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Abstract. The Cauchy principal value integral
∫
−1

−1

f(x)
x−λ dx with

Hölder continuous f and λ ∈ (−1, 1) is approximated using the method
of “subtracting the singularity” and application of the classical trape-
zoidal formula with n nodes to the resulting integral. Using Peano kernel
methods, we prove that, for such f , the error is O(n−1 lnn) uniformly for
λ ∈ (−1, 1). Explicit upper and lower bounds for the Peano constants
are given. Similar results hold if the trapezoidal rule is replaced by the
midpoint rule.

1. Introduction and statement of the main results

We consider quadrature formulae Q for the numerical evaluation of the
Cauchy principal value integral

I[f ;λ] :=

∫
−

1

−1

f(x)

x− λ
dx := lim

ε→0+

(∫ λ−ε

−1

f(x)

x− λ
dx+

∫ 1

λ+ε

f(x)

x− λ
dx

)
,(1)

where λ ∈ (−1, 1) and f ∈ H1, the class of all functions which fulfill a Hölder
condition of order 1. Under these assumptions, I[f ;λ] exists.

Our approach is based on the representation (cf. Davis and Rabinowitz [1,
p. 184])

I[f ;λ] =

∫ 1

−1

f(x)− f(λ)

x− λ
dx+ f(λ) ln

1− λ
1 + λ

(2)

and approximation of the proper Riemann integral on the right-hand side of

(2) by a classical quadrature formula Q̃. Writing fλ(x) := f(x)−f(λ)
x−λ for x 6= λ

and fλ(λ) := f ′(λ), we obtain a Cauchy principal value quadrature formula Q
defined by

Q[f ;λ] := Q̃[fλ] + f(λ) ln
1− λ
1 + λ

.(3)

11991 Mathematics Subject Classification. Primary 65D30; Secondary 41A55.



2 KAI DIETHELM

We denote the error by R[f ;λ] := I[f ;λ] − Q[f ;λ]. This method has been
considered frequently; see, e.g., [4, 5] and the literature cited therein.

Here, we will choose the classical quadrature formula to be either the mid-
point formula QMi

n or the trapezoidal formula QTr
n+1. The resulting Cauchy

principal value quadrature formulae will be denoted by QMi†
n+1 and QTr†

n+2, respec-
tively. The additional superscript “SS” indicates the method of “Subtraction of
the Singularity”.

In particular, we are interested in estimates of the type

|R[f ;λ]| ≤ c(λ)‖f ′‖∞(4)

with best possible constant c(λ). The best possible constant c(λ) in inequality
(4) is known as the first Peano constant of R[ · ;λ]. In §2, we will give an exact
expression for the Peano constants, which we use to obtain explicit upper and
lower bounds for c(λ) differing essentially, for n→∞, only by a constant factor.
The main results are stated in the following theorems and a straightforward
corollary.

Theorem 1. Let xν = −1 + 2 νn . For the formula QTr†
n+2, we have, if |λ| ∈

[xµ, xµ+1) (µ < n),

1

2
n−1 ln (µ (n− µ)) ≤ c(λ) ≤ 3

4
n−1 ln

((
µ− 1

2

)(
n− µ− 1

2

))
+

35

2
n−1.

Theorem 2. Let xν = −1 + 2ν−1
n . For the formula QMi†

n+1, we have, if
|λ| ∈ [xµ, xµ+1) (µ < n),

1

2
n−1

(
1

2
− ln 4 + ln (µ (n−µ))

)
≤ c(λ)

≤ 3

4
n−1 ln

((
µ− 3

2

)(
n−µ− 1

2

))
+ 20n−1.

If |λ| ≥ xn, then

1

2
n−1

(
1

4
− ln 2 + lnn

)
≤ c(λ) ≤ 3

4
n−1 lnn+

61

6
n−1.

We will prove Theorem 1 in §3; Theorem 2 can be shown analogously.

