@incollection{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Comparison of the New NPL Primary Standard Ag Fixed-Point Blackbody Source with the Primary Standard Fixed}, series = {Temperature: Its measurement and control in science and industry, volume 7}, booktitle = {Temperature: Its measurement and control in science and industry, volume 7}, editor = {Ripple, Dean C.}, publisher = {American Institute of Physics}, isbn = {0-7354-0153-5}, publisher = {Hochschule f{\"u}r Angewandte Wissenschaften W{\"u}rzburg-Schweinfurt}, abstract = {Above the freezing point of silver (96178 C), the International Temperature Scale of 1990 is defined in terms of Planck's radiation law. The scale is maintained and disseminated using a validated and linear pyrometer in conjunction with a blackbody reference source at either the Ag, Au (1064.18 C) or Cu (1084.62 C) freezing point. In order to realize the scale with the highest precision high quality, well-characterised, reproducible fixed-point blackbody sources are required. Such sources have been maintained at NPL for a number of years, but it was felt that improvements to the design would be beneficial. A new Agpoint blackbody source has therefore been constructed. The new design will improve the quality and reproducibility of the melting and freezing plateaux and reduce errors due to the "out-of-focus" size-of-source effect which is difficult to measure and to eliminate. Full details of the design of the new source …}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Thermal diffusivity measurements on two-layered and three-layered systems with the laser-flash method}, series = {High Temperatures - High Pressures}, volume = {25}, journal = {High Temperatures - High Pressures}, pages = {231 -- 238}, abstract = {A research effort is reported in which the thermal diffusivity of coatings on substrate materials has been determined. The measurements were performed with a conventional laser-flash apparatus with rear-side detection of the temperature response with an infrared detector. In the evaluation of the data the theoretica! curve is fitted to the complete recorded temperature-time curve, instead of just using the t1/2 point. It is also demonstrated how to include the influence of a thermal contact resistance between the two layers in the evaluation. The paper presents measurements on two-layered and three-layered heat-barrier systems consisting of ZrO, and Ni CrA| Y on nickel.}, language = {en} } @article{HartmannVoelker, author = {Hartmann, J{\"u}rgen and V{\"o}lker, S.}, title = {Thermisches Management an Lichtquellen}, address = {Wien}, abstract = {Hauptaufgabe von Lichtquellen ist die Beleuchtung, also die Erzeugung von sichtbarer Strahlung und somit Licht. Allerdings entsteht bei der Erzeugung von Licht auch unerw{\"u}nschte W{\"a}rme, die effizient abgeleitet werden muss. Bei klassischen thermische Lichtquellen wird Licht {\"u}ber die elektrische Heizung von Wolframdr{\"a}hten bis zu Temperaturen von 3000 K erzeugt. Auch bei dieser Temperatur liegt der {\"u}berwiegende Teil der emittierten Strahlung im unsichtbaren infraroten Bereich des optischen Spektrums. Entladungslampen erzeugen Licht auf nichtthermischem Wege. Da aber auch hier die Elektroden auf Temperaturen {\"u}ber 2000 K erhitzt werden, leiden Entladungslampen ebenfalls unter thermischer Belastung. In modernen Festk{\"o}rperlichtquellen wie LEDs, gleichsam nichtthermische Lichtquellen, erzeugt der elektrische Strom eine Joulesche Erw{\"a}rmung des Bauteils, dessen Temperatur f{\"u}r optimalen Betrieb {\"u}blicherweise unter 420 K bleiben sollte. Solche, im Vergleich zu den anderen Lichtquellen niedrigen Temperaturen, verhindern eine effiziente Strahlungsk{\"u}hlung, so dass eine K{\"u}hlung durch Konvektion oder Leitung erfolgen muss. Alle genannten Lichtquellen erfordern ein optimales Thermisches Management, dh die Einstellung und Einhaltung einer optimalen Betriebstemperatur, f{\"u}r optimale Effizienz und Lebensdauer. In diesem Beitrag werden die genannten Generationsmechanismen f{\"u}r Licht sowie die Untersuchung der thermischen Belastung der unterschiedlichen Lichtquellen beschrieben und m{\"o}gliche Optimierungswege diskutiert. Einige Beispiele verdeutlichen die Relevanz des Thermischen Managements f{\"u}r die …}, language = {de} } @inproceedings{HartmannTaubertAnhaltetal., author = {Hartmann, J{\"u}rgen and Taubert, Dieter Richard and Anhalt, Klaus and Gutschwager, B. and Monte, C. and Hollandt, J{\"o}rg}, title = {Radiation thermometry, thermodynamic temperature and emissivity measurements at the PTB}, publisher = {Encuentro Nacional de Metrolog{\´i}a El{\´e}ctrica 2009}, address = {Queretaro (Mexico)}, abstract = {To meet the increasing demand of calibrations in the field of radiation thermometry, the Physikalisch-Technische Bundesanstalt (PTB) operates two different setups for calibrations covering the temperature range from-60 C up to 3000 C. The first setup consists of several heat-pipe blackbodies in conjunction with platinum resistance thermometers, calibrated according to the International Temperature Scale of 1990 (ITS-90) and is applied for calibrations in the temperature range from-60 C to 961.78 C. In the temperature range from 962 C to 3000 C the calibration is based on high temperature blackbodies. The temperature of these blackbodies is determined in two independent ways: traceable to the ITS-90 gold fixed point or via absolutely calibrated filter radiometers (FR) traceable to the detector primary standard, the cryogenic radiometer. Taking advantage from the high accuracy of the FR calibration, these FRs have also been successfully used for the investigation of the thermodynamic accuracy of the ITS-90 in the range from 419 C to 962 C. For non-contact temperature measurements, the emissivity of the observed object is one of the most important parameters. Therefore, PTB has set up instrumentations for measuring the directional spectral and total emissivity of samples in air from 80 C up to 400 C over a spectral range from 4 µm to 40 µm and under vacuum from 0 C to 600 C and in the spectral range from 1 µm to 1000 µm.