
Increasing the Efficiency of Shooting Methods
for Terminal Value Problems of Fractional Order

Kai Diethelma,b

aInstitut Computational Mathematics, Technische Universität Braunschweig,
Fallersleber-Tor-Wall 23, 38100 Braunschweig, Germany

bGNS Gesellschaft für numerische Simulation mbH, Am Gaußberg 2, 38114 Braunschweig,
Germany

Abstract

Shooting methods are a well established tool for the numerical solution of ter-
minal value problems of fractional order. However, they can be computationally
quite expensive because of their iterative nature in which (a) each single itera-
tion may be costly, and (b) the number of iterations can be large. In this paper
we propose algorithmic strategies for improving the efficiency of such methods.
Our strategies are aimed at simultaneously reducing the cost of each iteration
and reducing the number of required iterations.

Keywords: terminal value problem, numerical solution, shooting method,
Caputo derivative
2010 MSC: 65L10, 65R20

1. Introduction

Terminal value problems involving ordinary differential equations of frac-
tional order nowadays play an important role in the modeling of many phenom-
ena in physics, engineering, etc., both in their own right and as sub-problems
arising in connection with fractional-order processes that have been observed at
a point in time other than their starting point. The class of problems that we
shall consider here is of the form

Dα
∗ay(t) = f(t, y(t)), y(b) = y∗, a ≤ t ≤ b, (1)

which is the most general form of a terminal value problem involving an explicit
single-term differential equation. Following the commonly accepted notation
(see, e.g., [5] and the references cited therein), we use the symbol Dα

∗a in eq. (1)
and throughout the remainder of this paper to denote the Caputo differential
operator of order α with starting point a; in particular the subscripted asterisk
is used to distinguish this operator from the Riemann-Liouville derivative that
is usually designated by Dα

a and that we will not consider here. We restrict
our attention to the case that 0 < α < 1 because this is the case that is
relevant to the vast majority of applications, cf., e.g., [1, 2, 5, 6, 12, 19] and the

Preprint submitted to Elsevier July 8, 2022



references cited therein. Thus, we are looking for a solution y : [a, b] → R to
a fractional differential equation involving a Caputo differential operator Dα

∗a
with starting point a (the left end point of the interval where the solution
is sought) under the assumption that the value of the function y is known
only at the point b, i.e. the right end point of the interval of interest. The
question for the existence and uniqueness of solutions to such problems under the
usual assumptions (essentially, continuity of f on a suitable set and a Lipschitz
property of f with respect to the second variable) has recently been answered
affirmatively [4, 8, 14, 15].

Problems of the form (1) arise in a number of situations, in particular when
fractional differential equations are used for modeling concrete phenomena in
physics, engineering, biology, etc. (cf. [2, 5, 6, 12, 19] for specific examples) and
information about the state of the system is known at some point t = b, but
not at the beginning of the process, i.e. at t = a. One is then often interested
in finding out how the system started which means that eq. (1) needs to be
solved. Depending on the specific problem at hand, it may be sufficient to find
this solution and thus the behavior on the interval [a, b], or one must use this
information — in particular the starting value y(a) — as an intermediate result
to define a classical initial value problem consisting of this initial condition and
the differential equation from (1) and then solve this initial value problem on
the larger interval [a, b̃] with b̃ > b, thus not only reconstructing the behavior
of the process between the starting point a and the point of observation b, but
also predicting its development for future times t > b.

We shall therefore now briefly review existing approaches for numerically
solving the problem (1) and then propose a technique for increasing their effi-
ciency. In passing, we note that our methods may be used as a building block for
solving the even more general problem of finding a solution to eq. (1) under the
additional assumption that the starting point a is also unknown. To the best
of our knowledge, this latter problem has not been addressed in the literature
yet; we defer a detailed discussion to a later paper.