Corollary 3. For the formula QTr†
n+2, we have, for every λ ∈ (−1, 1),

1

2
n−1 ln(n− 1) ≤ c(λ) ≤ 3

2
n−1 lnn+

(
35

2
− ln 2

)
n−1.
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For the formula QMi†
n+1, we have, for every λ ∈ (−1, 1),

1

2
n−1

(
1

4
− ln 2 + ln(n− 1)

)
≤ c(λ) ≤ 3

2
n−1 lnn+ 20n−1.

Thus, we obtain, for both these quadrature formulae and for every f ∈ H1,
that

R[f ;λ] = O(n−1 lnn)(5)

uniformly for λ ∈ (−1, 1). This substantially improves a result of Rabinowitz [5,
Theorem 4]. Uniform convergence is an important feature when these formulae
are used for the numerical solution of integral equations with Cauchy principal
value integrals, which arise in fields such as aerodynamics or fluid mechanics
[3, 5].

Remark. In [2], we have shown that there does not exist a sequence of
Cauchy principal value quadrature formulae for which c(λ) = o(n−1 lnn) holds
uniformly for |λ| < 1. Hence, the error of the rules considered here is of an
optimal order.

2. Peano’s theorem and the Peano kernel

The main tool which we will use to prove upper bounds for the Peano con-
stants is the following theorem, which is simply a generalization of Peano’s The-
orem for classical quadrature formulae (cf. Davis and Rabinowitz [1, p. 286]):

Theorem 4 (Peano). Let Q[ · ;λ] be a Cauchy principal value quadrature

formula given by Q[f ;λ] =
∑N
ν=1 aνf(xν) + bf ′(λ) which is exact for all poly-

nomials of degree zero. Then, we have, for every f ∈ H1,

R[f ;λ] =

∫ 1

−1
Kλ(x)f ′(x) dx,(6)

where Kλ is the so-called (first) Peano kernel of R[ · ;λ] given by

Kλ(x) = ln

∣∣∣∣ 1−λx−λ

∣∣∣∣− N∑
ν=1

aν(xν − x)0+ − b δ(x− λ)

= ln

∣∣∣∣ 1 +λ

x−λ

∣∣∣∣+

N∑
ν=1

aν(x− xν)0+ − bδ(x− λ).

(δ denotes Dirac’s distribution, and (·)0+ is the truncated power function [1, p.
286].)

This theorem can be shown simply by an explicit evaluation of the integral
in equation (6) using either of the representations of Kλ.
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As in the case of classical quadrature formulae [1, (4.3.11)], we can see that
the Peano constant c(λ) is now given by

c(λ) =

∫ 1

−1
|Kλ(x)| dx.(7)

Using the notation of Theorem 4, we can immediately deduce
Corollary 5. Assuming that −1 ≤ x1 < x2 < · · · < xN ≤ 1, we have:

1. If λ ≥ xν+1, then Kλ is strictly monotone increasing and convex on the
interval (xν , xν+1).

2. If λ ≤ xν , then Kλ is strictly monotone decreasing and convex on (xν , xν+1).

3. If xν < λ < xν+1, then Kλ is strictly monotone increasing and convex on
(xν , λ) and strictly monotone decreasing and convex on (λ, xν+1).

4. limx→λKλ(x) =∞.

3. Proof of Theorem 1

In this section, we are going to give a proof for the explicit upper bounds for
c(λ) based on the representation from Theorem 4. This theorem is applicable to
the quadrature formulae under consideration here because we have that, for all
λ ∈ (−1, 1), RTr†

n+2[f ;λ] = RMi†
n+1[f ;λ] = 0 whenever f is a polynomial of degree

less than or equal to 2 (cf. Monegato [4]).
We will also prove the explicit lower bounds for c(λ).

