TY - CHAP A1 - Meyer, Maximilian A1 - Pechtl, Lin A1 - Bremer, Peik A1 - Schmitt, Jan T1 - Towards position-based technologies for digitized process management on the shop floor T2 - Proceedings of the 24th International Symposium on Logistics - Supply Chain Networks vs Platforms: Innovations, Challenges and Opportunities, Würzburg N2 - Position-based technologies, e.g Ultrawideband (UWB), WiFi or Bluetooth, for indoor localisation purposes are already commercially available. With the highly increasing digitalization of industrial processes, the potential of these technologies comes into focus of process management research. This paper aims to structure position-based technologies according to their potential to support shop-floor process management. For this purpose, a framework with the following dimensions is developed: technical performance properties of the IPS, economical aspects, relevant use-case requirements, and appropriate data aggregation strategies. Following this, two representable use-cases show the implementation of an indoor-positioning-system and the data aggregation in order to derive relevant process data from position data. Y1 - 2019 UR - https://isl21.org/wp-content/uploads/2020/04/Full-paper-20_07_2019-Final-V2.pdf SP - 232 EP - 241 ER - TY - CHAP A1 - Gattullo, Michele A1 - Dammacco, Lucilla A1 - Ruospo, Francesca A1 - Evangelista, Alessandro A1 - Fiorentino, Michele A1 - Schmitt, Jan A1 - Uva, Antonio E T1 - Design preferences on industrial augmented reality: a survey with potential technical writers T2 - 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) Y1 - 2020 SP - 172 EP - 177 ER - TY - JOUR A1 - Horn, Andreas A1 - Schmitt, Jan T1 - Roboterbasierte Koordinatenmesstechnik BT - wie präzise kann ein Roboter Bauteile vermessen? JF - FHWS Science Journal N2 - Das [...] Spannungsfeld aus Flexibilität, Bauraum, Kosten, Genauigkeit und automatisierter Messung soll in diesem Vorhaben mit der Realisierung einer größenangepassten, roboterbasierten Koordinatenmesstechnik begegnet werden. Als Herausforderung wird hierbei das Verfahren zur Optimierung der Genauigkeit (Kalibrierung) aus den gegebenen Randbedingungen (Kinematik, Steifigkeit) insbesondere des Roboters gesehen. KW - roboter KW - messen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-20077 UR - https://nbn-resolving.org/urn:nbn:de:bvb:863-opus-19389 SN - 2196-6095 VL - 5 IS - 2 SP - 93 EP - 100 ER - TY - JOUR A1 - Wehnert, Kira-Kristin A1 - Ochs, Dennis A1 - Schmitt, Jan A1 - Hartmann, Jürgen A1 - Schiffler, Andreas T1 - Reducing Lifecycle Costs due to Profile Scanning of the Powder Bed in Metal Printing JF - Procedia CIRP 98 N2 - First time right is one major goal in powder based 3D metal printing. Reaching this goal is driven by reducing life cycle costs for quality measures, to minimize scrap rate and to increase productivity under optimal resource efficiency. Therefore, monitoring the state of the powder bed for each printed layer is state of the art in selective laser melting. In the most modern approaches the quality monitoring is done by computer vision systems working with an interference on trained neural networks with images taken after exposure and after recoating. There are two drawbacks of this monitoring method: First, the sensor signals - the image of the powder bed - give no direct height information. Second, the application of this method needs to be trained and labeled with reference images for several cases. The novel approach presented in this paper uses a laser line scanner attached to the recoating machine. With this new concept, a direct threshold measure can be applied during the recoating process to detect deviations in height level without prior knowledge. The evaluation can be done online during recoating and feedback to the controller to monitor each individual layer. Hence, in case of deviations the location in the printing plane is an inherent measurement and will be used to decide which severity of error is reported. The signal is used to control the process, either by starting the recoating process again or stopping the printing process. With this approach, the sources of error for each layer can be evaluated with deep information to evaluate the cause of the error. This allows a reduction of failure in the future, which saves material costs, reduces running time of the machine life cycle phase in serial production and results in less rework for manufactured parts. Also a shorter throughput time per print job results, which means that the employee