2. Numerical Approaches

Essentially, there are two different ways in which one can tackle the given ter-
minal value problem (1) numerically. The first idea is based on the observation
[5, Theorem 6.18] that the problem is essentially a special case of a boundary
value problem and can hence be rewritten in the form of the equivalent integral
equation of Fredholm type

y(t) = y∗ +
1

Γ(α)

∫ b

a

G(t, s)f(s, y(s))ds (2)

where

G(t, s) =

{
−(b− s)α−1 for s > t,
(t− s)α−1 − (b− s)α−1 for s ≤ t. (3)

2



This approach allows to employ classical techniques like finite elements or finite
differences for the solution of such Fredholm equations in order to solve the
terminal value problem. However, such an approach has in the past been used
mainly for two-point boundary value problems containing differential equations
of order α ∈ (1, 2); cf., e.g., [13, 18, 20].

In this paper, we shall concentrate on a different method that has been
studied in detail, e.g., in [14, 16, 17]. This approach is also based on a suitable
adaptation of a technique known for integer-order problems, namely the idea
of a shooting method. When transferred to the fractional-order setting under
consideration here, this method can be summarized as follows:

1. We are looking for a solution on the interval [a, b]. If the value of the
solution y at the starting point a of the differential operator Dα

∗a were
known, we would be dealing with a classical initial value problem and
could use the corresponding numerical methods.

2. As the value y(a) is not known, we begin by guessing a first approximation
y10, say, for y(a).

3. Then we go on in an iterative manner that can be described in an abstract
way (that will be made concrete in the ensuing paragraphs) as follows:
(a) In the k-th passage through the iteration loop, we determine a numer-

ical solution yk to the initial value problem consisting of the given
differential equation from (1) combined with the initial condition
yk(a) = yk0. The terminal condition that appears in eq. (1) is ig-
nored at this stage.

(b) We then look at the value yk(b) and compare it to the value y∗

required by the terminal condition. If these two values are sufficiently
close to each other, we exit the loop and accept yk as the approximate
solution to the complete terminal value problem (1).

(c) Otherwise, we compute a new starting value yk+1,0 from the previous
value yk0, taking into account the difference between yk(b) and y∗,
and continue with the iteration.

In their detailed comparative analysis [17], Ford et al. concluded that the
Adams-type predictor-corrector method from [9, 10] was a very good choice for
solving the initial value problems arising in each iteration of the process outlined
above. For the purposes of this paper, we shall follow their advice and combine
this with the idea from [3] where it has been stated that a suitable choice of
the number of corrector iterations in the predictor-corrector method improves
the convergence order to O(h2) essentially without increasing the computational
cost. However, it will be immediately clear that our key findings indicated below
should remain valid for differently chosen numerical solvers.

In order to begin the process, we need to find an initial guess y10 for the
starting value. Owing to the lack of other information, we here suggest to use
the terminal value, i.e. to define

y10 := y∗ (4)

where y∗ is the given value from the original terminal value problem (1).

3



Finally, to complete the description of the algorithm, we mention that the
computation of the starting value yk+1,0 for the (k+ 1)st iteration can be based
on the result from [8] that the value must be smaller than yk0 if y∗ < yk(b) and
larger than yk0 if y∗ > yk(b). As proposed in [17], for determining the precise
choice a bisection method is used.

While this approach is straightforward to derive, easy to implement and
known to work successfully in practice [14, 17], a closer look reveals a certain
disadvantage, namely that it can be computationally rather costly, at least if a
high accuracy of the numerical solution is required. Two factors contribute to
this problem:

1. Usual accuracy requirements demand the step size h of the initial value
problem solver to be relatively small which leads to a large number N =
(b − a)/h of discretization points. As the computational complexity of
the solver is O(N2), cf., e.g., [11, §7.3], this means that each individual
iteration of the loop can be rather expensive.

2. Since no information whatsoever is assumed to be available with respect
to the correct inital value y(a), one needs to start the iteration with a
completely arbitrary guess, and thus one has to expect that the number
of iterations required to reach a reasonable accuracy can be very large.

We shall therefore now derive a strategy for modifying the basic algorithm
described above in an attempt to find a computationally cheaper and hence
more efficient way of solving the terminal value problem (1).

