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Abstract
Given a fractional differential equation of order α ∈ (0, 1] with Caputo derivatives,
we investigate in a quantitative sense how the associated solutions depend on their
respective initial conditions. Specifically, we look at two solutions x1 and x2, say, of
the same differential equation, both of which are assumed to be defined on a common
interval [0, T ], and provide upper and lower bounds for the difference x1(t)−x2(t) for
all t ∈ [0, T ] that are stronger than the bounds previously described in the literature.

Keywords Fractional differential equation · Caputo derivative · Initial condition ·
Separation of solutions
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1 Introduction andmotivation

1.1 Statement of the problem

Initial value problems for fractional differential equationswithCaputo derivatives have
proven to be important tools for the mathematical modeling of various phenomena in
science and engineering, see, e.g., [1–3,18,20–23]. In order to fully understand the
behaviour of such models, it is of interest to precisely describe how their solutions
depend on the initial values. In particular, we shall here look at the following question:
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Given two solutions x1 and x2 to the fractional differential equation

CDα
0+x(t) = f (t, x(t)), (1.1)

where C Dα
0+ denotes the Caputo type differential operator of order α ∈ (0, 1]

with starting point 0 [7, Sect. 3], associated to the initial conditions x1(0) = x01
and x2(0) = x02, respectively, what can be said about the difference x1(t)−x2(t)
for all t for which both solutions exist?

Our aim is to provide both upper and lower bounds for the difference. A review of
the literature (see Sect. 3 below) reveals that such bounds exist in principle, but that
in many cases they tend to be too far away from each other to be of practical use. In
other words, one usually observes that at least one of the two bounds is very weak. (A
concrete example for such a situation is given in Sect. 5.) Therefore, we shall derive
tighter inclusions here.

1.2 Motivation

From a purely mathematical point of view, such estimates are relevant in their own
right as they allow to draw interesting conclusions about the behaviour of the solution
to the differential equation (1.1).

In addition, our interest in this question is especially motivated by an application in
the numerical analysis of fractional differential equations that strongly benefits from
tight inclusions. Specifically, one is sometimes interested in terminal value problems,
i.e. problems of the form

CDα
0+x(t) = g(t, x(t)), x(T ) = x∗ (1.2)

with some T > 0, and seeks the solution to (1.2) on the interval [0, T ], cf., e.g., [7,
pp. 107ff.] or [10,13]. For the numerical solution of such problems, one may apply a
so-called shooting method [8,9,11,13,14], i.e. one starts with a first guess x0,1 for x(0),
(numerically) solves the initial value problem consisting of the differential equation
given in (1.2) and the initial condition x(0) = x0,1, and in this way obtains a first
approximate solution x∗

1 for x(T ) = x∗. One then compares this approximation x∗
1

with the exact value x∗, replaces the guess x0,1 for the initial value by a new and
improved value x0,2 and repeats the process. In order to determine a suitable choice
for x0,2, it is useful to have the estimates of the form indicated above because they
describe a connection between x0,2 − x0,1 one the one hand and x∗ − x∗

1 on the other
hand, thus telling us which range the new value x0,2 needs to come from in order
for the corresponding initial value problem to have a solution that “hits” the required
terminal value as accurately as possible.

2 Preliminaries

Throughout this paper, we shall use the following conventions.
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168 K. Diethelm, H. T. Tuan

Let α ∈ (0, 1], b > 0, [0, b] ⊂ R and x : [0, b] → R be a measurable function
such that

∫ b
0 |x(τ )| dτ < ∞. The Riemann–Liouville integral operator of order α is

defined by

(
I α
0+x

)
(t) := 1

Γ (α)

∫ t

0
(t − τ)α−1x(τ ) dτ

for t ∈ [0, b], where Γ (·) is the Gamma function. The Riemann–Liouville fractional
derivative RLDα

0+x of x on [0, b] is defined by

(
RLDα

0+x
)

(t) :=
(

DI 1−α
0+ x

)
(t), for almost all t ∈ [0, b],

where D = d
dt is the usual derivative. The Caputo fractional derivative of x on [0, b]

is defined by

(
CDα

0+x
)

(t) =
(

RLDα
0+[x − x(0)]

)
(t) for almost all t ∈ [0, b].

Finally, by Eα we denote the standard one-parameter Mittag-Leffler function, viz.

Eα(t) =
∞∑

k=0

tk

Γ (αk + 1)
.

