TY - JOUR A1 - Knopp, Kevin A1 - Shandy, Amir A1 - Manara, Jochen A1 - Vidi, Stephan A1 - Hartmann, Jürgen T1 - Metrologische Apparaturen zur Messung thermophysikalischer Materialeigenschaften bei sehr hohen Temperaturen im EU-Projekt Hi-TRACE JF - FHWS Science Journal N2 - Industriezweige wie die Glas-Industrie, die Kraftwerkstechnik sowie die Luft- und Raumfahrttechnik müssen kontinuierlich neue Methoden entwickeln, sowie bestehende Verfahren optimieren, um in ihren Bereichen wettbewerbsfähig zu sein bzw. neue Anforderungen an Umwelt- und Klimaschutz zu erfüllen. Dies beinhaltet oft die Entwicklung neuer Materialien, die leichter zu fabrizieren sind und sowohl mechanisch als auch thermisch höheren Belastungen standhalten. Für die genannten Industriezweige sind Prozesse mit hohen Betriebstemperaturen bis zu 3.000 °C kennzeichnend und damit ist die Kenntnis von Materialeigenschaften bei diesen extremen Temperaturen von großer Bedeutung. Auch wenn es bereits einige Messapparaturen für die Bestimmung von thermophysikalischen Materialdaten bei hohen Temperaturen gibt, muss die Rückführung dieser auf die SI Basiseinheiten gewährleistet werden, um die Zuverlässigkeit der gemessenen Daten für die Anforderung der genannten Branchen sicherzustellen. Diese Aufgabe ist das Ziel des EMPIR-(European Metrology Programme for Innovation and Research) Projektes Hi-TRACE [1]. Hi-TRACE zielt darauf ab, Referenzapparaturen und neue Methoden für die Messung von thermophysikalischen Materialeigenschaften, (thermische Diffusivität, spezifische Wärme, Emissionsgrad und Schmelztemperatur) sowie der Haftung von Schichten über 1.000 °C zu bestimmen. KW - thermophysik KW - temperatur Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-20046 UR - https://nbn-resolving.org/urn:nbn:de:bvb:863-opus-19389 SN - 2196-6095 VL - 5 IS - 2 SP - 83 EP - 92 ER - TY - JOUR A1 - Ochs, Dennis A1 - Wehnert, Kira-Kristin A1 - Knopp, Kevin A1 - Hartmann, Jürgen A1 - Versch, Alexander A1 - Schiffler, Andreas T1 - Untersuchungen zur Temperaturleitfähigkeit additiv gefertigter Stahlproben in Abhängigkeit der relativen Dichte JF - FHWS Science Journal N2 - Das direkte Metall-Laser-Schmelzen (DMLS) aus der Familie der Additiven Fertigungsverfahren (AM) ermöglicht die schichtweise Erzeugung komplexer dreidimensionaler Geometrien mit hoher relativer Dichte unter Verwendung von Metallpulver als Ausgangsmaterial [1]. Die Technologie wird zunehmend eingesetzt, um innovative Bauteile material- und gewichtssparend herzustellen oder komplexe Produkte ohne zusätzliche Werkzeuge oder Spannvorrichtungen zu fertigen. Darüber hinaus sind Funktionsintegrationen, zum Beispiel Gussformen mit eingeprägten Kühlkanälen, möglich. Da einzelne Metallpulverschichten auf vorhergehende Schichten aufgeschmolzen werden, entstehen während der Herstellung des Bauteils komplexe, zeitabhängige Temperaturprofile [2]. Durch den Einsatz hoher Laserintensitäten und Scangeschwindigkeiten, bei denen die Belichtungszeit der Laserbestrahlung im Bereich von Millisekunden liegt, werden zudem extrem hohe Aufheiz- und Abkühlraten induziert, die zu einzigartigen Mikrostrukturen und Materialeigenschaften führen [3]. Diese extremen Prozessbedingungen können sich jedoch auch negativ auf den Fertigungsprozess auswirken. Bei komplexen Bauteilen bleibt die Prozessstabilität und Qualitätssicherung Umfragen zufolge weiterhin die wichtigste technologische Barriere für den Einsatz additiv gefertigter Bauteile in hochbelasteten oder sicherheitsrelevanten Bereichen [4]. Daher verspricht der Zusammenhang zwischen Temperaturprofil während der Fertigung, relativer Dichte der Bauteile, sowie thermophysikalischer Eigenschaften additiv gefertigter Proben wichtige Erkenntnisse, insbesondere im Hinblick auf eine zerstörungsfreie Qualitätssicherung, sowie neue Anwendungsmöglichkeiten. KW - temperatur KW - additive fertigung Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-19986 UR - https://nbn-resolving.org/urn:nbn:de:bvb:863-opus-19389 SN - 2196-6095 VL - 5 IS - 2 SP - 75 EP - 82 ER - TY - JOUR A1 - Höfflin, Dennis A1 - Sauer, Christian A1 - Schiffler, Andreas A1 - Hartmann, Jürgen T1 - Process Monitoring Using Synchronized Path Infrared Thermography in PBF-LB/M JF - Sensors N2 - Additive manufacturing processes, particularly Laser-Based Powder Bed Fusion of Metals (PBF-LB/M), enable the development of new application possibilities due to