means that 0 < A ≤ |a(v)/b(v)| ≤ B with constants A and
B as v tends to the indicated limit.
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We can now identify two reasons why the Yuan-Agrawal method cannot
work well. Both reasons are related to the fact that the Gauss-Laguerre rule is
not really suitable for integrals exhibiting such asymptotics.

Firstly the Laguerre method as originally proposed [12] assumes the inte-
grand to be smooth at the origin, and by eq. (8) this is true if and only if the
exponent of w in eq. (8) is an integer, i.e. if α = k + 1/2 with some k ∈ N0.

There are ways to solve this problem. Lu and Hanyga [4, eq. (34)], e.g.,
suggest to split the integration interval into [0, c] and [c,∞) with c > 0 and
use a Gauss-Jacobi quadrature with weight w2α−2dαe+1 for the integral on [0, c].
The integral over [c,∞) is handled by a shifted Laguerre formula, preceded by
analytical manipulations accelerating the decay of the integrand as w → ∞,
thus speeding up the convergence of the quadrature formula.

An even simpler idea would be to the replace the standard Laguerre formula
on [0,∞), i.e. a Gauss rule with weight function e−w, by its generalization with
weight w2α−2dαe+1e−w. This reproduces the true asymptotics of the integrand
near 0, thus removing the problem there.

The second, and much more serious, problem is the behavior of the integrand
φ(w, x) as w → ∞ for fixed x. It decays as w2α−2dαe−1, see eq. (9). The
exponent of w here is contained in (−3,−1). This is sufficient to make sure
that the improper integral exists, but far too slow for a good approximation by
expressions of the form wγe−wp(w) with some polynomial p which is what a
generalized Laguerre formula attempts. In contrast to the problem at w = 0
discussed above, this difficulty can only be handled by giving up the Gauss-
Laguerre principle.

3 An improved method

We thus suggest to replace the Gauss-Laguerre rules by a method proposed
by Gautschi [16, §3] and tailored for integrands with an algebraic decay. This
approach, applied to our situation, amounts to using the formula∫ ∞

0

φh(w, x)dw ≈ 2

n∑
k=1

Wkn
(1+Zkn)ᾱ−2

(1− Zkn)ᾱ
φh

(
1−Zkn
1+Zkn

, x

)
(10)

with ᾱ := 2α−2dαe+1 ∈ (−1, 1). Here Wkn and Zkn are the weights and nodes
of the Gauss-Jacobi quadrature rule for the weight function (1 − t)ᾱ(1 + t)−ᾱ

which can be computed easily with the standard algorithms of [17]. We may
then expect a much faster convergence of the quadrature than in the original
algorithm.

The smallest node of the Gauss-Jacobi method behaves as −1 + cn−2 for
n → ∞ [14, Thm. 8.1.2]. Thus, because of the transformation of variables
in our method, the largest point at which our quadrature evaluates φ is at
cn2(1 + o(1)). This is much larger than the value cn of the corresponding point
in the Gauss-Laguerre method from the original scheme. The difference between
the two sets of nodes and weights is evident from Fig. 1.

We note three consequences of this observation: First, the value of φ(w, x) is
taken into account for much larger values of w which, in view of the slow decay
of φ(w, x) as w →∞ observed in eq. (9), is a main reason for the superiority of
the Gauss-Jacobi method. Second, explicit methods or not A-stable methods
for the solution of the ordinary differential equations are even less useful than
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Figure 1: Log-log plot of transformed nodes and weights for 8-point Gauss-
Laguerre rule (original method; triangles) and 8-point Gauss-Jacobi rule (mod-
ified method; circles).

in the original method. Finally, the fact that the distribution of the nodes now
covers a larger interval is very attractive in view of the observations of Schmidt
and Gaul concerning the interpretation of the squares of the nodes as relaxation
times in a classical viscoelastic model.

Figure 2 shows the results of our modified approach for the problem given
in eqs. (6) and (7) without changing any parameters, only replacing the n-point
Gauss-Laguerre method proposed by Yuan and Agrawal by our n-point trans-
formed Gauss-Jacobi method described in eq. (10). In particular, the ordinary
differential equations generated by our method have been solved in the same way
as those of the original method were solved in [13], namely by the trapezoidal

algorithm with mesh points tj = 10−4
∑j−1
k=0 1.005k (j = 0, 1,. . . , 5000). Thus

the computational cost was unchanged. A comparison with the corresponding
results for the original algorithm given in [13, Fig. 3] immediately shows the
substantial advantage of the modified scheme.

Another experiment was to exchange the trapezoidal method for the solution
of the differential equations in our approach for a backward Euler method, thus
replacing a second-order by a first-order scheme. Nevertheless it was impossible
to distinguish the resulting plots from those obtained by the modified method
with the trapezoidal formula shown in Fig. 2. This emphasizes that the choice
of the quadrature rule for the integral is much more important than the choice
of the differential equation solver as long as the latter is A-stable and implicit.

Other numerical experiments have shown similar improvements. For the
sake of brevity we only report the results of a few of them. The first one is the
computation of Dα

∗ y(x) for y(x) = x3 and α = 0.6 on the interval x ∈ [0, 1]. The
resulting absolute errors of the original Yuan-Agrawal method, computing the
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Figure 2: Exact solution (solid line) of eq. (6) with data given in eq. (7) and
numerical solution with modified method, using trapezoidal ODE solver and 2
(dash-dotted), 7 (dotted), and 15 (dashed) quadrature points, respectively.

integral in eq. (4) with an n-point Gauss-Laguerre rule with n ∈ {8, 16, 32}, are
shown in Fig. 3. In each case we have solved the first-order differential equations
with trapezoidal methods with step sizes h = 1/10 and h = 1/100. The error
decreases substantially when the number of quadrature nodes is doubled whereas
a decrease of the step size of the trapezoidal method shows almost no effects.