We can cite from [16, Proposition 3.5] the following asymptotic result that we shall
use later:

Lemma 1 Let λ ∈ R \ {0}. For t → ∞ we have

Eα(λtα) =

⎧
⎪⎨

⎪⎩

1

α
exp(λ1/αt) + O(t−α) for λ > 0,

−λ
t−α

Γ (1 − α)
+ O(t−2α) for λ < 0,

so Eα(λtα) grows exponentially towards ∞ if λ > 0 and decays algebraically towards
0 if λ < 0.

Let now J = [0, T ] with some real number T > 0 or J = [0,∞). As indicated
above, we consider the equation (1.1) in this note. In particular, we shall only discuss
the case that f : J × R → R is a continuous function. Moreover, we shall generally
assume that f satisfies the following Lipschitz condition on the second variable: there
exists a nonnegative continuous function L : J → R+ such that

| f (t, x) − f (t, y)| ≤ L(t)|x − y| for all t ∈ J and all x, y ∈ R. (2.1)

The following fundamental results are then known (see [4,7,12]):
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Theorem 1 Assume that the function f is continuous and satisfies the Lipschitz con-
dition (2.1). Moreover, let x10 and x20 be two arbitrary real numbers with x10 �= x20
and consider the two initial value problems

CDα
0+x1(t) = f (t, x1(t)), x1(0) = x10 (2.2a)

and
CDα

0+x2(t) = f (t, x2(t)), x2(0) = x20, (2.2b)

respectively. Then we have:

(i) For each of the initial value problems, there exists a unique continuous function
that solves the problem on the entire interval J .

(ii) The trajectories of the two solutions do not meet on J , i.e., the solutions x1(·)
and x2(·) of (2.2a) and (2.2b), respectively, satisfy x1(t) �= x2(t) for all t ∈ J .

(iii) In particular, if x10 < x20, then x1(t) < x2(t) for all t ∈ J .

Note that the two initial value problems (2.2a) and (2.2b) differ only in their initial
conditions but contain the same differential equation (which is also the same as the
differential equation given in (1.1)).

Proof Part (i) immediately follows from [7, Theorem 6.5] (see also [12, Theorem
2.3] or [24]) for the case of a finite interval; the extension to the case J = [0,∞) is
immediate, cf. [12, Corollary 2.4]. Part (ii) has been shown in [4, Theorem 3.5], and
part (iii) is a direct consequence of (ii) in connection with the continuity of x1 and x2
that has been established in part (i). 	


3 Existing results

In connection with the task that we have set, some results have already been derived.
We shall recollect them here in order to demonstrate why it is necessary to find more
accurate bounds. To this end, it is useful to introduce the notation

L∗(t) := max
τ∈[0,t] L(τ ) (3.1)

for t ∈ [0, T ], with L being the function from the Lipschitz condition (2.1). Using
this terminology, we can state the following estimates that are, to the best of our
knowledge, the best currently known bounds for the difference |x1(t) − x2(t)| under
the assumptions of Theorem 1.

Theorem 2 Under the assumptions of Theorem 1, the solutions x1 and x2 of the two
initial value problems (2.2a) and (2.2b), respectively, satisfy the inequality

|x1(t) − x2(t)| ≥ |x10 − x20| · Eα(−L∗(t)tα)

for all t ∈ J .
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Theorem 3 Under the assumptions of Theorem 1, the solutions x1 and x2 of the two
initial value problems (2.2a) and (2.2b), respectively, satisfy the inequality

|x1(t) − x2(t)| ≤ |x10 − x20| · Eα(L∗(t)tα)

for all t ∈ J .

Theorem 2 is given in [4, Theorem 4.1]. Theorem 3 has been shown in [4, Theorem
4.3]; slightly weaker forms can be found in [7, Theorem 6.20] or [24, Theorem 4.10].

Remark 1 It should be noted that, as pointed out in [4, Sect. 6], there is a significant
difference between Theorems 2 and 3 in the sense that Theorem 3 also holds in the
vector valued case, i.e. in the case where f : J ×R

d → R
d with some d > 1, whereas

Theorem 2 only holds in the scalar setting.