their manufacturing-specific freedom of design. These new fields of application require a high degree of component quality, especially in safety-relevant areas. This is currently ensured primarily via a considerable amount of downstream quality control. Suitable process monitoring systems promise to reduce this effort drastically. This paper introduces a novel monitoring method in order to gain process-specific thermal information during the manufacturing process. The Synchronized Path Infrared Thermography (SPIT) method is based on two synchronized galvanometer scanners allowing high-speed and high-resolution observations of the melt pool in the SWIR range. One scanner is used to steer the laser over the building platform, while the second scanner guides the field of view of an IR camera. With this setup, the melting process is observed at different laser powers, scan speeds and at different locations with respect to the laser position, in order to demonstrate the positioning accuracy of the system and to initially gain thermal process data of the melt pool and the heat-affected zone. Therefore, the SPIT system shows a speed independent overall accuracy of ±2 Pixel within the evaluated range. The system further allows detailed thermal observation of the melt pool and the surrounding heat-affected zone. KW - SPIT KW - PBF-LB/M KW - additive manufacturing KW - process monitoring KW - SWIR KW - melt pool KW - galvanometer scanner Y1 - 2022 U6 - https://doi.org/10.3390/s22165943 VL - 22 IS - 16 PB - MDPI ER - TY - JOUR A1 - Höfflin, Dennis A1 - Hartmann, Jürgen A1 - Rosilius, Maximilian A1 - Seitz, Philipp A1 - Schiffler, Andreas T1 - Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance JF - Sensors N2 - Nowadays, additive manufacturing processes are becoming more and more appealing due to their production-oriented design guidelines, especially with regard to topology optimisation and minimal downstream production depth in contrast to conventional technologies. However, a scientific path in the areas of quality assurance, material and microstructural properties, intrinsic thermal permeability and dependent stress parameters inhibits enthusiasm for the potential degrees of freedom of the direct metal laser melting process (DMLS). Especially in quality assurance, post-processing destructive measuring methods are still predominantly necessary in order to evaluate the components adequately. The overall objective of these investigations is to gain process knowledge make reliable in situ statements about component quality and material properties based on the process parameters used and emission values measured. The knowledge will then be used to develop non-destructive tools for the quality management of additively manufactured components. To assess the effectiveness of the research design in relation to the objectives for further investigations, this pre-study evaluates the dependencies between the process parameters, process emission during manufacturing and resulting thermal diffusivity and the relative density of samples fabricated by DMLS. Therefore, the approach deals with additively built metal samples made on an EOS M290 apparatus with varying hatch distances while simultaneously detecting the process emission. Afterwards, the relative density of the samples is determined optically, and thermal diffusivity is measured using the laser flash method. As a result of this pre-study, all interactions of the within factors are presented. The process variable hatch distance indicates a strong influence on the resulting material properties, as an increase in the hatch distance from 0.11 mm to 1 mm leads to a drop in relative density of 57.4%. The associated thermal diffusivity also reveals a sharp decrease from 5.3 mm2/s to 1.3 mm2/s with growing hatch distances. The variability of the material properties can also be observed in the measured process emissions. However, as various factors overlap in the thermal radiation signal, no clear assignment is possible within the scope of this work. KW - additive manufacturing processes KW - material Y1 - 2021 U6 - https://doi.org/10.3390/s22010046 SN - 1424-8220 VL - 22 IS - 1 PB - MDPI ER - TY - CHAP A1 - Hartmann, Jürgen A1 - Lenski, Philipp A1 - Ochs, Dennis A1 - Shandy, Amir A1 - Winterstein, A. A1 - Versch, Alexander A1 - Schiffler, Andreas T1 - Thermische Prozessüberwachung für additive