3. Improvements of the Approach

3.1. Choice of the Step Size for the IVP Solver

Our first step towards reducing the complexity of the algorithm is based on
the simple observation that the overall error y− yk of the approximate solution
in the k-th iteration can be additively decomposed into two components,

δk := y − yk = δIk + δNk , (5)

where the first component δIk is the error that results from the fact we are
actually trying to solve the wrong initial value problem because the exact initial
value is unknown, and the second component δNk comes from the numerical
solution method for this initial value problem.

Now, during the early phase of the iteration, i.e. for small values of the
iteration counter k, the currently used initial value yk0 typically is still quite
far away from the true value y(a), and hence the component δIk is also likely
to be rather large, i.e. the solution to the current initial value problem is quite
far away from the exact solution y over the entire interval. It thus follows that
using the small step size h required for an accurate final solution would lead to
the relation δNk � δIk, and hence a moderate increase in the step size h would
lead to a moderate increase in the error component δNk and hence only to a
hardly noticeable change in the overall error δk (recall that, as stated above,

4



under typical conditions we may expect δk = O(h2) if the number of corrector
iterations in the Adams method is properly chosen [3]).

Thus, our idea is not to use the same small step size h for the initial value
problem solver for all iterations, but to use a step size hk in the k-th iteration,
and to choose this step size rather large for small k and to successively reduce
it as k grows. Clearly, it follows from our considerations above that this has
a significant positive influence on the computational cost, whereas the adverse
effects due to the increased approximation error are negligible.

Our precise choice of hk was rather simple: Given the total number of itera-
tions to be performed, say K, and the mesh size hK for the final iteration (with
the finest mesh), we simply used

hk =
K

k
hK (k = 1, 2, . . . ,K).

The numerical examples in Section 4 indicate that the method works very well.
A much more radical, but in fact not far fetched, idea can be motivated by the

observation that δIk = O(2−k) (this follows from [5, Theorem 6.20] in conjunction
with the properties of the bisection strategy used for updating the initial value);
specifically, as we attempt to balance the contributions δIk and δNk that together

make up the entire error δk, we choose the auxiliary value h̃k := cS2−k/2 where
cS is a user defined parameter, compute Ñk := (b − a)/h̃k, determine Nk by
rounding Ñk to the nearest integer, and finally set hk := (b − a)/Nk. In this
way, the k-th iteration has an arithmetic complexity of

O(N2
k ) = O(Ñ2

k ) = O(h̃−2
k ) = O(2k),

and hence the total algorithm requires a cost of

O

(∑̀
k=1

2k

)
= O(2`+1) ≤ 2C · 2`,

where ` denotes the total number of iterations required, which compares favourably
with the complexity of

O

(∑̀
k=1

2`

)
= O(`2`) ≤ `C · 2`

that we would have required if all iterations had used the finest mesh (with
mesh size h`) in the initial value problem solver. However, in our numercial
experiments we found that this choice was too ambitious; the resulting approxi-
mate solutions using the same number of iterations were significantly worse than
those using the approach mentioned first. Increasing the number of iterations
to a point that led to run times being similar to those of the first approach
improved the accuracy somewhat but was still not competitive with the first
approach. We do believe, however, that a refinement of this alternative mesh
size selection strategy could lead to a better performance.

5



3.2. Choice of the Fundamental Interval for the IVP

Another idea that can be used to reduce the computational cost is based on
a completely different concept. Specifically, while the method of Subsection 3.1
was based on reducing the complexity of each iteration step, we now describe
an approach that is targeted at reducing the number of iterations by trying to
overcome the problem caused by the unknown choice for the initial value in the
first passage through the iteration loop.