can spent more time to other print jobs and making efficient use of the employee’s work force. In summary, this novel approach will not only reduce material costs but also operating costs and thus optimize the entire life cycle cost structure. The paper presents a first feasibility and application of the described approach for test workpieces in comparison to conventional monitoring systems on an EOS M290 machine. Y1 - 2021 UR - 10.1016/j.procir.2021.01.175 VL - 98 SP - 684 EP - 689 PB - Elsevir ER - TY - JOUR A1 - Ochs, Dennis A1 - Wehnert, Kira-Kristin A1 - Hartmann, Jürgen A1 - Schiffler, Andreas A1 - Schmitt, Jan T1 - Sustainable Aspects of a Metal Printing Process Chain with Laser Powder Bed Fusion (LPBF) JF - Procedia CIRP N2 - Production companies are getting more and more aware of the relevancy of energy costs and the environmental impact of their manufactured products. Hence, the knowledge about the energy intensity of new process technologies as metal printing becomes increasingly crucial. Therefore, data about the energy intensity of entire process chains allow a detailed assessment of the life cycle costs and environmental impact of metal printed parts. As metal printing with Laser Powder Bed Fusion (LPBF) is applied from rapid prototyping to serial manufacturing processes more and more, sustainability data are useful to support a valid scale-up scenario and energetic improvements of the 3D-printing machinery as well as peripheral aggregates used in the process chain. The contribution aims to increase the transparency of the LPBF process chain in terms of its energy consumption. Therefore a generalized model to assess sustainability aspects of metal printed parts is derived. For this purpose, the LPBF process chain with the essential pre-, main- and post-processes is evaluated regarding its energy intensity. Here, the sub-processes, for example wet and dry cleaning of the printer, sieving of the metal powder or sand-blasting of the part are analyzed as well as the main printing process. Based on the derived experimental data from an installed, industry-like process chain, a model is created, which tends to generalize the experimental findings to evaluate other metal printed parts and process chain variants in terms of their energy intensity. Y1 - 2021 UR - 10.1016/j.procir.2021.01.163 VL - 98 SP - 613 EP - 618 PB - Elsevir ER - TY - JOUR A1 - Miller, Eddi A1 - Barthelme, Christine A1 - Schiffler, Andreas A1 - Engelmann, Bastian A1 - Schmitt, Jan T1 - Internationalisierung in Pandemiezeiten, technische Möglichkeiten, Lehr- und Forschungskonzepte mal anders gedacht JF - FHWS Science Journal N2 - Eines der zentralen strategischen Ziele unserer Hochschule ist die Internationalisierung, sowie der »internationalisation@home«. Als die weltweite Corona-Pandemie die Präsenzlehre und -forschung ebenso wie den internationalen Austausch von Studierenden und Forschenden zu Beginn 2020 quasi zum Erliegen brachte wurden die Rufe nach digitalen Angeboten im internationalen Bereich schnell laut. Vor diesem Hintergrund reagierte der »Deutsche Akademische Auslandsdienst (DAAD)« mit der kurzfristig ins Leben gerufenen Förderlinie »International Virtual Academic Collaboration« (IVAC), um internationale Hochschulkooperationen und weltweite Mobilität unter digitalen Vorzeichen strategisch zu gestalten und auszubauen [1]. KW - internationalisierung KW - covid KW - corona Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-20035 UR - https://nbn-resolving.org/urn:nbn:de:bvb:863-opus-19389 SN - 2196-6095 VL - 5 IS - 2 SP - 143 EP - 146 ER - TY - CHAP A1 - Seitz, Philipp A1 - Schmitt, Jan A1 - Engelmann, Bastian T1 - Evaluation of proceedings for SMEs to conduct I4.0 projects T2 - Procedia Cirp Y1 - 2019 VL - 86 SP - 257 EP - 263 ER - TY - JOUR A1 - Fischer, Sophie A1 - Schmitt, Jan T1 - Involvierende Bildungskomponenten zur Ableitung von Anpassungskonzepten für (produzierende) Unternehmen im Projekt MainKlimaPLUS JF - FHWS Science Journal N2 - Es gilt, auf diverse Szenarien des Klimawandels vorbereitet zu sein, potenziell negativen Einflüssen vorzubeugen und Chancen (bspw. hinsichtlich Absatz- und Beschaffungsmarkt) zu ergreifen. Diese Ausprägungen regen dazu an, maßgeschneiderte Bildungskomponenten zu konzeptualisieren, um (produzierende) Unternehmen zukünftig sowohl in ihrer Verantwortungsfunktion zu sensibilisieren, als auch sie lernend zu befähigen, individuelle Klimaanpassungsmaßnahmen abzuleiten. KW - klima KW - klimawandel KW - mainklimaplus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-20050 UR - https://nbn-resolving.org/urn:nbn:de:bvb:863-opus-19389 SN - 2196-6095 VL - 5 IS - 2 SP - 101 EP - 108 ER - TY - CHAP A1 - Wehnert, Kira-Kristin A1 - Schäfer, S A1 - Schmitt, Jan A1 - Schiffler, Andreas T1 - C7. 