Fertigungsverfahren BT - Temperatur 2020 Y1 - 2020 CY - Berlin ER - TY - CHAP A1 - Hartmann, Jürgen A1 - Ochs, Dennis A1 - Lenski, Philipp A1 - Schiffler, Andreas A1 - Versch, Alexander A1 - Manara, Jochen T1 - Thermal process monitoring for additive manufacturing BT - MSE 2020 Y1 - 2020 CY - Darmstadt ER - TY - CHAP A1 - Blotevogel, Thomas A1 - Egermann, Jan A1 - Goldlücke, Jürgen A1 - Leipertz, Alfred A1 - Hartmann, Matthias A1 - Schenk, Martin A1 - Berckmüller, Martin ED - Leipertz, Alfred T1 - Untersuchungen zur Gemsichbildung in Wasserstoffmotoren N2 - Mittels der planaren laserinduzierten Fluoreszenz (PLIF) können im Brennraum eines Transparentmotors Messungen durchgeführt werden, die den Gemischbildungsprozess beim Wasserstoffmotor zweidimensional qualitativ darstellen. Auch quantitative Messungen und damit Aussagen über das Kraftstoff-Luft-Verhältnis im Brennraum sind möglich. Für diese Messungen wird ein Gasgemisch ans Helium und einer Tracersubstanz verwendet, und der Motor wird geschleppt. Bei Betrieb des Motors in der Teillast sind auch Messungen im gefeuerten Betrieb, d.h. mit Wasserstoff und zugesetzter Tracersubstanz, möglich. Durch direkte Messung des Kraftstoff-Luft-Verhältnisses und der Wasserstoffkonzentration am befeuerten Aggregat mit Hilfe der Raman-Spektroskopie konnte nachgewiesen werden, daß mittels PLIF der Einströmvorgang qualitativ und das Kraftstoff-Luft-Verhältnis quantitativ grundsätzlich richtig erfaßt werden. Qualitative und quantitative PLIF-Messungen sind prinzipiell nicht nur bei Wasserstoffmotoren, sondern auch bei Gasmotoren mit anderen Brenngasen denkbar. Allerdings sind noch weitere Arbeiten erforderlich, um den Quantifizierungsfehler deutlich abzusenken. Zukünftiges Verbesserungspotential für diese Meßtechnik besteht in verschiedenen Punkten. Dazu gehört die Optimierung und Anpassung der Mischstrecke zur Erzeugung des Gas-Luft-Gemisches mit definiertem Kraftstoff-Luft-Verhältnis an die jeweiligen Meßaufgaben, um den relativen Fehler des Lambda-Wertes noch weiter zu reduzieren. Eine Verringerung der Tracerkonzentration erscheint problemlos möglich. Um das Problem der Hintergrundfluoreszenz zu lösen, sind verschiedene Möglichkeiten denkbar, die noch genauer zu untersuchen sind. KW - Wasserstoff KW - Laseroptisches Messverfahren KW - Verbrennungsmotor KW - Gemischbildung Y1 - 2003 SN - 3-931901-27-0 PB - Esytec CY - Erlangen ER - TY - CHAP A1 - Blotevogel, Thomas A1 - Goldlücke, Jürgen A1 - Egermann, Jan A1 - Leipertz, Alfred A1 - Hartmann, Matthias A1 - Schenk, Martin A1 - Berckmüller, Martin ED - Dingel, Oliver T1 - Gemischbildungsuntersuchung in Gasmotoren mittels optischer Messverfahren, speziell in Wasserstoffmotoren T2 - Gasfahrzeuge N2 - Planar laser-induced fluorescence (PLIF) has been successfully used for the investigation of the mixture formation process in hydrogen engines for passenger cars. Detailed information has been obtained about process development (qualitative measurement) and on fuel/air-ratio (quantitative measurement) inside the combustion chamber. These results can be used for further optimization of mixture formation and combustion process concerning emissions and fuel consumption. The measurement technique used is not only limited to hydrogen or to passenger car engines, but can also be applied to other fuel gases like natural gas or to other engine sizes like bus engines. The main topic of this paper is the experimental verification of the procedure which was executed by simultaneous PLIF and Raman scattering measurements. By Raman scattering the fuel/air-ratio can directly be determined from direct concentration measurements of the different gas species. The fuel/air-ratios determined by PLIF and Raman measurements are in good agreement indicating that a quantitative fuel/air-ratio measurement during the mixture formation process of gas and hydrogen engines is possible by PLIF. This fact is also confirmed by other measurements, e.g., global fuel/air-ratio calculated from measured intake air and fuel gas flow. KW - Wasserstoff Gasmotor Laser Optische Messtechnik Y1 - 2004 SN - 3816924395 SP - 205 EP - 229 PB - expert verlag CY - Renningen ER - TY - CHAP A1 - Hartmann, Jürgen A1 - Dobhan, Alexander A1 - Engelmann, Bastian A1 - Eberhardt, Lars A1 - Heusinger, Moritz A1 - Raab, C A1 - Schleif, Frank-Michael A1 - Türk, M. T1 - Optimierung von Prozessen und Werkzeugmaschinen