To demonstrate the shortcomings of the estimates provided by Theorems 2 and 3,
it suffices to look at the very simple example of the homogeneous linear differential
equation with constant coefficients

CDα
0+x(t) = λx(t)

with some real constant λ, i.e. at the case f (t, x) = λx . Clearly, we may choose
J = [0,∞) here. In this case we can observe the following facts about the initial
value problems considered in the theorems:

1. The function L is simply given by L(t) = |λ|; thus, L∗(t) = |λ| too.
2. The exact solutions to the initial value problems have the form xk(t) = xk0Eα(λtα)

(k = 1, 2). Hence,

|x1(t) − x2(t)| = |x10 − x20| · Eα(λtα)

= |x10 − x20| ×

⎧
⎪⎨

⎪⎩

1 if λ = 0,

Eα(L∗(t)tα) if λ > 0,

Eα(−L∗(t)tα) if λ < 0.

3. If λ = 0 then the upper bound from Theorem 3 coincides with the lower bound
from Theorem 2, and hence both estimates are sharp.

4. If λ < 0, the estimate of Theorem 2 is sharp but, in view of Lemma 1, Theorem 3
massively overestimates the difference for large t .

5. If λ > 0, the estimate of Theorem 3 is sharp but, in view of Lemma 1, Theorem 2
massively underestimates the difference for large t .

This means that we always have an upper bound and a lower bound for |x1(t) −
x2(t)|, but in all cases except for the trivial case λ = 0, at least one of these bounds
is likely to be far away from the correct value. Based on this fact, our goal now is to
improve those bounds in the sense that we want to obtain a narrower inclusion, i.e. an
upper bound and a lower bound that are closer together. Section 5 below will contain
a concrete example that demonstrates a case where the inclusion based on our new
estimates is much tighter than the one based on Theorems 2 and 3.
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4 New and tighter bounds for the difference between solutions

4.1 Linear differential equations

We begin our analysis with a look at the special case that the differential equation
under consideration is linear. Much as in [4], the results for this special case will later
allow us to discuss the general case in Sect. 4.2.

Therefore, first consider the equation (1.1) under the assumption that f (t, x) =
a(t)x for any t ∈ J and x ∈ R, where a : J → R is continuous. First we formulate
and prove a lower bound for the distance between two solutions.

Theorem 4 (Convergence rate for solutions of 1-dimensional FDEs) Under the con-
ditions of Theorem 1 and the assumption

f (t, x) = a(t)x

with a continuous function a : J → R, for any t ∈ J the estimate

|x2(t) − x1(t)| ≥ |x2(0) − x1(0)| · Eα

(
a∗(t)tα

)

holds, where

a∗(t) := min
τ∈[0,t] a(τ ).

Proof For definiteness we assume x2(0) > x1(0). Let u(t) := x2(t)− x1(t) for t ∈ J .
Then by Theorem 1(iii), we have u(t) > 0 for any t ∈ J . On the other hand, u(·) is
the unique solution to the system

CDα
0+u(t) = a(t)u(t), t ∈ J \ {0}, (4.1a)

u(0) = x2(0) − x1(0). (4.1b)

For an arbitrary but fixed t > 0, we consider the problem

CDα
0+v(s) = a∗(t)v(s), s ∈ (0, t], (4.2a)

v(0) = x2(0) − x1(0). (4.2b)

From [4, Lemma 3.1] or [7, Theorem 7.2], we deduce that this problem has the unique
solution v(s) = |x2(0)− x1(0)| · Eα(a∗(t)sα), s ∈ [0, t]. Define h(s) := u(s)− v(s),
s ∈ [0, t]. It is easy to see that h is the unique solution of the system

CDα
0+h(s) = a∗(t)h(s) + [a(s) − a∗(t)]u(s), t ∈ (0, t], (4.3a)

h(0) = 0. (4.3b)
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172 K. Diethelm, H. T. Tuan

Notice that for s ∈ [0, t]

h(s) =
∫ s

0
(s − τ)α−1Eα,α(a∗(t)(s − τ)α)[a(τ ) − a∗(t)]u(τ )dτ,

see also [4, Lemma 3.1]. Furthermore, [a(s) − a∗(t)]u(s) ≥ 0 for all s ∈ [0, t]. Thus,
h(s) ≥ 0 for all s ∈ [0, t]. In particular, h(t) ≥ 0 or u(t) ≥ v(t) = |x2(0) − x1(0)| ·
Eα(a∗(t)tα). The proof is complete. 	


For the divergence rate and upper bounds for solutions, the following statement is
an easy modification of the well known result.

Theorem 5 (Divergence rate for solutions of 1-dimensional FDEs)Under the assump-
tions of Theorem 4, for any t ∈ J the estimate

|x2(t) − x1(t)| ≤ |x2(0) − x1(0)| · Eα(a∗(t)tα)

holds, where

a∗(t) = max
s∈[0,t] a(s).