4 Application of Laser Line Scanners for Quality Control during Selective Laser Melting (SLM) T2 - SMSI 2021-System of Units and Metreological Infrastructure Y1 - 2021 SP - 298 EP - 299 ER - TY - JOUR A1 - Kiefl, Sophia A1 - Fischer, Sophie A1 - Schmitt, Jan T1 - Self-employed and stressed out? The impact of stress and stress management on entrepreneurs’ mental health and performance JF - Frontiers in Psychology N2 - Introduction: Entrepreneurs play a central role in economic and social stability, yet the start-up rate in Germany has declined in recent years, possibly due to the stress associated with entrepreneurial endeavors. Stressors such as financial uncertainty and time pressure are prevalent among entrepreneurs and negatively affect their psychological well-being. However, research on stress management strategies among self-employed individuals remains limited. Methods: This pilot study conducted a quantitative analysis with 117 self-employed participants in Germany. The study focused on typical entrepreneurial work demands and selected stress coping mechanisms. Results: The analysis revealed a significant correlation between quantitative demands and mental exhaustion. Furthermore, a high positive correlation between presenteeism and workload suggests that presenteeism may partially explain the variance in workload. These findings underscore how high job demands can lead to self-endangering behaviors that are detrimental to mental health. Discussion: Although no significant moderating effect of proactive coping on the relationship between job demands and mental exhaustion was observed, significant negative correlations between proactive coping and both job demands and mental exhaustion suggest a potential protective role of proactive coping against work-related stress. This study highlights the importance of understanding stress coping strategies among self-employed individuals and their impact on entrepreneurial success and mental well-being. Further research in this area is warranted to develop effective interventions to support the well-being and productivity of self-employed individuals in Germany. KW - General Psychology Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-55955 SN - 1664-1078 VL - 15 PB - Frontiers Media SA ER - TY - JOUR A1 - Kiefl, Sophia A1 - Fischer, Sophie A1 - Schmitt, Jan T1 - Self-employed and stressed out? The impact of stress and stress management on entrepreneurs’ mental health and performance JF - Frontiers in Psychology Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-56040 VL - 15 PB - Frontiers ER - TY - JOUR A1 - Lang, Silvio A1 - Engelmann, Bastian A1 - Schiffler, Andreas A1 - Schmitt, Jan T1 - A simplified machine learning product carbon footprint evaluation tool JF - Cleaner Environmental Systems N2 - On the way to climate neutrality manufacturing companies need to assess the Carbon dioxide (CO2) emissions of their products as a basis for emission reduction measures. The evaluate this so-called Product Carbon Footprint (PCF) life cycle analysis as a comprehensive method is applicable, but means great effort and requires interdisciplinary knowledge. Nevertheless, assumptions must still be made to assess the entire supply chain. To lower these burdens and provide a digital tool to estimate the PCF with less input parameter and data, we make use of machine learning techniques and develop an editorial framework called MINDFUL. This contribution shows its realization by providing the software architecture, underlying CO2 factors, calculations and Machine Learning approach as well as the principles of its user experience. Our tool is validated within an industrial case study. KW - Management, Monitoring, Policy and Law KW - Environmental Science (miscellaneous) KW - Renewable Energy, Sustainability and the Environment KW - Environmental Engineering Y1 - 2024 U6 - https://doi.org/10.1016/j.cesys.2024.100187 SN - 2666-7894 VL - 13 PB - Elsevier BV ER - TY - RPRT A1 - Asikainen, Eveliina A1 - Eskola-Salin, Nina A1 - Fischer, Sophie A1 - Giedraitiené, Vytautė A1 - Beseckas, Povilas A1 - Mairhofer, Stephanie A1 - Köder, Lea A1 - Schmitt, Jan A1 - Walter, Holger A1 - Guerrero-Perez, Olga A1 - Blázquez-Parra, Elidia Beatriz A1 - Bikuviené, Ina A1 - Lisina, Neringa A1 - Tamuliené, Rasa A1 - Liepinaitiené, Alina A1 - Mäkelä, Anne-Maria A1 - Tahlo, Sanna A1 - Selimaa, Hanna A1 - Hager, Veronika A1 - Ortega-Casanova, Joaquin A1 - Mora-Segado, Patricia T1 - Sustainability at HEIs: Mapping Good Practice N2 - Global climate change is a cognitive challenge for many people and often evokes negative associations due to its complexity and interactions with politics, social movements and economic developments. Therefore, the possession of green skills becomes central to the fight against climate change. The European Council conclusions recognize this urgency and underline the need for a transition to green skills. This recognition also extends to higher education, where institutions have a crucial role to play in tackling the climate crisis. Personal Green Skills in Higher Education (PeGSinHE) is an Erasmus+ KA2 project coordinated by Kauno Kolegija (KK, Lithuania), Tampere University of Applied Sciences (TAMK, Finland), Hochschule für Agrar- und Umweltpädagogik (HAUP, Austria), Universidad de Málaga (UMA, Spain) and Technical University of Applied Sciences Würzburg Schweinfurt (THWS, Germany). The strategically designed project aims not only to promote green skills among students and encourage personal behavioral change in line with the Sustainable Development Goals, but also to instill a sense of social responsibility in the partner institutions. The focus is on empowering lecturers at partner universities through innovative teaching and learning methods to effectively impart green skills to students. This report describes the objectives and methodology used to assess environmental and sustainability competencies in the higher education institutions involved in the project. Methodologically, the report uses an assessment template designed to provide a comprehensive overview of best practice and baseline levels of environmental and sustainability competencies. It advocates the involvement of key stakeholders from all five partner Higher Education Institutions to ensure a broad perspective on these practices and competences within their respective countries and organizations. Different methods and perspectives will be used to collect data to enable a holistic understanding of the topic. The joint completion of the assessment template serves as a catalyst for joint discussions on the level of environmental and sustainability competencies and the identification of best practices in each organization. The results show that national implementation strategies are relatively loose, although some competency descriptions set targets for undergraduate degree programs. Challenges faced by higher education staff include resource constraints, particularly lack of time, the need for a deeper understanding of sustainable development and pedagogical tools, and the need for improved opportunities for collaboration. Given the time and resource constraints of this study, the results must be considered preliminary. Nevertheless, they confirm the findings of previous studies. KW - sustainability KW - best practice KW - HEI KW - green skills Y1 - 2024 U6 - https://doi.org/10.57714/b75p-n548 ER - TY - JOUR A1 - Wilhelm, Markus A1 - Lotter, Frank A1 - Scherdel, Christian A1 - Schmitt, Jan T1 - Advancing Efficiency in Mineral Construction Materials Recycling: A Comprehensive Approach Integrating Machine Learning and X-ray Diffraction Analysis JF - buildings N2 - In the context of environmental protection, the construction industry plays a key role with significant CO2 emissions from mineral-based construction materials. Recycling these materials is crucial, but the presence of hazardous substances, i.e., in older building materials, complicates this effort. To be able to legally introduce substances into a circular economy, reliable predictions within minimal possible time are necessary. This work introduces a machine learning approach for detecting trace quantities (≥0.06 wt%) of minerals, exemplified by siderite in calcium carbonate mixtures. The model, trained on 1680 X-ray powder diffraction datasets, provides dependable and fast predictions, eliminating the need for specialized expertise. While limitations exist in transferability to other mineral traces, the approach offers automation without expertise and a potential for real-world applications with minimal prediction time. KW - Architecture KW - Building and Construction KW - Civil and Structural Engineering Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-56030 SN - 2075-5309 VL - 14 IS - 2 PB - MDPI ER -