We have repeated these examples with our modified algorithm and un-
changed parameters. The results are given in Fig. 4. A comparison with Fig. 3
once again shows significant differences. First, by examining the scales on the
vertcial axes we note that the magnitude of the error is much smaller. Second,
we could not distinguish the data for 32 quadrature points from those for 16
nodes graphically, so we only plotted the latter. Moreover now the quadrature
error is so small that the error introduced by the trapezoidal differential equa-
tion solver dominates the overall error. Thus, in this sense, the roles of the two
parts of the error have been reversed when compared to the original algorithm.
All these points clearly reveal that the modification of the quadrature formula
indeed results in the expected performance improvement.

Similar results can be found in our second example, the numerical compu-
tation of Dα

∗ y(x) for y(x) = exp(−x) and α = 1.3 on the interval x ∈ [0, 1]. In
contrast to the previous example, we now deal with a function y with the prop-
erty y(0) 6= 0. Moreover we have chosen α > 1 to illustrate that our method
works well in this case too. The corresponding graphs are depicted in Fig. 5
for the original Yuan-Agrawal method and in Fig. 6 for our modified version,
respectively.

As in our first example we observe that the error of the original method
shows a quite strong dependence on the step size of the differential equation
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Figure 3: Absolute errors of the original Yuan-Agrawal method for the approx-
imation of Dα

∗ y(x) with y(x) = x3 and α = 0.6 for x ∈ [0, 1] with 8, 16 and
32 Gauss-Laguerre nodes and trapezoidal method with h = 1/10 (dashed) and
h = 1/100 (solid lines).

solver. Moreover, we find an oscillatory behavior of the total error with an
amplitude that decays rapidly as the step size of the differential equation solver
decreases.

For the modified algorithm we can once again see errors with a much smaller
order of magnitude. The oscillations of the error behave in a similar way as those
of the original method.

Finally we aim to solve one more fractional differential equation by our new
method, namely

Dα
∗ y(t) =

40320

Γ(9− α)
t8−α − 3

Γ(5 + α/2)

Γ(5− α/2)
t4−α/2 (11)

+
9

4
Γ(α+ 1) +

(
3

2
tα/2 − t4

)3

− [y(t)]3/2,

y(0) = y′(0) = 0. (12)

The equation is taken from [9, §4.1]; we shall specifically use α = 1.25. The
exact solution is y(t) = t8 − 3t4+α/2 + 9tα/4, see [9, p. 46]. We have solved
it for t in the interval [0, 1] using our modified Yuan-Agrawal method with
5 and 10 Gauss-Jacobi quadrature nodes. The resulting ordinary differential
equations have, as usual, been solved by a trapezoidal integrator using the step
sizes h = 1/40 and h = 1/80, respectively. The numerical results shown in Fig.
7 clearly demonstrate that our method can be used successfully to solve this
nonlinear differential equation as well. Evidently the fact that the order of the
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Figure 4: Absolute errors of the modified Yuan-Agrawal method for the approx-
imation of Dα

∗ y(x) with y(x) = x3 and α = 0.6 for x ∈ [0, 1] with 8 (dotted)
and 16 (solid lines) Gauss-Jacobi nodes and trapezoidal method with h = 1/10
and h = 1/100.

differential operator is now greater than one does not produce any problems
either.

4 Summary and Conclusions

The Yuan-Agrawal method for the numerical calculation of fractional derivatives
consists of three steps:

(a) express the fractional derivative as an integral,

(b) compute the integrand of this integral by numerically solving a first-order
initial value problem,

(c) compute the integral itself numerically using a suitable quadrature formula
and the function values of the integrand obtained in step (b).

We have extended all three steps of the idea from 0 < α < 1 to arbitrary
positive non-integers α and identified various options for the user when it comes
to selecting the solver for the ordinary differential equations in step (b). While
explicit methods are of little practical use, A-stable implicit schemes can be
used according to the user’s preferences without having to worry about any
potential negative influence on the final result. Really crucial is the choice
of the quadrature formula in step (c). The Gauss-Laguerre rule suggested by
Yuan and Agrawal leads to a rather poor quality of the algorithm because of
the asymptotic behavior of the integrand φ. Knowing this, we have been able to
propose an alternative method that leads to a much better overall performance.
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Figure 5: Absolute errors of the original Yuan-Agrawal method for the approx-
imation of Dα

∗ y(x) with y(x) = exp(−x) and α = 1.3 for x ∈ [0, 1] with 8, 16
and 32 Gauss-Laguerre nodes and trapezoidal method with h = 1/10 (dashed)
and h = 1/100 (solid lines).

Figure 6: Absolute errors of the modified Yuan-Agrawal method for the ap-
proximation of Dα

∗ y(x) with y(x) = exp(−x) and α = 1.3 for x ∈ [0, 1] with 8
(dotted) and 16 (solid lines) Gauss-Jacobi nodes and trapezoidal method with
h = 1/10 and h = 1/100.
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Figure 7: Absolute errors of the modified Yuan-Agrawal method for the solution
of eq. (11) with initial condition (12) and α = 1.25 for x ∈ [0, 1] with 5 and
10 Gauss-Jacobi nodes and trapezoidal method with h = 1/40 (dashed) and
h = 1/80 (solid lines).
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