}, language = {en} } @incollection{HartmannZipfManaraetal., author = {Hartmann, J{\"u}rgen and Zipf, Matthias and Manara, Jochen and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter}, title = {Ber{\"u}hrungslose Temperaturmessung an Verbrennungsgasen bei hohen Temperaturen und hohen Dr{\"u}cken}, series = {20. GMA/ITG-Fachtagung Sensoren und Messsysteme 2019}, booktitle = {20. GMA/ITG-Fachtagung Sensoren und Messsysteme 2019}, isbn = {978-3-9819376-0-2}, publisher = {Hochschule f{\"u}r Angewandte Wissenschaften W{\"u}rzburg-Schweinfurt}, pages = {183 -- 190}, abstract = {Station{\"a}re Gasturbinen sind von großer Bedeutung f{\"u}r die heutige Energieversorgung. Der Wirkungsgrad einer Gasturbine steigt mit zunehmender Heißgastemperatur an. Turbinenhersteller bzw. Kraftwerksbetreiber sind daher bestrebt, Turbinen bei der h{\"o}chsten materialtechnisch m{\"o}glichen Heißgastemperatur einzusetzen. Eine entsprechende Prozessoptimierung des Turbinenbetriebs setzt somit die exakte Kenntnis der Gastemperaturen w{\"a}hrend des Betriebs und damit eine verl{\"a}ssliche Messung derselben voraus. Zur Messung der Gastemperatur werden derzeit in der Regel Thermoelemente unmittelbar im Abgasstrom platziert. Aufgrund der dort vorherrschenden extremen Bedingungen degradieren diese Sensoren allerdings sehr schnell. Ein alternativer Ansatz sieht die Entwicklung eines ber{\"u}hrungslosen Messverfahrens auf der Grundlage von Strahlungsthermometern vor. F{\"u}r die Umsetzung dieses Vorhabens ist die genaue Kenntnis des Verhaltens der infrarot-optischen Emissions- und Transmissionsspektren der im Abgasstrom enthaltenen Gase bei hohen Temperaturen und Dr{\"u}cken eine wesentliche Voraussetzung. Aus diesem Grund wurde am ZAE Bayern eine Hochtemperatur-Hochdruck-Gaszelle entwickelt, die es in Verbindung mit einem FTIR-Spektrometer erlaubt, Gase und Gasgemische hinsichtlich dieser Gesichtspunkte zu charakterisieren. In dieser Arbeit wird die neue Messapparatur vorgestellt und Gasgemische, die f{\"u}r die Turbinenanwendungen relevant sind, werden analysiert. Zur Identifizierung eines geeigneten Wellenl{\"a}ngenbereichs f{\"u}r die geplante ber{\"u}hrungslose Temperaturmessung wurden erste Messungen durchgef{\"u}hrt, auf deren Grundlage ein ad{\"a}quater Wellenl{\"a}ngenbereich ermittelt werden konnte.}, language = {de} } @incollection{HartmannManaraZipfetal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Zipf, Matthias and Stark, Thomas and Knopp, Kevin and Z{\"a}nglein, Marc and Schreiber, Ekkehard and Schmidt, Franz and Brunner, Martin and M{\"u}ller, Michael}, title = {Experimental set-up for dynamic material investigation at high temperatures}, series = {Sensors and Measuring Systems; 19th ITG/GMA-Symposium}, booktitle = {Sensors and Measuring Systems; 19th ITG/GMA-Symposium}, publisher = {VDE Verlag}, isbn = {978-3-8007-4683-5}, publisher = {Hochschule f{\"u}r Angewandte Wissenschaften W{\"u}rzburg-Schweinfurt}, pages = {516 -- 519}, abstract = {Energy efficiency and operation safety in energy conversion, process technology, and aerospace engineering requires advanced material investigation, in particular at high temperatures to characterize the materials and components. Additionally, modern additive manufacturing methods, in particular the 3D metal laser printer requires a detailed control of the melting temperature. Many applications are based on a layered structures, e.g. thermal barrier coatings in gas turbines. Also components manufactured by additive manufacturing pose a layered structure. In these structures the mechanical contact between the layers and to the substrate is of high interest. Besides, the complete characterisation of the additive manufactured component is important for its later application. To cope with these new demands, the University of Applied Sciences Wuerzburg - Schweinfurt (FHWS) and the Bavarian Center for Applied …}, language = {en} } @article{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Ebert, Hans-Peter and Tutschke, Andreas and Hallam, Andrew and Hanspal, Jagdevinder and Langley, Mark}, title = {Entwicklung und Test eines langwelligen Strahlungsthermometers zur ber{\"u}hrungslosen Temperaturmessung in Gasturbinen w{\"a}hrend des Betriebs}, series = {tm - Technisches Messen}, volume = {85}, journal = {tm - Technisches Messen}, number = {1}, publisher = {Oldenbourg Wissenschaftsverlag}, address = {Berlin/Boston}, doi = {https://doi.org/10.1515/teme-2017-0077}, pages = {28 -- 39}, abstract = {The aim of this work was the development of a long wavelength infrared radiation thermometer for the non-contact measurement of surface temperatures in stationary gas turbines during operation within the EU-project „Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)". In this work, the infrared-optical properties of the thermal barrier coatings and the combustion gases were determined at ZAE Bayern at high temperatures up to 1600 K and pressures up to 13 bar. Based on these experimental characterizations, a suitable spectral range could be identified which lies around 10 μm for the long-wavelength infrared radiation thermometer. According to these findings, a laboratory setup with suitable optical components (filters, IR-fibers, etc.) was firstly realized and verified. Subsequently, a prototype for measurements in gas turbines during operation of the turbines has …}, language = {de} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Eutektische Hochtemperatur-Fixpunkte f{\"u}r die Dynamische Differenzkalorimetrie}, publisher = {Sensoren und Messsysteme 2010 - 15. ITG/GMA-Fachtagung}, abstract = {Eutektische Metall-Kohlenstoff-(M-C)-Fixpunkte erweitern den Temperaturbereich in dem Hochtemperaturfixpunkte eingesetzt werden k{\"o}nnen vom h{\"o}chsten Temperaturfixpunkt der derzeit g{\"u}ltigen Internationalen Temperaturskala von 1990 (ITS-90) der Erstarrungstemperatur von Kupfer bei 1357.77 K bis hin zu Temperaturen von bis zu 3500 K. Bislang sind diese Hochtemperaturfixpunkte ausschließlich eingesetzt worden, um die Kalibrierung von Strahlungsthermometern und Thermoelementen zu vereinfachen. Herk{\"o}mmlicherweise ist das Fixpunktmaterial dabei in einem Graphittiegel, in den ein Hohlraumzylinder eintaucht, gefasst. Der Hohlraumzylinder dient dabei als Schwarzk{\"o}rper f{\"u}r ein Strahlungsthermometer und als Tauchrohr f{\"u}r Anwendungen in der Ber{\"u}hrungsthermometrie. Oberhalb von 1300 K w{\"u}rde auch die Messung thermophysikalischer Eigenschaften, d.h. Methoden der thermischen Analyse wie die dynamische Differenzkalorimetrie (DSC), die Laserflash-Methode oder die Dilatometrie, signifikant von der in-situ Anwendung der eutektischen Metallkohlenstoff-Fixpunkte profitieren. Der Beitrag pr{\"a}sentiert die Entwicklung und Untersuchung von Metallkohlenstoff-Hochtemperaturfixpunkten f{\"u}r die Anwendung in DSC Messapparaturen im Temperaturbereich bis 2300 K. Im Gegensatz zu der etablierten Anwendung in Strahlungsthemometrie und Ber{\"u}hrungsthemometrie sind die Materialmengen, die f{\"u}r eine Temperaturkalibrierung ben{\"o}tigt werden, in der thermischen Analyse mit einigen Milligramm Fixpunktmaterial sehr gering. Spezielle Verfahren wurden dabei f{\"u}r die effektive Pr{\"a}paration solch kleiner, und f{\"u}r den Einsatz als Temperaturfixpunkt hochreiner, Probenmassen entwickelt.