TY - CHAP A1 - Hartmann, Jürgen A1 - Manara, Jochen A1 - Zipf, Mathias A1 - Stark, Thomas A1 - Knopp, Kevin A1 - Zänglein, Marc A1 - Lenski, Philipp A1 - Schreiber, Ekkehard A1 - Schmidt, Franz A1 - Brunner, Martin A1 - Müller, Michael T1 - Thermophysical property measurements at high-temperatures for power engineering and additive manufacturing processes BT - QIRT 2018, 25 - 29 June 2018, Berlin, Germany N2 - To address the needs for increasing efficiency in power conversion, stratified structures like thermal barrier coatings, are used to increase operation temperature. Also advanced material processing like 3D laser printing of metals and ceramics are based on a layer-to-layer process at high temperatures, resulting in non-homogeneous components. Both systems require more and more detailed investigation methods to characterise the material properties of the resulting structures and to optimize the relevant processes. To address the required needs in advanced material characterisation recently an attempt was started to develop a unique measurement set-up for advanced material characterisation. This method is based on the well know laser flash principle, which was improved by adding supplementary heating sources and additional detection channels. Combining different heating mechanism and heating times with the two-dimensional measuring of the thermal flow across the sample enables the determination of different opto-thermal parameters and other material properties, e.g. mechanical contact, electrical conductivity or optical data, which also depend on or affect the flow of heat. In this paper we describe the implementation of the different optical methods to measure the thermal heat flow by point-like and two-dimensional temperature measurement and present first results on several samples. KW - thermophysical property measurement KW - additive manufacturing process Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-17678 SN - 978-3-940283-94-8 CY - Berlin ER -