durch Bereitstellung, Analyse und Soll-Ist-Vergleich von Produktionsdaten: Digitalkonferenz Y1 - 2020 ER - TY - CHAP A1 - Hartmann, Jürgen A1 - Harrer, S. A1 - Dotterweich, C. A1 - Zink, Markus H. A1 - Hemberger, Frank A1 - Ebert, Hans-Peter A1 - Schnitzler, Tim T1 - Phase change materials for use in thermally and electrically stressed insulation for high voltage applications T2 - 2016 IEEE Electrical Insulation Conference N2 - The temperature of high voltage equipment is often the limiting factor when transmitting electrical energy because the electrical insulation can get severely aged when the temperature is exceeding a certain limit. Hence, cooling has to be improved or heat generation must be reduced to avoid damage of the insulation. In this paper a new method was examined by investigating electrically insulating phase change materials which are able to store latent heat during a phase change from the solid to liquid state in times of high energy demand. To verify the electrically insulating properties of paraffins, one class of phase change materials, a special test cell was designed allowing the determination of breakdown voltage of phase change materials. The measurements on one paraffin sample proved the promising electrical insulating properties and it was shown that the breakdown voltage in the liquid state is comparable … Y1 - 2016 UR - https://ieeexplore.ieee.org/iel7/7541933/7548553/07548675.pdf SN - 978-1-4673-8706-4 SP - 605 EP - 608 PB - IEEE ER - TY - CHAP A1 - Zink, Markus H. A1 - Dotterweich, C. A1 - Hartmann, Jürgen A1 - Harrer, S. A1 - Hemberger, F. A1 - Ebert, Hans-Peter A1 - Schnitzler, Tim T1 - Phase Change Materials for Use in Thermally and Electrically Stressed Insulation for High Voltage Applications T2 - IEEE Electrical Insulation Conference Y1 - 2016 VL - 2016 SP - 605 EP - 608 ER - TY - CHAP A1 - Harrer, S. A1 - Dotterweich, C. A1 - Hartmann, Jürgen A1 - Zink, M. A1 - Schnitzler, Tim A1 - Ebert, Hans-Peter A1 - Hemberger, Frank T1 - Paraffine als Phasenwechselmaterialen in der elektrischen Isolierung von Hochspannungsbauteilen BT - ETG-Fachbericht-VDE-Hochspannungstechnik Y1 - 2016 ER - TY - CHAP A1 - Hartmann, Jürgen A1 - Harrer, S. A1 - Dotterweich, C. A1 - Zink, Markus H. T1 - On the conduction process of dielectric liquids based on mineral oil BT - International Symposium on High Voltage Engineering 2017 Y1 - 2017 CY - Buenos Aires (Argentinien) ER - TY - JOUR A1 - Höfflin, Dennis A1 - Sauer, Christian A1 - Schiffler, Andreas A1 - Manara, Jochen A1 - Hartmann, Jürgen T1 - Pixelwise high-temperature calibration for in-situ temperature measuring in powder bed fusion of metal with laser beam JF - Heliyon N2 - High-temperature calibration methods in additive manufacturing involve the use of advanced techniques to accurately measure and control the temperature of the build material during the additive manufacturing process. Infrared cameras, blackbody radiation sources and non-linear optimization algorithms are used to correlate the temperature of the material with its emitted thermal radiation. This is essential for ensuring the quality and repeatability of the final product. This paper presents the calibration procedure of an imaging system for in-situ measurement of absolute temperatures and temperature gradients during powder bed fusion of metal with laser beam (PBF-LB/M) in the temperature range of 500 K–1500 K. It describes the design of the optical setup to meet specific requirements in this application area as well as the procedure for accounting the various factors influencing the temperature measurement. These include camera-specific effects such as varying spectral sensitivities of the individual pixels of the sensor as well as influences of the exposure time and the exposed sensor area. Furthermore, influences caused by the complex optical path, such as inhomogeneous transmission properties of the galvanometer scanner as well as angle-dependent transmission properties of the f-theta lens were considered. A two-step fitting algorithm based on Planck's law of radiation was applied to best represent the correlation. With the presented procedure the calibrated thermography system provides the ability to measure absolute temperatures under real process conditions with high accuracy. Y1 - 2024 U6 - https://doi.org/10.1016/j.heliyon.2024.e28989 SN - 2405-8440 VL - 10 IS - 7 PB - Elsevier BV ER -