}, language = {de} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Optische Hochtemperaturmesstechnik f{\"u}r die Thermometrie, Radiometrie und Photometrie}, publisher = {Sensoren und Messsysteme 2010 - 15. ITG/GMA-Fachtagung}, abstract = {Die Temperaturmessung {\"u}ber die emittierte W{\"a}rmestrahlung ist seit {\"u}ber hundert Jahren ein innovatives Feld der Messtechnik und der Grundlagenphysik. Ein erster H{\"o}hepunkt war Gustav Kirchhoffs theoretisches Prinzip eines Schwarzen K{\"o}rpers mit idealen - von Material und Form unabh{\"a}ngigen - Emissionseigenschaften f{\"u}r W{\"a}rmestrahlung. Diese fr{\"u}hen Entwicklungen gipfelten in Max Planck's ber{\"u}hmtem Strahlungsgesetz, das die Emission von W{\"a}rmestrahlung exakt beschreibt und den Beginn der modernen Quantenphysik einleitet. Die quantitative Messung von W{\"a}rmestrahlung erfordert die Kenntnis von Quellen- und Detektoreigenschaften. Im Bereich der Erzeugung von W{\"a}rmestrahlung werden noch heute die gleichen Prinzipien benutzt wie zu Zeiten Plancks, d. h. es werden technologisch weiter entwickelte Hohlraumstrahler zur Realisierung Schwarzer K{\"o}rper eingesetzt. Im Bereich der Detektion von W{\"a}rmestrahlung haben sich jedoch durch die Entwicklung der Halbleitertechnik grunds{\"a}tzlich andere physikalische Prinzipien durchgesetzt. W{\"a}hrend zu Plancks Zeiten thermische Empf{\"a}nger eingesetzt wurden, finden im Hochtemperaturbereich heute - neben thermischen Empf{\"a}ngern - fast ausschließlich photoelektrische Empf{\"a}nger Anwendung. Einen weiteren entscheidenden Schritt in Richtung h{\"o}chster Genauigkeit bedeutete die Entwicklung eines elektrischen Substitutionsradiometers bei sehr tiefen Temperaturen, des so genannten Kryoradiometers. Die Erfindung des Kryoradiometers als prim{\"a}rer Detektorstandard Ende der 1970er Jahre erm{\"o}glichte die Messung optischer Strahlungsleistung mit einer relativen Unsicherheit von unter 10-4. Basierend auf diese Strahlungsleistungsmessung ist heute die Kalibrierung der spektrale Empfindlichkeit von Detektoren mit relativen Unsicherheiten bis zu 10-4 m{\"o}glich. Moderne Halbleiterempf{\"a}nger liefern einen strahlungsleistungsproportionalen Photostrom. Zur Messung der W{\"a}rmestrahlung {\"u}ber einen weiten Temperatur- und Wellenl{\"a}ngenbereich m{\"u}ssen Photostr{\"o}me von fA bis mA mit kleinster Unsicherheit bestimmt werden. Das stellt hohe experimentelle Anforderungen an die elektrische, geometrische und optische Messtechnik. Der Beitrag beschreibt kurz die historische Entwicklung der optischen Temperaturmessung {\"u}ber die ausgesandte W{\"a}rmestrahlung und geht dann auf die experimentellen und physikalischen Grundlagen dieser Methode ein. Abschließend werden M{\"o}glichkeiten zur Implementierung der im Metrologielabor erreichbaren niedrigen Messunsicherheiten in den praktischen messtechnischen Alltag vorgestellt.}, language = {de} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Progress with the development of high temperature fixed-points in the EU through the Himert project}, pages = {6}, abstract = {The EU FP5 funded research project HIMERT (Novel High temperature Metal-carbon Eutectic fixed points for Radiation Thermometry, Radiometry and Thermocouples) aims to develop high temperature fixed points above the freezing point of copper to approximately 2500 deg C with a repeatability of less than 0.1 deg C. NPL and BNM-INM have constructed fixed-point blackbody sources, while BNM-LNE has constructed cells up to 1950 deg C (Ru-C) for the calibration of contact sensors. PTB will perform absolute radiometry of the cells constructed by NPL and BNM-INM. Pt-Pd thermocouple studies will be undertaken by PTB and BNM-LNE. Also a major materials compatibility study has been undertaken by BNM-LNE to identify thermocouple sheath materials that are compatible with graphite to 1950 deg C. The University of Valladolid is investigating the background physics of the eutectic process and seeking to develop physically realistic models. The two industrial companies will test whether improved traceability at lower uncertainties can be achieved by using metal-carbon eutectics. This paper describes the HIMERT project and current progress. (authors)}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {A novel lens free high-accuracy InGaAs radiation thermometer for radiation temperatures above 300°C}, series = {VDI Berichte (1784)}, journal = {VDI Berichte (1784)}, pages = {155 -- 162}, abstract = {A novel high-accuracy radiation thermometer designed for laboratory applications and based on an InGaAs photon detector is presented. In contrast to other radiation thermometers, no imaging optics is used for collecting the radiation. By using a set of two equally sized optical apertures at fixed distances from the detector and a short distance of the thermometer from the radiation source, the size-of-source effect of the instrument is minimized. The radiation thermometer is designed for temperature measurements from 300°C upwards. Technical details of the radiation thermometer together with the measured reference function according to the ITS-90 up to 962°C and its temporal stability are presented. The size-of-source effect of the novel lens-free radiation thermometer is compared with the lens-based InGaAs reference radiation thermometer of the Physikalisch-Technische Bundesanstalt.}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {The composition analysis of YBa2Cu3O7-δ or PrBa2Cu3O7-δ thin films and (YBa2Cu3O7-δ/PrBa2Cu3O7-δ) n heterostructures prepared by CVD}, series = {Fresenius' journal of analytical chemistry}, volume = {357}, journal = {Fresenius' journal of analytical chemistry}, number = {8}, pages = {1061 -- 1065}, abstract = {Some YBa2Cu3O7-δ films and heterostructures prepared by Chemical Vapor Deposition (CVD) were analyzed in our laboratories by EPMA-EDX or WDX, RBS, SNMS and AES. It was found that in some cases the results of composition analysis can significantly deviate from each other. At least two main reasons for these deviations exist: the different lateral resolution and the application of different reference samples for the calibration.