TY - CHAP A1 - Hartmann, Jürgen A1 - Manara, Jochen A1 - Stark, Thomas A1 - Arduini, Mariacarla A1 - Ebert, Hans-Peter A1 - Knopp, Kevin A1 - Shandy, Amir T1 - Non-contact detection of the adhesive properties of ceramic coatings for high temperature applications using infrared thermography; Transactions BT - Transactions Y1 - 2022 PB - SMiRT-26 CY - Berlin/Potsdam ER - TY - CHAP A1 - Hartmann, Jürgen A1 - Manara, Jochen A1 - Stark, Thomas A1 - Zipf, Matthias A1 - Arduini, Mariacarla A1 - Ebert, Hans-Peter A1 - Müller, Michael A1 - Möller, F. A1 - Krüger, U. A1 - Schmidt, F. A1 - Knopp, Kevin A1 - Lenski, Philipp A1 - Zänglein, Marc A1 - Ochs, Dennis A1 - Shandy, Amir T1 - Non-contact detection of the adhesion properties of ceramic based thermal barrier coatings by determining the surface temperatures using thermography BT - ECTP 2020 Y1 - 2020 CY - Venedig (Italien) ER - TY - JOUR A1 - Hartmann, Jürgen A1 - Knopp, Kevin A1 - Shandy, Amir A1 - Winterstein, Achim A1 - Arduini, Mariacarla A1 - Hemberger, Frank A1 - Vidi, Stephan A1 - Manara, Jochen A1 - Müller, Michael T1 - Thermophysikalische Charakterisierung von Wärmedämmschichten T1 - Thermophysical characterization of thermal barrier layers JF - tm - Technisches Messen N2 - Die Effizienzsteigerung moderner Gasturbinen erfordert die stetige Anhebung der Betriebstemperatur. Die derzeitigen Brenngastemperaturen liegen mit über 1400 °C signifikant über der kritischen Temperatur der verwendeten Turbinenstähle. Zur Gewährleistung der Betriebssicherheit werden die Turbinenschaufeln neben Aktivkühlung durch Beschichtung mit thermischen Schutzschichten, sogenannten thermal barrier coatings (TBC), geschützt. Da es sich bei den TBC um Keramikschichten handelt, ist für die Erhöhung der Haftfestigkeit das Aufbringen eines Haftvermittlers (Verbindungsschicht) notwendig. Da die Eigenschaften dünner Schichten stark von den Eigenschaften des Bulkmaterials abweichen können und zudem von der Herstellungsmethode beeinflusst werden, ist eine Untersuchung der thermischen und infrarot-optischen Eigenschaften der tatsächlichen Schichtstrukturen unumgänglich, insbesondere im Hochtemperaturbereich. Hierfür wurden Proben des reinen Trägerstahls, des Trägerstahls mit Haftvermittlerschicht und des kompletten Schichtsystems aus Trägerstahl, Haftvermittlerschicht und Wärmedämmschicht verschiedener Dicken hergestellt und mittels Laser-Flash-Methode untersucht. Die Auswertung erfolgte dabei analytisch, ausgehend von der Trägerstahl-Einschichtprobe, über die Zweischicht- und Dreischichtsysteme. Vervollständigt wurden diese Untersuchungen durch infrarot-optische Charakterisierungen, mit denen sich die Wärmeausbreitung durch die Schichtsysteme beschreiben lässt. Zusammen mit den Laser-Flash Messungen erlaubt dies eine spätere Quantifizierung der einzelnen, bei Keramiken auftretenden, Wärmetransportmechanismen. N2 - Increasing the efficiency of modern gas turbines requires the increase of operating temperature. Current fuel gas temperatures above 1400 °C significantly exceed critical temperatures of the turbine steels used. To ensure operational safety, the turbine blades are actively cooled and also protected by protective layers, the so-called thermal barrier coatings (TBC). Since the TBC are ceramic layers, an adhesion promoter (bond coat) must be applied to increase the adhesive strength. Since properties of thin layers can differ from properties of the bulk material and are also influenced by the manufacturing method, an investigation of the thermal and infrared-optical properties of the actual layer is essential, especially in the high temperature range. For this purpose, samples of the pure carrier steel, the carrier steel with bond coat and the complete layer system of carrier steel, bond coat and TBC of various thicknesses were produced and examined using the laser flash method. The evaluation was carried out analytically, starting from the single-layer sample, via the two-layer and three-layer systems. These investigations were completed by infrared-optical characterizations, allowing the description of the heat transport through the layer systems. These measurements allow a future quantification of the individual heat transport mechanisms occurring in ceramics. KW - kontaktlose Messung KW - thermische Charakterisierung KW - thermische Wärmeschutzbarrieren KW - Kontaktwiderstand KW - Laser-Flash-Verfahren KW - Contactless measurement KW - thermal characterization KW - thermal barrier coatings KW - contact resistance KW - laser flash method Y1 - 2021 U6 - https://doi.org/10.1515/teme-2021-0074 VL - 88 IS - 12 PB - Oldenbourg Wissenschaftsverlag ER - TY - JOUR A1 - Knopp, Kevin A1 - Shandy, Amir A1 - Manara, Jochen A1 - Vidi, Stephan A1 - Hartmann, Jürgen T1 - Metrologische Apparaturen zur Messung thermophysikalischer Materialeigenschaften bei sehr hohen Temperaturen im EU-Projekt Hi-TRACE JF - FHWS Science Journal N2 - Industriezweige wie die Glas-Industrie, die Kraftwerkstechnik sowie die Luft- und Raumfahrttechnik müssen kontinuierlich neue Methoden entwickeln, sowie bestehende Verfahren optimieren, um in ihren Bereichen wettbewerbsfähig zu sein bzw. neue Anforderungen an Umwelt- und Klimaschutz zu erfüllen. Dies beinhaltet oft die Entwicklung neuer Materialien, die leichter zu fabrizieren sind und sowohl mechanisch als auch thermisch höheren Belastungen standhalten. Für die genannten Industriezweige sind Prozesse mit hohen Betriebstemperaturen bis zu 3.000 °C kennzeichnend und damit ist die Kenntnis von Materialeigenschaften bei diesen extremen Temperaturen von großer Bedeutung. Auch wenn es bereits einige Messapparaturen für die Bestimmung von thermophysikalischen Materialdaten bei hohen Temperaturen gibt, muss die Rückführung dieser auf die SI Basiseinheiten gewährleistet werden, um die Zuverlässigkeit der gemessenen Daten für die Anforderung der genannten Branchen sicherzustellen. Diese Aufgabe ist das Ziel des EMPIR-(European Metrology Programme for Innovation and Research) Projektes Hi-TRACE [1]. Hi-TRACE zielt darauf ab, Referenzapparaturen und neue Methoden für die Messung von thermophysikalischen Materialeigenschaften, (thermische Diffusivität, spezifische Wärme, Emissionsgrad und Schmelztemperatur) sowie der Haftung von Schichten über 1.000 °C zu bestimmen. KW - thermophysik KW - temperatur Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:863-opus-20046 UR - https://nbn-resolving.org/urn:nbn:de:bvb:863-opus-19389 SN - 2196-6095 VL - 5 IS - 2 SP - 83 EP - 92 ER - TY - CHAP A1 - Hartmann, Jürgen A1 - Lenski, Philipp A1 - Ochs, Dennis A1 - Shandy, Amir A1 - Winterstein, A. A1 - Versch, Alexander A1 - Schiffler, Andreas T1 - Thermische Prozessüberwachung für additive Fertigungsverfahren BT - Temperatur 2020 Y1 - 2020 CY - Berlin ER -