@article{HoefflinHartmannRosiliusetal., author = {H{\"o}fflin, Dennis and Hartmann, J{\"u}rgen and Rosilius, Maximilian and Seitz, Philipp and Schiffler, Andreas}, title = {Opto-Thermal Investigation of Additively Manufactured Steel Samples as a Function of the Hatch Distance}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {1}, publisher = {MDPI}, issn = {1424-8220}, doi = {10.3390/s22010046}, pages = {46}, abstract = {Nowadays, additive manufacturing processes are becoming more and more appealing due to their production-oriented design guidelines, especially with regard to topology optimisation and minimal downstream production depth in contrast to conventional technologies. However, a scientific path in the areas of quality assurance, material and microstructural properties, intrinsic thermal permeability and dependent stress parameters inhibits enthusiasm for the potential degrees of freedom of the direct metal laser melting process (DMLS). Especially in quality assurance, post-processing destructive measuring methods are still predominantly necessary in order to evaluate the components adequately. The overall objective of these investigations is to gain process knowledge make reliable in situ statements about component quality and material properties based on the process parameters used and emission values measured. The knowledge will then be used to develop non-destructive tools for the quality management of additively manufactured components. To assess the effectiveness of the research design in relation to the objectives for further investigations, this pre-study evaluates the dependencies between the process parameters, process emission during manufacturing and resulting thermal diffusivity and the relative density of samples fabricated by DMLS. Therefore, the approach deals with additively built metal samples made on an EOS M290 apparatus with varying hatch distances while simultaneously detecting the process emission. Afterwards, the relative density of the samples is determined optically, and thermal diffusivity is measured using the laser flash method. As a result of this pre-study, all interactions of the within factors are presented. The process variable hatch distance indicates a strong influence on the resulting material properties, as an increase in the hatch distance from 0.11 mm to 1 mm leads to a drop in relative density of 57.4\%. The associated thermal diffusivity also reveals a sharp decrease from 5.3 mm2/s to 1.3 mm2/s with growing hatch distances. The variability of the material properties can also be observed in the measured process emissions. However, as various factors overlap in the thermal radiation signal, no clear assignment is possible within the scope of this work.}, language = {en} } @inproceedings{HartmannLenskiOchsetal., author = {Hartmann, J{\"u}rgen and Lenski, Philipp and Ochs, Dennis and Shandy, Amir and Winterstein, A. and Versch, Alexander and Schiffler, Andreas}, title = {Thermische Prozess{\"u}berwachung f{\"u}r additive Fertigungsverfahren}, address = {Berlin}, language = {de} } @inproceedings{HartmannOchsLenskietal., author = {Hartmann, J{\"u}rgen and Ochs, Dennis and Lenski, Philipp and Schiffler, Andreas and Versch, Alexander and Manara, Jochen}, title = {Thermal process monitoring for additive manufacturing}, address = {Darmstadt}, language = {en} } @article{HoefflinSauerSchiffleretal., author = {H{\"o}fflin, Dennis and Sauer, Christian and Schiffler, Andreas and Manara, Jochen and Hartmann, J{\"u}rgen}, title = {Pixelwise high-temperature calibration for in-situ temperature measuring in powder bed fusion of metal with laser beam}, series = {Heliyon}, volume = {10}, journal = {Heliyon}, number = {7}, publisher = {Elsevier BV}, issn = {2405-8440}, doi = {10.1016/j.heliyon.2024.e28989}, abstract = {High-temperature calibration methods in additive manufacturing involve the use of advanced techniques to accurately measure and control the temperature of the build material during the additive manufacturing process. Infrared cameras, blackbody radiation sources and non-linear optimization algorithms are used to correlate the temperature of the material with its emitted thermal radiation. This is essential for ensuring the quality and repeatability of the final product. This paper presents the calibration procedure of an imaging system for in-situ measurement of absolute temperatures and temperature gradients during powder bed fusion of metal with laser beam (PBF-LB/M) in the temperature range of 500 K-1500 K. It describes the design of the optical setup to meet specific requirements in this application area as well as the procedure for accounting the various factors influencing the temperature measurement. These include camera-specific effects such as varying spectral sensitivities of the individual pixels of the sensor as well as influences of the exposure time and the exposed sensor area. Furthermore, influences caused by the complex optical path, such as inhomogeneous transmission properties of the galvanometer scanner as well as angle-dependent transmission properties of the f-theta lens were considered. A two-step fitting algorithm based on Planck's law of radiation was applied to best represent the correlation. With the presented procedure the calibrated thermography system provides the ability to measure absolute temperatures under real process conditions with high accuracy.}, language = {en} }