}, language = {en} } @techreport{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Improvement of the active layers of a field effect sensor for fluorine}, organization = {6. international meeting on chemical sensors, Gaithersburg, MD (United States)}, pages = {313}, abstract = {The quantitative determination of fluorine in gases is of great importance as this gas is often used in various industrial processes, but is toxic even at low concentrations. Therefore, there is a great demand for sensors for this gases and alarm systems controlling the environment. Recently, the auhtors reported on first results with a new field effect sensor for the determination of F {sub 2}. A silicon substrate was used with a thin layer of LaF {sub 3} in direct contact to the semiconductor and platinum electrode on the top. In early results, a good sensitivity was achieved but an insufficient stability and limit of detection required further improvements. The corresponding findings and fundamental investigations on the sensor mechanism will be given in this paper.}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Thermal resistance of thermal barriers in polycrystalline diamond}, series = {Progress in Natural Science}, journal = {Progress in Natural Science}, number = {6}, pages = {297}, abstract = {Micrometer resolved photoțhermal measurements on chemical vapour deposited (CVD) diamond are presented. It is shown that the thermal conductivity inside the grains is as high as that of natural IIa diamond. Using two different approaches we measure the thermal resistance of thermal barriers like grain boundaries or microcracks and obtain values of the order of 10" m'Kw. A simple model is presented, relating the overall thermal conductivity for one-dimensional heat flow to the thermal resistance at barriers and the average size of the grains. Good agreernent between predictions and literature data is found, ...}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Development and test of a long wavelength infrared radiation thermometer for non-contact temperature measurements in gas turbines during operation}, series = {Technisches Messen}, volume = {85}, journal = {Technisches Messen}, number = {1}, pages = {28 -- 39}, abstract = {The aim of this work was the development of a long wavelength infrared radiation thermometer for the non-contact measurement of surface temperatures in stationary gas turbines during operation within the EU-project, Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)". In this work, the infrared-optical properties of the thermal barrier coatings and the combustion gases were determined at ZAE Bayern at high temperatures up to 1600 K and pressures up to 13 bar. Based on these experimental characterizations, a suitable spectral range could be identified which lies around 10 mu m for the long-wavelength infrared radiation thermometer. According to these findings, a laboratory setup with suitable optical components (filters, IR-fibers, etc.) was firstly realized and verified. Subsequently, a prototype for measurements in gas turbines during operation of the turbines has …}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Strahlungsthermometrie}, series = {PTB-Mitteilungen 117}, volume = {117}, journal = {PTB-Mitteilungen 117}, number = {3}, pages = {272 -- 281}, abstract = {Der prinzipielle Aufbau eines Strahlungsthermometers ist in Bild 2 dargestellt. Eine Optik bildet das Messobjekt mittels der W{\"a}rmestrahlung auf die Gesichtsfeldblende vor dem Detektor ab. Die Aperturblende und die Gesichtsfeldblende definieren den Raumwinkel und die Fl{\"a}che (Messfeld) der vom Detektor nachgewiesenen Strahlung. Bei den meisten Strahlungsthermometern wird ein Spektralfilter zur Eingrenzung des Wellenl{\"a}ngenbereiches der auf den Detektor treffenden Strahlung verwendet. Dieser Spektralfilter wird oft unmittelbar vor dem Detektor angeordnet oder ist als Fenster in das Detektorgeh{\"a}use integriert. Bei hochwertigen Strahlungsthermometern wird der Detektor und manchmal auch zus{\"a}tzlich der Spektralfilter temperiert. Interne Referenzstrahlungsquellen oder nur die Messung und Verarbeitung der internen Temperatur des Detektors oder der optischen Komponenten sorgen im allgemeinen f{\"u}r eine stabile Anzeige von Messwerten der Strahlungstemperatur innerhalb eines weiten Eigentemperaturbereichs des Strahlungsthermometers. Die Leistungsf{\"a}higkeit eines Strahlungsthermometers wird wesentlich von der G{\"u}te seiner Optik und der Empfindlichkeit seines Strahlungsempf{\"a}ngers bestimmt. Hochwertige Strahlungsthermometer arbeiten mit einem festen Fokus, der dem empfohlenen Messabstand entspricht, oder mit variablem Fokus zur Anpassung an den Messabstand. Aus der abstandsabh{\"a}ngigen Einstellung des Fokus resultiert ein Messfeld, in dem die mittlere Strahlungstemperatur des Messobjektes ermittelt wird. Genaue Messungen der Strahlungstemperatur sollten mit abbildenden optischen Systemen erfolgen …}, language = {de} } @article{HartmannAnhaltHollandtetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Hollandt, J{\"o}rg and Schreiber, Ekkehard and Yamada, Y.}, title = {Improved thermal stability of the linear pyrometer LP3 for high temperature measurements within the EU-project Himert}, series = {VDI Bericht 1784}, journal = {VDI Bericht 1784}, pages = {135 -- 141}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Realisation and dissemination of thermodynamic temperature above 1234.93 K}, series = {CCT Working Documents}, journal = {CCT Working Documents}, language = {en} } @article{HartmannZipfManaraetal., author = {Hartmann, J{\"u}rgen and Zipf, Matthias and Manara, Jochen and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter}, title = {Infrared-optical characterization of emitting and absorbing gases at high temperatures and high pressures}, series = {High Temperatures - High Pressures}, volume = {47}, journal = {High Temperatures - High Pressures}, number = {1}, pages = {3 -- 21}, abstract = {In the context of the optimization of stationary gas turbines, the surface temperatures of the turbine blades have to be measured by a non-contact technique using radiation thermometers during operation of the turbine. Nowadays turbine blades are protected by thermal barrier coatings. The infrared-optical properties of these coatings require the usage of the MIR or LWIR region for non-contact measurement of the surface temperatures. For performing such measurements and for properly analyzing the derived data, the transmission and absorption spectra of the combustion gas mixture within the turbine were determined at the local conditions during operation of the turbine. Therefore, subject of this work is the measurement of the transmission spectra of carbon dioxide and water vapor at high temperatures and high pressures to identify a wavelength range, which is almost free of absorption and emission effects. In …}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {A study on the feasibility of measuring the emissivity with the laser-flash method}, series = {International Journal of Thermophysics}, volume = {31}, journal = {International Journal of Thermophysics}, number = {4-5}, pages = {998 -- 1010}, abstract = {The laser-flash method is a fast, widely used and well established technique to measure the thermal diffusivity. Since its introduction in the 1960s, it was proposed to expand this technique to the measurement of heat capacity and emissivity. Currently, the measurement of spectral emissivity at high temperatures is connected with relatively large uncertainties, although the spectral emissivity is an essential parameter for applications, e.g., in the lamp industry and fusion research. In this work, a theoretical study is presented on the possibility of emissivity measurements using the laser-flash method. Two mathematical approaches are discussed which solve the problem, that a measured temperature rise—necessary to calculate the emissivity—itself depends on the emissivity. It is shown that both methods have a negligible arithmetic error, making them applicable to be used in future work.