The method is based on the heuristic argument that, while the known ter-
minal value y(b) is not a useful approximation for the initial value y(a) if the
distance between initial point a and terminal point b is large, it is likely to
be reasonably close to the initial value if the interval between the two points
a and b is small. We combine this argument with the observation from [7]
that the solution y to the terminal value problem (1) depends on the pa-
rameter a, i.e. the location of the starting point, in a continuous manner.
Thus, instead of solving the problem (1) on the potentially long interval [a, b]
directly, we introduce intermediate points aj (j = 0, 1, 2, . . . ,M) such that
a = aM < aM−1 < aM−2 < · · · < a1 < a0 = b and solve the analogous
problems

Dα
∗ajy

[j](t) = f(t, y[j](t)), y[j](b) = y∗, aj ≤ t ≤ b, (6)

on the short intervals [aj , b] successively for j = 1, 2, . . . ,M . In this process, we
follow the structure outlined above for each of the subintervals; the key point
here is the selection of the initial values relative to the current starting point
for the first iteration of the shooting procedure for this interval: When we deal

with the first interval [a1, b], we begin the shooting method with y
[1]
10 = y∗.

Later, in the j-th iteration, we have already solved the problem on the previous

subinterval [aj−1, b] and have thus computed an approximation y
[j−1]
K (aj−1) for

some K ∈ N. We then start the j-th iteration with this value, i.e. we set

y
[j]
10 = y

[j−1]
K (aj−1).

Our numerical experiments have indicated that the simplest conceivable way
of selecting the intermediate points aj , namely a uniform distribution over the
basic interval [a, b], i.e. the choice

aj := b− j b− a
M

with some m ∈ N yields a satisfactory behaviour; nevertheless we believe that a
more sophisticated approach might lead to even better results. The effects that
we obtained by this procedure are presented in Section 4.

3.3. Combining the Two Ideas

Clearly, it is possible to combine the two approaches described above, i.e.
one need not use the very fine original mesh for the numerical initial value
solver for solving each of the intermediate terminal value problems arising in
the method of Subsection 3.2; rather, one can use the more efficient method

6



described in Subsection 3.1 for this sub-task. This should lead to an even more
efficient method. However, our investigations performed so far have not yet led
to a strategy for selecting suitable step sizes for solving the intermediate termi-
nal value problems on the subintervals [aj , b] that performed in a satisfactory
manner. We hope to be able to develop a suitable solution to this problem in
the future.

3.4. Using Different Solvers in the Various Stages

It is also possible to replace our Adams-type predictor-corrector algorithm
by a different numerical method in the first iteration steps. For example, a
computationally cheaper scheme could be used in the phase where an accu-
rate approximate solution is not yet needed. A scheme that does not have the
predictor-corrector structure might be useful here. However, if that idea were
followed without using any of the two ideas described above, the complexity
would remain at O(N2) for an N -point discretization, and so while a reduction
of the constant implicitly contained in the O-term is possible, the exponent of
N that is essential for the high computational cost would remain unchanged.
Thus, in an asymptotic sense this idea does not lead to an improvement over
the concepts suggested above. We therefore refrain from pursuing it any further
and only consider the Adams method as advised by Ford et al. [17].

4. Numerical Examples

We now report the results (in particular, the run times and the approxima-
tion errors) obtained by applying our algorithms to some example problems.

The run times reported below refer only to the numerical solution of the dif-
ferential equation itself; preprocessing steps like the calculation of the required
weights are excluded because they are known to be of linear complexity with re-
spect to the number of grid points and thus negligible. All results were obtained
on a standard desktop PC with an AMD Athlon 64 X2 Dual Core Processor
5200+ clocked at 2.6 GHz.

4.1. A Linear Problem

In order to demonstrate the improvements obtained by our suggested changes,
we now present some typical example problems and compare the results obtained
by the original shooting method with our modified algorithms. To this end, we
shall first look at the terminal value problem

Dα
∗0y(t) = Γ(2 + α)t+

1

4
(y(t)− w − t1+α), y(b) = bα+1 + w, t ∈ [0, b], (7)

the special case α = 1/2 and w = 0 of which has already been considered in
[17]. The exact solution of eq. (7) is known to be y(t) = t1+α +w. For our tests
we specifically choose α = 7/10, w = −3 and b = 12, thus obtaining a rather
long interval.