Proof For definiteness we once again assume x2(0) > x1(0) and let u(t) := x2(t) −
x1(t) for t ∈ J . As shown above, u(t) > 0 for any t ∈ J , and u(·) is the unique
solution to the system given by eqs. (4.1a) and (4.1b). For an arbitrary but fixed t > 0,
this system on the interval [0, t] is rewritten as

CDα
0+u(s) = a∗(t)u(s) + [a(s) − a∗(t)]u(s), s ∈ (0, t], (4.4a)

u(0) = x2(0) − x1(0). (4.4b)

Thus, due to [4, Lemma 3.1] we obtain

u(s) = |x2(0) − x1(0)| · Eα(a∗(t)sα)

+
∫ s

0
(s − τ)α−1Eα,α(a∗(t)(s − τ)α)[a(τ ) − a∗(t)]u(τ )dτ

for s ∈ [0, t] which together with [a(s) − a∗(t)]u(s) ≤ 0 for all s ∈ [0, t] implies
that

u(s) ≤ |x2(0) − x1(0)|Eα(a∗(t)sα)

for s ∈ [0, t]. In particular, u(t) ≤ |x2(0) − x1(0)| · Eα(a∗(t)tα). The theorem is
proved. 	


As an immediate consequence of Theorem 5, we obtain a stability result for homo-
geneous linear equations with non-constant coefficients:
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Corollary 1 Assume the hypotheses of Theorem 4 and let J = [0,∞). If supt≥0 a(t) <

0 then all solutions x to the equation (1.1) satisfy the property limt→∞ x(t) = 0. In
other words, the differential equation is asymptotically stable.

Proof As the differential equation under consideration is linear and homogeneous, it
is clear that x̃ ≡ 0 is one of its solutions. Moreover, we note that

A∗ := sup
t≥0

a∗(t) = sup
t≥0

a(t).

Thus, if x is any solution to the differential equation, it follows from Theorem 5 that

|x(t)| = |x(t) − 0| ≤ |x(0) − 0| · Eα(a∗(t)tα) = |x(0)| · Eα(a∗(t)tα)

≤ |x(0)| · Eα(A∗tα)

for all t ≥ 0 where in the last inequality we have used the well known monotonicity of
the Mittag-Leffler function Eα [16, Proposition 3.10]. Since A∗ < 0 by assumption,
Lemma1 implies that the upper bound tends to 0 for t → ∞, and our claim follows. 	

Remark 2 Using the arguments developed in [4], we can see that the observations of
Remark 1 hold here aswell: Theorem5 (and hence alsoCorollary 1) can be generalized
to the multidimensional setting but Theorem 4 cannot.

Remark 3 The question addressed in Corollary 1 is closely related to the topic dis-
cussed (with completely different methods) in [5].

4.2 Nonlinear differential equations

Now consider equation (1.1) with f assumed to be continuous on J ×R and to satisfy
the condition (2.1), so we are in the situation discussed in Theorem 1. Further, we
assume temporarily that f (t, 0) = 0 for any t ∈ J . For each t ∈ J , we define

a∗(t) := inf
s∈[0,t], x∈R\{0}

f (s, x)

x
and a∗(t) := sup

s∈[0,t], x∈R\{0}
f (s, x)

x
. (4.5)

Note that, if the differential equation is linear, i.e. if f (t, x) = a(t)x , then these
definitions of a∗ and a∗ coincide with the conventions introduced in Theorems 4 and
5, respectively.

We first state an auxiliary result which asserts that this definition makes sense
because the infimum and the supremum mentioned in (4.5) exist.

Lemma 2 Let f satisfy the assumptions mentioned in Theorem 1, and assume further-
more that f (t, 0) = 0 for all t ∈ J . Then, the definitions of the functions a∗ and a∗
given in (4.5) are meaningful for all t ∈ J , and the functions a∗ and a∗ are bounded
on this interval.
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Proof By definition, we obtain—in view of the property f (t, 0) = 0 and the Lipschitz
condition (2.1)—the estimate

−L(t) ≤ f (t, x)

x
≤ L(t)

for any x ∈ R \ {0} and t ∈ J . Thus, for any given time t ∈ J ,

− max
s∈[0,t] L(s) = inf

s∈[0,t] (−L(s)) ≤ f (s, x)

x
∀s ∈ [0, t], x �= 0.