}, language = {de} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {A comparison of the blackbody cavities for infrared ear thermometers of NMIJ, NPL, and PTB}, series = {AIST Bulletin of Metrology}, volume = {5}, journal = {AIST Bulletin of Metrology}, number = {4}, pages = {251 -- 256}, abstract = {A comparison of the NMIJ, the NPL, and the PTB blackbody cavities for infrared ear thermometers has been performed for the first time. The NMIJ and the PTB have transported their standard blackbodies to the NPL and radiance temperatures of the blackbodies of the institutes have been directly compared simultaneously using high-resolution infrared ear thermometers as comparators. The results of the comparison show that radiance temperatures realized by the NMIJ, the NPL, and the PTB cavities agree within +/-0.01 deg C, well within their uncertainty levels of around 0.04 deg C in the temperature range from 35 deg C to 42 deg C.}, language = {en} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Traceable Radiometric Calibration of Semiconductor Detectors and their Application for Thermodynamic Temperature Measurement}, series = {Journal of Metrology Society of India}, volume = {25}, journal = {Journal of Metrology Society of India}, number = {1}, pages = {3 -- 10}, abstract = {The non-contact measurement of temperature by using the emitted thermal radiation has been an innovative field of measurement science and fundamental physics for more than a hundred years. It saw the first highlight in Gustav Kirchhoff's principle of a blackbody with ideal emission characteristics and culminated in Max Planck's formulation of the law of thermal radiation, the so-called Planck's law, forming the foundation of quantum physics. A boost in accuracy was the development of semiconductor detectors and the cryogenic electrical substitution radiometer in the late 1970s. Semiconductor detectors, namely photodiodes, deliver an electrical current proportional to the absorbed optical radiation. Due to the measurements of thermal radiation over a wide range of temperature and wavelength, thermodynamic temperature measurements with radiometric methods have set benchmarks to all, the …}, language = {en} } @incollection{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Thermal characterisation of diamond}, series = {Properties, Growth and Applications of Diamond}, booktitle = {Properties, Growth and Applications of Diamond}, publisher = {Institute of Engineering \& Technology}, publisher = {Hochschule f{\"u}r Angewandte Wissenschaften W{\"u}rzburg-Schweinfurt}, abstract = {Thermal characterisation of diamond is one of the key issues in assessing material quality since thermal parameters are strongly related to other features like isotopic constitution, defect content and microstructure (see Datareview A 1.5). Hence, the macroscopic thermal conductivity can often be taken as a figure-of-merit for diamond quality relevant for industrial applications. Determining thermal conductivity of diamond materials does not require, in principle, techniques other than those used for thermal assessment of more common materials and the standard methods as well as their application to diamond have been described in detail in rather complete review articles [1, 2]. Recent advancements in methodology have mainly been focused on thermal microscopy for measuring conductivity in extremely small volumes and finally single grains of polycrystalline material [3] and to quantitatively determine resistances across thermal barriers related to grain boundaries in thin films [4]. In this survey we summarise the main features of the standard techniques and briefly review the technology of quantitative thermal microscopy. It is difficult to precisely control and measure heat flow and radiation and, hence, thermal measurements generally yield only a rather limited precision; this fully applies also to measurements on diamond materials. An accuracy of a few per cent has to be regarded as excellent while the precision of most measurements is at a 5 to 10\% level or below. As demonstrated by a recent round robin test [5], this especially applies to the characterisation of polycrystalline thin films where measurements may be strongly affected by the …}, language = {en} } @article{HartmannReichling, author = {Hartmann, J{\"u}rgen and Reichling, M.}, title = {Photothermische Mikroskopie}, publisher = {VDI-Bericht 1379}, pages = {221 -- 226}, language = {de} } @article{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Condensed matter: structural, mechanical, and thermal properties}, series = {Applied Physics Letters}, volume = {73}, journal = {Applied Physics Letters}, number = {6}, pages = {756 -- 758}, language = {en} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Improvement of the active layers of a MIS-structure semiconductor gas sensor for HF and F}, language = {en} } @inproceedings{HartmannManaraArduini, author = {Hartmann, J{\"u}rgen and Manara, Jochen and Arduini, Mariacarla}, title = {A Novel Approach for Non-Destructive Testing of the Adhesion of Thermal Barrier Coatings}, publisher = {The Future of Gas Turbine Technology ; 8 th International Gas Turbine Conference}, address = {Br{\"u}ssel (Belgien)}, pages = {12 -- 13}, abstract = {The operation temperatures of gas turbine engines have been increased significantly to optimize their efficiency factor. To protect the metallic blades from these high temperatures, thermal barrier coatings (TBCs) are applied onto the turbine blades. These layers must have a good adhesion to the supporting turbine blade. A poor adhesion may lead to a delamination of the layer during operation and finally to a destruction of the turbine blade and eventually the complete turbine. It is therefore necessary, to check the quality of the layer adhesion regularly during service or preferably during operation. Approaches for non-contact and nondestructive techniques by using optical or infrared radiation are not sophisticated up to now. Hence in this paper a new attempt to improve these optical or infrared-optical methods is described. The presented idea relies on the application of different wavelengths for the used measurement system. Using a short wavelength range, where the TBC is semitransparent, allows the measurement of the temperature of the turbine blade. Using a second, long wavelength range where the TBC is non-transparent, the temperature of the surface of the TBC can be determined. As the thermal contact is usually correlated with the mechanical adhesion such measurements can be a possible tool for nondestructively testing the adhesion of TBCs.