7



In order to assess the quality of the numerical results and to indicate what
sort of accuracy can at best be expected, we first give some numerical results
for the initial value problem associated to (7) which amounts to replacing the
terminal condition in that equation by the initial condition y(0) = w. Some
results obtained by using the Adams method with various step sizes are given
in Table 1.

step size 0.1 0.05 0.025 0.0125 0.00625
max. error 2.01E-3 3.83E-4 7.29E-5 1.38E-5 2.63E-6

run time 0.2 ms 0.5 ms 1.8 ms 6.5 ms 24.9 ms

Table 1: Numerical results for initial value problem corresponding to (7).

In particular, we conclude from Table 1 that, e.g., in order to obtain an
absolute accuracy of 10−5 we need to use a step size of approximately 0.01.
Our next step is then to solve the terminal value problem using the standard
shooting method where we choose the same step sizes as in our initial value
example from Table 1 and choose the number of iterations, i.e. the number of
initial value problems to be solved using the given step size, such that we obtain
a similar maximal error. The results of this procedure can be seen in Table 2.

step size 0.1 0.05 0.025 0.0125 0.00625
total no. of solved IVPs 20 23 24 27 27

max. error 2.83E-3 2.58E-4 1.63E-4 1.25E-5 1.26E-6
run time 1.9 ms 6.0 ms 19.0 ms 72.5 ms 265.2 ms

Table 2: Numerical results for terminal value problem (7) using classical algorithm.

Our next step is then to replace the standard shooting method by the im-
proved variant indicated in Subsection 3.1 where we now use larger step sizes
for the initial value solver in the early iterations. As indicated in Table 3, in this
particular example we are in a situation where the last iteration has the same
error as it had in the unmodified version even though the preceding iterations
were less accurate and thus faster than in the original algorithm. Thus, as can
be seen from the speedup factors shown in Table 3, our modification does indeed
provide a significant performance improvement.

We conclude the considerations regarding this specific example by looking
at the effects of the modification proposed in Subsection 3.2. Thus, we now do
not solve the equation on the complete interval [a, b] directly, but we introduce
intermediate points a1, a2, . . . , aM = a and work on the successively growing
subintervals [aj , b]. For each subinterval we then used the algorithm with the
standard step size. In our numerical experiments we found the best performance
for the choice M = 2. The results given in Table 4 indicate that we now need to
solve more initial value problems than in the original algorithm, but since these
problems are computationally cheaper, the overall run time does not change

8



minimal step size 0.1 0.05 0.025 0.0125 0.00625
total no. of solved IVPs 20 23 24 27 27

max. error 2.83E-3 2.58E-4 1.63E-4 1.04E-5 1.26E-6
run time 1.0 ms 2.6 ms 7.8 ms 27.9 ms 98.1 ms
speedup 1.9 2.3 2.4 2.6 2.7

Table 3: Numerical results for terminal value problem (7) using algorithm of Subsection 3.1
(modified step size) and speedup compared to original version of algorithm.

very much. Also, the accuracy is slightly worse than in the original case. It thus
turns out that we have so far not found a satisfactory value for the parameters.
Further investigations in this direction seem to be necessary.

step size 0.1 0.05 0.025 0.0125 0.00625
M 2 2 2 2 2

total no. of solved IVPs 27 31 34 36 26
max. error 2.86E-3 9.60E-4 4.41E-5 2.08E-5 7.23E-6

run time 2.1 ms 6.4 ms 20.9 ms 74.2 ms 290.3 ms

Table 4: Numerical results for terminal value problem (7) using algorithm of Subsection 3.2
(modified interval length).

For the reasons explained in Subsection 3.3, we cannot report any results
for the combination of the two approaches yet. Some ideas for selecting the
parameters in this case are currently under consideration.