In both cases, we will only give proofs for the case R = RTr†
n+2; the case of

the midpoint formulae can be treated in a very similar fashion.
Owing to symmetry, we can restrict our analysis to the case λ ≥ 0.
3.1. The lower bound for the Peano constant. First, we show the

validity of the lower bound in Theorem 1. The proof is based on the relation

c(λ) = sup{|R[f ;λ]| ; f ∈ H1 and ‖f ′‖∞ ≤ 1}.(8)

Defining

gλ(x) :=


x− xν if xν ≤ x < xν + 1

n and λ ≤ xν ,
xν+1 − x if xν + 1

n ≤ x < xν+1 and λ ≤ xν ,
xν − x if xν ≤ x < xν + 1

n and λ ≥ xν+1,
x− xν+1 if xν + 1

n ≤ x < xν+1 and λ ≥ xν+1,
0 else,

we can deduce, for λ ∈ [xµ, xµ+1),

c(λ) ≥
∣∣∣RTr†

n+2[gλ;λ]
∣∣∣ = |I[gλ;λ]| =

n−1∑
ν=0

∣∣∣∣∫ xν+1

xν

gλ(x)

x− λ
dx

∣∣∣∣
≥ 1

2n

(
µ∑
ν=1

1

ν
+

n−µ∑
ν=2

1

ν

)
≥ 1

2
n−1 ln (µ(n− µ)) .
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3.2. The upper bound for the Peano constant. For the proof of the
upper bound, we will use the representation of c(λ) via the Peano kernel as

given by equation (7). Let Kλ denote the Peano kernel of RTr†
n+2[ · ;λ]. We will

start by giving some elementary properties of Kλ:

Kλ(−1+) =
1

n(−1− λ)
< 0.(9)

If xν < λ, then

Kλ(xν+) = ln

∣∣∣∣ 1 + λ

xν − λ

∣∣∣∣+
2

n

ν∑
κ=1

1

xκ − λ
+

1

n(−1− λ)

≤ ln

∣∣∣∣ 1 + λ

xν − λ

∣∣∣∣+
1

n(−1− λ)
+ ln

∣∣∣∣∣ν − n
2 −

nλ
2

1− n
2 −

nλ
2

∣∣∣∣∣
+

1

2

(
1

1− n
2 −

nλ
2

+
1

ν − n
2 −

nλ
2

)

≤ 1

n

(
1

λ− x1
− 1

λ− xν

)
+

1

n(−1− λ)
< 0(10)

and

|Kλ(xν+)| = −Kλ(xν+) ≤ 2

n(λ− xν)
+

1

n
(
xν − λ− 1

n

) .(11)

If xν+1 < λ, then

0 ≤ Kλ(xν+1−) ≤ 1

n

(
1

1 + λ− 2
n

− 1

1 + λ
+

1

xν − λ
− 2

xν+1 − λ

)
.(12)

We note that the upper bound for |Kλ| given by inequality (12) is larger than
the bound given by inequality (11). Now, the convexity of Kλ (Corollary 5) in
connection with d

dx |Kλ(x)|x=xν+
= 1

xν−λ for xν < λ, yields for xν+1 < λ:∫ xν+1

xν

|Kλ(x)| dx ≤ 3

2n2

(
1

1 + λ− 2
n

− 1

1 + λ
+

1

xν − λ
− 2

xν+1 − λ

)
.(13)

Analogous statements hold for the cases λ < xν and λ < xν+1, respectively.
If λ = xν or λ = xν+1, then, using the inequalities stated above, one can

show ∫ xν+1−

xν+

|Kλ(x)| dx ≤ 10

3n
,(14)

and an additional summand 2
n resulting from the Dirac distribution has to be

taken into consideration. (The Dirac distribution only occurs if λ is equal to
one of the nodes of QTr

n+1.)
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If λ is in an adjacent interval of [xν , xν+1], then∫ xν+1

xν

|Kλ(x)| dx ≤ 18

5n
.(15)

Finally, if λ ∈ (xν , xν+1),∫ xν+1

xν

|Kλ(x)| dx ≤ 16

3n
.(16)

Adding up these bounds for all the intervals and estimating carefully, the
statement of the theorem follows.
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