}, language = {en} } @article{HartmannManaraZipfetal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Zipf, Matthias and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter and Tutschke, Andreas and Hallam, Andrew and Hanspal, Jagdevinder and Langley, Mark and Hodge, D.}, title = {Long wavelength infrared radiation thermometry for non-contact temperature measurements in gas turbines}, series = {Infrared Physics \& Technology}, journal = {Infrared Physics \& Technology}, number = {80}, pages = {120 -- 130}, abstract = {The objective of the EU project "Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines (acronym STARGATE)" is the development of a suite of advanced sensors, instrumentation and related systems in order to contribute to the developing of the next generation of green and efficient gas turbine engines. One work package of the project deals with the design and development of a long wavelength infrared (LWIR) radiation thermometer for the non-contact measurement of the surface temperature of thermal barrier coatings (TBCs) during the operation of gas turbine engines. For opaque surfaces (e.g. metals or superalloys) radiation thermometers which are sensitive in the near or short wavelength infrared are used as state-of-the-art method for non-contact temperature measurements. But this is not suitable for oxide ceramic based TBCs (e.g. partially yttria stabilized zirconia) as oxide ceramics …}, language = {en} } @inproceedings{HartmannKnoppLenskietal., author = {Hartmann, J{\"u}rgen and Knopp, Kevin and Lenski, Philipp and Ochs, Dennis and Z{\"a}nglein, Marc and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Schreiber, Ekkehard and Kr{\"u}ger, U. and Schmidt, Franz and Brunner, Martin}, title = {Optische Sensorik f{\"u}r die additive Fertigung}, series = {Sensoren und Messsysteme 2019}, booktitle = {Sensoren und Messsysteme 2019}, address = {N{\"u}rnberg}, language = {de} } @misc{HartmannFischerSeidel, author = {Hartmann, J{\"u}rgen and Fischer, J. and Seidel, J.}, title = {Improved accuracy in measurement of radiometric apertures with a non-contact technique}, address = {Madrid (Spanien)}, language = {en} } @inproceedings{HartmannAnhalt, author = {Hartmann, J{\"u}rgen and Anhalt, Klaus}, title = {Radiometric measurements of eutectic fixed-point cells at PTB}, address = {Okayama (Japan)}, language = {en} } @inproceedings{HartmannGutschwagerFischer, author = {Hartmann, J{\"u}rgen and Gutschwager, B. and Fischer, J.}, title = {Calibration facility for infrared thermography systems at PTB}, series = {Sensor 2001 Proceedings}, booktitle = {Sensor 2001 Proceedings}, pages = {233 -- 238}, abstract = {Section 2 of the present paper introduces the two calibration facilities, presents the applied blackbody radiation sources with the achievable uncertainties, the collimator optics, and the climate box. A short introduction of the experimental techniques used and presentation of some experimental results for different camera systems follows in Section 3. A final conclusion is given in Section 4.}, language = {en} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Radiometrie im UV und IR}, address = {Berlin}, language = {de} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Photometrie und Radiometrie}, address = {Berlin}, language = {de} } @inproceedings{HartmannManaraZipfetal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Zipf, Matthias and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter and Tutschke, Andreas and Hallam, Andrew and Hanspal, Jagdevinder and Langley, Mark}, title = {Construction, Calibration and Application of a LWIR Pyrometer within the EU Project STARGATE}, address = {Zakopane (Polen)}, abstract = {The EU project STARGATE (Sensors Towards Advanced Monitoring and Control of Gas Turbine Engines) has the headline objective to develop a suite of advanced sensors, instrumentation and related systems in order to contribute to the development of the next generation of green and efficient gas turbine engines. To increase the efficiency of gas turbines higher combustion temperatures and higher turbine inlet temperatures are required. This implies that turbine blades and vanes are exposed to higher temperatures. Advanced thermal barrier coatings (TBCs) based on ceramic materials protect the components from overheating and ensure mechanical integrity. Still, materials and coatings need to be stressed to their limits to reach the challenging goals of an efficiency increase. Under these circumstances, it is crucial to have sensing techniques available that are capable of accurately monitoring the temperature of turbine parts in order to prevent damages within the engine. The approach to overcome current limitations of existing techniques is to use long wavelength infrared (LWIR) pyrometry as TBCs are usually semi-transparent in the near or short wavelength infrared. Therefore one work package within the STARGATE project is dedicated to the development of a LWIR radiation thermometer to measure the surface temperature of TBCs contactless during operation of the gas turbine engines. The paper shortly gives an overview of the investigation performed within the STARGATE project. The construction, calibration and application of the LWIR radiation thermometer is described in detail and results obtained on a test facility are presented. The paper closes with an outlook on future plans of implementing the LWIR pyrometer in the quality system of gas turbine operation.}, language = {en} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Schreiber, Ekkehard and Kr{\"u}ger, U. and Knopp, Kevin and Z{\"a}nglein, Marc}, title = {Hochtemperaturmessung und Materialuntersuchung f{\"u}r Energietechnik und additive Fertigungsverfahren}, address = {Dresden}, language = {de} } @inproceedings{HartmannAnhaltSargeetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Sarge, S.M. and Pagel, R. and Schindler, A. and Denner, T.