4.2. A Nonlinear Problem

Next, we look at the nonlinear example problem

Dα
∗0y(t) =

40320

Γ(9− α)
t8−α − 3

Γ(5 + α/2)

Γ(5− α/2)
t4−α/2 +

9

4
Γ(1 + α)

+

(
3

2
tα/2 − t4

)3

− (y(t))3/2, (8)

y(b) = b8 − 3b4+α/2 +
9

4
bα, 0 ≤ t ≤ b.

This example has also been considered in [17]; the solution is

y(t) = t8 − 3t4+α/2 +
9

4
tα.

We report results for this example for α = 0.4 and b = 1.1, and as in the previous
example we first state in Table 5 some findings for the associated initial value
problem, i.e. the problem consisting of the differential equation from (8) and
the initial condition y(0) = 0.

9



step size 0.02 0.01 0.005 0.0025 0.00125
max. error 1.56E-3 3.94E-4 9.94E-5 2.50E-5 6.26E-6

run time 0.2 ms 0.4 ms 1.0 ms 2.5 ms 7.4 ms

Table 5: Numerical results for initial value problem corresponding to (8).

As above, we then continue with the terminal value problem that we are
really interested in. The results for the original algorithm are given in Table 6,
and the corresponding values for the modification indicated in Subsection 3.1
(increased step size for initial value solver in early iterations) can be seen in
Table 7. As in the first example, we again observe a significant reduction in the
required computing time, albeit this time at the cost of a slightly deteriorated
accuracy.

step size 0.02 0.01 0.005 0.0025 0.00125
total no. of solved IVPs 10 10 10 13 14

max. error 2.94E-3 7.34E-4 1.05E-4 3.93E-5 6.55E-6
run time 1.6 ms 3.2 ms 6.9 ms 20.8 ms 58.0 ms

Table 6: Numerical results for terminal value problem (8) using classical algorithm.

minimal step size 0.02 0.01 0.005 0.0025 0.00125
total no. of solved IVPs 12 12 11 14 14

max. error 9.65E-3 2.62E-3 2.62E-4 5.90E-5 1.47E-5
run time 1.4 ms 2.1 ms 3.9 ms 11.3 ms 30.3 ms
speedup 1.1 1.5 1.8 1.8 1.9

Table 7: Numerical results for terminal value problem (8) using algorithm of Subsection 3.1
(modified step size) and speedup compared to original version of algorithm.

For the modification of Subsection 3.2, i.e. the introduction of intermediate
intervals, we again found the choice M = 2 to give the best results, and this
time we have to conclude (see Table 8) a similar accuracy as in the original
algorithm can be reached but the run times are now somewhat longer, so the
behaviour is still not satisfactory.

5. Conclusion

We have developed two proposals for improving the efficiency of shooting
methods for terminal value problems for fractional differential equations. The
first method is based on using different step sizes for the initial value solver that
the shooting method uses internally, thus reducing the computational cost of
each individual iteration. The second method uses the idea not to tackle the

10



minimal step size 0.02 0.01 0.005 0.0025 0.00125
M 2 2 2 2 2

total no. of solved IVPs 15 15 15 21 25
max. error 3.00E-3 8.18E-4 2.73E-4 4.85E-5 1.13E-5

run time 2.1 ms 4.1 ms 8.5 ms 27.5 ms 83.5 ms

Table 8: Numerical results for terminal value problem (8) using algorithm of Subsection 3.2
(modified interval length).

problem on the complete interval directly but to work on intermediate subinter-
vals first, thus aiming at a reduction of the number of required iterations. The
approaches can be used either separately or in combination with each other.
They depend on certain parameters, such as the choice of the step sizes hk or
the number and location of the intermediate points aj . Our numerical results
indicate that the first method indeed performs significantly better than the un-
derlying classical fundamental algorithms; we have made some specific proposals
for practically useful values for its parameters. For the second approach, the
search for a satisfactory choice of its parameters is still ongoing.

References

References

[1] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus:
Models and Numerical Methods. World Scientific, Singapore (2012).