This implies that

− max
s∈[0,t] L(s) ≤ inf

s∈[0,t], x �=0

f (s, x)

x
= a∗(t). (4.6)

On the other hand, we also see that

a∗(t) ≤ max
s∈[0,t] L(s)

for any t ∈ J . This together with (4.6) implies that

− max
s∈[0,t] L(s) ≤ a∗(t) ≤ a∗(t) ≤ max

s∈[0,t] L(s)

for any t ∈ J . The lemma is proved. 	

Theorem 6 Under the assumptions of Lemma 2, we have:

(i) For x0 > 0, the solution ϕ(·, x0) of Eq. (1.1)with the condition x(0) = x0 satisfies

x0Eα(a∗(t)tα) ≤ ϕ(t, x0) ≤ x0Eα(a∗(t)tα).

(ii) For x0 < 0, the solution ϕ(·, x0) of Eq. (1.1)with the condition x(0) = x0 satisfies

x0Eα(a∗(t)tα) ≤ ϕ(t, x0) ≤ x0Eα(a∗(t)tα).

Proof We only show the proof of the statement (i). The case (ii) is proven similarly.
Let x0 > 0. By Theorem 1(iii) and the fact that f (t, 0) = 0 for all t ∈ J , the solution
ϕ(·, x0) is positive on J . For an arbitrary but fixed t > 0, we have on the interval [0, t]

CDα
0+ϕ(s, x0) = a∗(t)ϕ(s, x0) +

(
− a∗(t) + f (s, ϕ(s, x0))

ϕ(s, x0)

)
ϕ(s, x0).

This implies that

ϕ(s, x0) ≥ x0Eα(a∗(t)sα), s ∈ [0, t].
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In particular, ϕ(t, x0) ≥ x0Eα(a∗(t)tα). On the other hand, ϕ(·, x0) is also the unique
solution of the equation

CDα
0+ϕ(s, x0) = a∗(t)ϕ(s, x0) +

(
− a∗(t) + f (s, ϕ(s, x0))

ϕ(s, x0)

)
ϕ(s, x0), s ∈ [0, t].

Thus,

ϕ(s, x0) ≤ x0Eα(a∗(t)sα), s ∈ [0, t]

and ϕ(t, x0) ≤ x0Eα(a∗(t)tα). The proof is complete. 	

Theorem 6 has an immediate consequence:

Corollary 2 Assume the hypotheses of Theorem 1, and furthermore let f (t, 0) = 0 for
all t ∈ J .

(i) For 0 < x10 < x20, we have for all t ∈ J that

x20Eα(a∗(t)tα) − x10Eα(a∗(t)tα)

≤ x2(t) − x1(t)

≤ x20Eα(a∗(t)tα) − x10Eα(a∗(t)tα).

(ii) For x10 < 0 < x20, we have for all t ∈ J that

(x20 − x10)Eα(a∗(t)tα) ≤ x2(t) − x1(t) ≤ (x20 − x10)Eα(a∗(t)tα).

(iii) For x10 < x20 < 0, we have for all t ∈ J that

x20Eα(a∗(t)tα) − x10Eα(a∗(t)tα)

≤ x2(t) − x1(t)

≤ x20Eα(a∗(t)tα) − x10Eα(a∗(t)tα).

From this result, we can also deduce an analog of Corollary 1, i.e. a sufficient
criterion for asymptotic stability, for the nonlinear case.

Corollary 3 Assume the hypotheses of Theorem 1, and furthermore let J = [0,∞)

and f (t, 0) = 0 for all t ∈ J . Moreover, let supt≥0 a∗(t) < 0. Then, all solutions x of
the differential equation (1.1) satisfy limt→∞ x(t) = 0.

The proof is an immediate generalization of the proof of Corollary 1. We omit the
details.