}, title = {Eutectic high-temperature fixed-points for improves traceability in DSC/DTA}, address = {Graz}, language = {en} } @inproceedings{HartmannKeawprasertAnhaltetal., author = {Hartmann, J{\"u}rgen and Keawprasert, T. and Anhalt, Klaus and Taubert, Dieter Richard and Abd ElMageed, A. and Sperling, A.}, title = {Monochromator based absolute calibration of radiation thermometers}, address = {Portoroz (Slowenien)}, language = {en} } @inproceedings{HartmannAnhaltWangetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Wang, Y. and Yamada, Y.}, title = {Large and small aperture Fixed-point cells of Cu, Pt-C, and Re-c}, address = {Banf (Kanada)}, language = {en} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Schreiber, Ekkehard and Kr{\"u}ger, U.}, title = {Experimental set-up for dynamic material investigation}, address = {Graz ({\"O}sterreich)}, language = {en} } @techreport{HartmannTaubertFischer, author = {Hartmann, J{\"u}rgen and Taubert, Dieter Richard and Fischer, Joachim}, title = {Measurements of T-T90 down to Zinc point temperatures with absolute filter radiometry}, address = {Paris (Frankreich)}, language = {en} } @inproceedings{HartmannOjanenAnhaltetal., author = {Hartmann, J{\"u}rgen and Ojanen, M. and Anhalt, Klaus and Weckstr{\"o}m, T. and K{\"a}rh{\"a}, P. and Heinonen, M. and Ikonen, E.}, title = {Comparison of the Radiation Temperature Scales between PTB and MIKES}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {285 -- 286}, language = {en} } @inproceedings{HartmannAnhalt, author = {Hartmann, J{\"u}rgen and Anhalt, Klaus}, title = {Novel High-temperature fixed-points for radiation thermometry, radiometry and photometry}, series = {Proceedings of Sensoren and Messsysteme 2006}, booktitle = {Proceedings of Sensoren and Messsysteme 2006}, isbn = {978-3-8007-2939-5}, pages = {145 -- 148}, language = {en} } @inproceedings{HartmannAnhaltSchilleretal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Schiller, S. and Schreiber, Ekkehard}, title = {Practical high-temperature furnace for the application in radiometry, photometry and thermometry}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {275 -- 276}, language = {en} } @inproceedings{HartmannAnhalt, author = {Hartmann, J{\"u}rgen and Anhalt, Klaus}, title = {Neuartige Metall-Kohlenstoff-Fixpunkte f{\"u}r die Anwendung in der Strahlungsthermometrie und der Radiometrie}, series = {Temperatur 2006}, booktitle = {Temperatur 2006}, pages = {135 -- 141}, language = {de} } @inproceedings{HartmannWerner, author = {Hartmann, J{\"u}rgen and Werner, L.}, title = {Comparison and Evaluation of Different Models for the Interpolation of Spectral Responsivity Data}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {309 -- 310}, language = {en} } @book{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Quantitative Bestimmung lokaler thermischer Eigenschaften in polykristallinem Diamant}, publisher = {K{\"o}ster}, address = {Berlin}, language = {de} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Legal metrology on clinical thermometers in the European Union}, address = {Tokyo (Japan)}, language = {en} } @inproceedings{HartmannKrenekAnhaltetal., author = {Hartmann, J{\"u}rgen and Krenek, S. and Anhalt, Klaus and Lindemann, A. and Monte, C. and Hollandt, J{\"o}rg}, title = {A study on the feasibility of measuring the emissivity with the laser-flash method}, address = {Boulder (USA)}, language = {en} } @misc{HartmannAnhaltZelenjuketal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Zelenjuk, A. and Taubert, Dieter Richard}, title = {New PTB Set-up for the absolute calibration of the spectral responsivity of radiation thermometers}, address = {Banf (Kanada)}, language = {en} } @inproceedings{HartmannKrenekAnhaltetal., author = {Hartmann, J{\"u}rgen and Krenek, S. and Anhalt, Klaus and Lindemann, A. and Hollandt, J{\"o}rg}, title = {Dynamic Emissivity Measurement: First Results}, address = {Graz}, language = {en} } @inproceedings{HartmannBreuerJohannsenetal., author = {Hartmann, J{\"u}rgen and Breuer, J. and Johannsen, U. and Rabus, H. and Werner, L.}, title = {PTB detector calibration capabilities for optical radiometry}, series = {Sensor 2001 Proceedings}, booktitle = {Sensor 2001 Proceedings}, pages = {227 -- 232}, abstract = {In the first part of this paper we give a brief survey of the approaches taken to achieve these rather challenging goals. Then we will focus on some aspects of transfer detector standards that have to be taken into account if the highest possible accuracy is to be reached. The final section of the paper deals with a new and very promising method for the dissemination of the spectral responsivity of semiconductor photodiodes.}, language = {en} } @inproceedings{HartmannGutschwagerFischeretal., author = {Hartmann, J{\"u}rgen and Gutschwager, B. and Fischer, Joachim and Hollandt, J{\"o}rg}, title = {Calibration of thermal cameras for temperature measurements using blackbody radiation in the temperature range -60 °C up to 3000 °C}, series = {IRS² 2002}, booktitle = {IRS² 2002}, address = {Erfurt}, language = {en} } @misc{HartmannAnhaltMachinetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Machin, Graham and Woolliams, E. and Dury, M. and Yoon, H.}, title = {Absolute radiometry of metal-carbon eutectic fixed-points for a new temperature scale}, address = {Portoroz (Slowenien)}, language = {en} } @inproceedings{HartmannMonteAnhaltetal., author = {Hartmann, J{\"u}rgen and Monte, C. and Anhalt, Klaus and Gutschwager, B. and Taubert, Dieter Richard and Hollandt, J{\"o}rg}, title = {Calibration of Radiation Thermometers and Measurement of Spectral Emissivity Traceable non-contact temperature measurements in industrial and scientific applications}, series = {Proceedings Sensoren und Messsysteme 2008}, booktitle = {Proceedings Sensoren und Messsysteme 2008}, pages = {249 -- 261}, language = {en} } @inproceedings{HartmannAnhalt, author = {Hartmann, J{\"u}rgen and Anhalt, Klaus}, title = {Neuartige Hochtemperaturfixpunkte f{\"u}r die Photometrie, die Radiometrie und die Thermometrie}, address = {Bern (Schweiz)}, language = {de} } @inproceedings{HartmannManaraArduini, author = {Hartmann, J{\"u}rgen and Manara, Jochen and Arduini, Mariacarla}, title = {An Attempt to Non-Destructively Qualify the Adhesion of Thermal Barrier Coatings}, address = {Zakopane (Polen)}, language = {en} } @inproceedings{HartmannAnhaltGutschwageretal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Gutschwager, B. and Monte, C. and Sperfeld, P. and Taubert, Dieter Richard and Hollandt, J{\"o}rg}, title = {The PriTeRa facility of PTB for spectral radiance and irradiance calibrations and radiation thermometry in the range from -170 °C up to 3200 °C and from 200 nm up to 50 µm}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {231 -- 232}, language = {en} } @inproceedings{HartmannAnhaltHollandt, author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Hollandt, J{\"o}rg}, title = {Nearly as hot as the sun: High-temperature fixed-points for radiation thermometry and radiometry}, address = {St. Paul (USA)}, language = {en} } @inproceedings{HartmannAnhaltSchindleretal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Schindler, A. and Denner, T. and Sarge, S. and Pagel, R.