[2] M. Caputo, Linear models of dissipation whose Q is almost frequency
independent–II. Geophys. J. Royal Astronom. Soc. 13 (1967), 529–539;
reprinted in Fract. Calc. Appl. Anal. 11 (2008), 4–14.

[3] K. Diethelm, Efficient Solution of Multi-term Fractional Differential Equa-
tions Using P(EC)mE Methods. Computing 71 (2003), 305–319.

[4] K. Diethelm, On the Separation of Solutions of Fractional Differential
Equations. Fract. Calc. Appl. Anal. 11 (2008), 259–268.

[5] K. Diethelm, The Analysis of Fractional Differential Equations. Springer,
Berlin (2010).

[6] K. Diethelm, A Fractional Calculus Based Model for the Simulation of an
Outbreak of Dengue Fever. Nonlinear Dynamics 71 (2013), 613–619.

[7] K. Diethelm, An Extension of the Well-posedness Concept for Fractional
Differential Equations of Caputo’s Type. Appl. Anal. 93 (2014), 2126–2135.

[8] K. Diethelm, N. J. Ford, Volterra Integral Equations and Fractional Calcu-
lus: Do Neighboring Solutions Intersect? J. Integral Equations Appl. 24
(2012), 25–37.

11



[9] K. Diethelm, N. J. Ford, A. D. Freed, A Predictor-Corrector Approach
for the Numerical Solution of Fractional Differential Equations. Nonlinear
Dynamics 29 (2002), 3–22.

[10] K. Diethelm, N. J. Ford, A. D. Freed, Detailed Error Analysis for a Frac-
tional Adams Method. Numer. Algorithms 36 (2004), 31–52.

[11] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the
Fractional Calculus: A Selection of Numerical Methods. Comput. Meth-
ods Appl. Mech. Eng. 194 (2005), 743–773.

[12] K. Diethelm, A. D. Freed, Caputo Derivatives in Viscoelasticity: A Non-
linear Finite-deformation Theory for Tissue. Fract. Calc. Appl. Anal. 10
(2007), 219–248.

[13] G. J. Fix, J. P. Roop, Least Squares Finite-Element Solution of a Fractional
Order Two-point Boundary Value Problem. Computers Math. Applic. 48
(2004), 1017–1033.

[14] N. J. Ford, M. L. Morgado, Fractional Boundary Value Problems: Analysis
and Numerical Methods. Fract. Calc. Appl. Anal. 14 (2011), 554–567.

[15] N. J. Ford, M. L. Morgado, Stability, Structural Stability and Numeri-
cal Methods for Fractional Boundary Value Problems. Oper. Theory Adv.
Appl. 229 (2013), 157–173.

[16] N. J. Ford, M. L. Morgado, M. Rebelo, Nonpolynomial Collocation Ap-
proximation of Solutions to Fractional Differential Equations. Fract. Calc.
Appl. Anal. 16 (2013), 874–891.

[17] N. J. Ford, M. L. Morgado, M. Rebelo, High Order Numerical Methods
for Fractional Terminal Value Problems. Comput. Meth. Appl. Math. 14
(2014), 55–70.

[18] B. Jin, R. D. Lazarov, J. E. Pasciak, W. Rundell, Variational Formula-
tion of Problems Involving Fractional Order Differential Operators. Math.
Comput. (2014), in press.

[19] A. Schmidt, L. Gaul, Finite Element Formulation of Viscoelastic Consti-
tutive Equations Using Fractional Time Derivatives. Nonlinear Dynam. 29
(2002), 37–55.

[20] M. Zayernouri, G. E. Karniadakis, Fractional Sturm-Liouville Eigen-
problems: Theory and Numerical Approximation. J. Comput. Phys. 252
(2013), 495–517.

12


	Introduction
	Numerical Approaches
	Improvements of the Approach
	Choice of the Step Size for the IVP Solver
	Choice of the Fundamental Interval for the IVP
	Combining the Two Ideas
	Using Different Solvers in the Various Stages

	Numerical Examples
	A Linear Problem
	A Nonlinear Problem

	Conclusion