We now give up the requirement that f (t, 0) = 0. To this end, we essentially follow
the standard procedure in the analysis of stability properties of differential equations;
cf., e.g., [7, Remark 7.4].
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Theorem 7 Assume the hypotheses of Theorem 1, and let x10 < x20. Then, for any
t ∈ J we have

(x2(0) − x1(0))Eα(ã∗(t)tα) ≤ x2(t) − x1(t) ≤ (x2(0) − x1(0))Eα(ã∗(t)tα)

where

ã∗(t) = inf
s∈[0,t], x �=0

f (s, x + x1(s)) − f (s, x1(s))

x
(4.7a)

and

ã∗(t) = sup
s∈[0,t], x �=0

f (s, x + x1(s)) − f (s, x1(s))

x
. (4.7b)

Proof First, we note that, in view of Theorem 1(iii), we have x1(t) < x2(t) for all
t ∈ J . Then we define the function

f̃ (t, x) = f (t, x + x1(t)) − f (t, x1(t))

and notice that

CDα
0+(x2 − x1)(t) = CDα

0+x2(t) − CDα
0+x1(t) = f (t, x2(t)) − f (t, x1(t)),

so that the function x̃ := x2 − x1 satisfies the differential equation

CDα
0+ x̃(t) = f̃ (t, x̃(t)),

and the initial condition x̃(0) = x2(0) − x1(0) > 0. Moreover, f̃ (t, 0) = 0 for all t ,
and f̃ satisfies the Lipschitz condition (2.1) with the same Lipschitz bound L(t) as f
itself. This implies that the quantities ã∗(t) and ã∗(t) exist and are finite. Furthermore,
we may apply Theorem 6(i) to the function x̃ and derive the claim. 	


Note that Theorem 7 is the only result in Sect. 4 whose application in practice
requires the knowledge of an exact solution to the given differential equation. All
other results are solely based on information about the given function f on the right-
hand side of the differential equation.

5 An application example

As an application example, we consider the linear differential equation

CDα
0+x(t) = −1

2
(1 + 4t + 3 cos 4t)x(t) (5.1)

for t ∈ [0,∞). In the notation of Sect. 4.1, we have

a(t) = −1

2
(1 + 4t + 3 cos 4t).
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Fig. 1 The functions a(t), a∗(t) and a∗(t) for the example from Eq. (5.1)

The function a∗ defined in Theorem 5 satisfies

A∗ := sup
t≥0

a∗(t) = sup
t≥0

a(t) < 0;

therefore, by Corollary 1, the equation is asymptotically stable and hence a prototype
of a class of problems that is particularly relevant in practice.

For the purposes of concrete experiments, we restrict our attention to the interval
J = [0, T ] with T = 6. We have plotted the function a and the associated functions
a∗ and a∗ on this interval in Fig. 1. In particular, we can compute (and see in the figure)
that

a∗(T ) = a∗(6) = −25

2
− 3

2
cos(24) ≈ −13.136

and

A∗ = a

(
1

4

(

π − arcsin
1

3

))

= 1

2

(√
8 − 1 − π + arcsin

1

3

)

≈ −0.4867.

To demonstrate the effectiveness of our new estimates, we choose α = 0.65 and
consider two solutions x1 and x2 to the differential equation (5.1) subject to the initial
conditions x1(0) = 1 and x2(0) = 2, respectively. Since exact solutions for these
two initial value problems are not available, we have reverted to numerical solutions
instead. To this end, we have used Garrappa’s fast implementation of the fractional
trapezoidalmethod [15] that is based on the ideas of Lubich et al. [17,19].We have used
the step size h = 10−5 which, in combination with the well known stability properties

123



178 K. Diethelm, H. T. Tuan

Fig. 2 The graphs of the solutions x1 and x2 to the example from Eq. (5.1)

Fig. 3 Comparison of true differences between the solutions x1 and x2 (black) with the associated new
upper and lower estimates derived in Theorems 4 and 5, respectively (blue) and the corresponding estimates
obtained by previously known methods listed in Theorems 2 and 3 (red)

of this numerical method, allows us to reasonably believe that the numerical solution
is very close to the exact solution. Figure 2 shows the graphs of the two solutions.

The essential observation can be read off from Fig. 3. Since a(t) < 0 for all t
in this example, it can be seen that the function L from the Lipschitz condition of
the differential equation’s right-hand side is just L(t) = |a(t)| = −a(t), and hence
the function L∗ from Theorems 2 and 3 is simply L∗(t) = −a∗(t). Therefore, the
old lower bound of Theorem 2 is identical to the new bound of Theorem 4. The fact
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that we have been unable to improve this bound in the example reflects the fact that
the old bound is already very close to the correct value of the difference between the
two functions. For the two upper bounds, however, we obtain a completely different
picture. While the old bound from Theorem 3 vastly overestimates the true value of
the difference (note the logarithmic scale on the vertical axis of Fig. 3), the new bound
is very much closer. In particular, our new bound—like the true difference—tends to
0 as t → ∞ whereas the previously known bound tends to ∞.
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