}, title = {Eurtektische Hochtemperatur Fixpunkte f{\"u}r die dynamische Differenzkalorimetrie}, address = {N{\"u}rnberg}, language = {de} } @inproceedings{HartmannAnhaltTaubertetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Taubert, Dieter Richard and Kr{\"u}ger, U. and Schmidt, Franz}, title = {CCD-camera for measuring temperature and spectral radiance}, address = {Portoroz (Slowenien)}, language = {en} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter and Knopp, Kevin and Shandy, Amir}, title = {Non-contact detection of the adhesive properties of ceramic coatings for high temperature applications using infrared thermography; Transactions}, publisher = {SMiRT-26}, address = {Berlin/Potsdam}, language = {en} } @inproceedings{HartmannAnhaltSchindleretal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Schindler, A. and Moriya, Y. and Sarge, S. and Pagel, R. and Denner, T.}, title = {Metal(carbide)-carbon eutectic high-temperature fixed-points for dynamic differential scanning calorimetry}, address = {Portoroz (Slowenien)}, language = {en} } @inproceedings{HartmannGutschwagerFischeretal., author = {Hartmann, J{\"u}rgen and Gutschwager, B. and Fischer, Joachim and Hollandt, J{\"o}rg}, title = {Calibration of thermal cameras for temperature measurements using blackbody radiation in the temperature range -60°C up to 3000 °C}, series = {Proceedings of the International Conference Infrared Sensors \& Systems}, booktitle = {Proceedings of the International Conference Infrared Sensors \& Systems}, pages = {119 -- 124}, language = {en} } @inproceedings{HartmannGutschwagerHollandt, author = {Hartmann, J{\"u}rgen and Gutschwager, B. and Hollandt, J{\"o}rg}, title = {A novel lens-free high-accuracy InGaAs radiation thermometer for radiation temperatures above 300 °C}, series = {VDI-Bericht 1784}, booktitle = {VDI-Bericht 1784}, pages = {155 -- 162}, language = {en} } @misc{HartmannSadliAnhaltetal., author = {Hartmann, J{\"u}rgen and Sadli, M. and Anhalt, Klaus and Schiller, S.}, title = {Thermal effects in the bb3200pg on m-c eutectic implementation}, address = {Banf (Kanada)}, language = {en} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Modernste Radiometrie und Photometrie}, address = {Berlin}, language = {de} } @inproceedings{HartmannTaubertMonteetal., author = {Hartmann, J{\"u}rgen and Taubert, Dieter Richard and Monte, C. and Gutschwager, B. and Baltruschat, C. and Hollandt, J{\"o}rg and Kochems, D. and K{\"u}chel, C.}, title = {The Spectral Photon Flux of the Radiometric Calibration Spectral Source for the NIRSpec Instrument of the James Webb Space Telescope}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {79 -- 80}, language = {en} } @inproceedings{HartmannAnhaltMorkel, author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Morkel, M.}, title = {Emissivity of tungsten electrodes in discharge lamps at elevated temperatures}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {273 -- 274}, language = {en} } @inproceedings{HartmannReichling, author = {Hartmann, J{\"u}rgen and Reichling, M.}, title = {Microscopic heat transfer in high quality polycrystalline diamond}, address = {Ustron (Polen)}, language = {en} } @inproceedings{HartmannAnhaltBuengeretal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and B{\"u}nger, L. and Schreiber, Ekkehard and Menz, H.-J. and Neuer, G.}, title = {Hochtemperaturstrahler mit großem {\"O}ffnungsdurchmesser f{\"u}r die praktische Anwendung in Strahlungsthermometrie und Radiometrie}, isbn = {3-9810021-9-9}, pages = {99 -- 106}, language = {de} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter and Zipf, Matthias}, title = {Non-contact temperature measurement of combustion gases at high temperatures and high pressures}, address = {Graz ({\"O}sterreich)}, language = {en} } @inproceedings{HartmannKhlevnoyRougieetal., author = {Hartmann, J{\"u}rgen and Khlevnoy, B. and Rougie, B. and Gibson, C. and Yoon, H. and G{\"a}rtner, A. and Taubert, Dieter Richard}, title = {CCPR-S1 Supplementary Comparison for Spectral Radiance in the range of 220 nm to 2500 nm}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {241 -- 242}, language = {en} } @inproceedings{HartmannAnhaltLoweetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Lowe, D. and Machin, G. and Sadli, M. and Yamada, Y.}, title = {Thermodynamic Temperature determination of Co-C, Pd-C, Pt-C, and Ru-C eutectic fixed point cells}, address = {Davos (Schweiz)}, language = {en} } @misc{HartmannAnhaltBuengeretal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and B{\"u}nger, L. and Schreiber, Ekkehard}, title = {Practical high-temperature furnace for the application on thermometry and radiometry}, address = {Portoroz (Slowenien)}, language = {en} } @inproceedings{HartmannEdlerAnhaltetal., author = {Hartmann, J{\"u}rgen and Edler, F. and Anhalt, Klaus and Schiller, S.}, title = {Novel temperature standards for high-temperature calibration above 1100 °C}, series = {Proceedings of Sensor 2005}, booktitle = {Proceedings of Sensor 2005}, language = {en} } @inproceedings{HartmannReichling, author = {Hartmann, J{\"u}rgen and Reichling, M.}, title = {W{\"a}rmetransport in Kristalliten von CVD-Diamantschichten}, series = {Fr{\"u}hjahrstagung der Deutschen Physikalischen Gesellschaft}, booktitle = {Fr{\"u}hjahrstagung der Deutschen Physikalischen Gesellschaft}, number = {5}, address = {M{\"u}nster}, pages = {616 -- 616}, language = {de} } @inproceedings{HartmannTaubert, author = {Hartmann, J{\"u}rgen and Taubert, Dieter Richard}, title = {Assessing blackbody emissivity by Monte Carlo Simulation}, address = {Erfurt}, language = {en} } @inproceedings{HartmannSakumaMa, author = {Hartmann, J{\"u}rgen and Sakuma, F. and Ma, L.}, title = {Intercomparison of radiation temperatures scales between PTB and NMIJ from 1000 °C and 2500 °C}, series = {Proceedings of SICE 2002}, booktitle = {Proceedings of SICE 2002}, pages = {111 -- 115}, language = {en} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and M{\"u}ller, Michael and Ebert, Hans-Peter and M{\"o}ller, F. and Kr{\"u}ger, U. and Schmidt, Franz and Knopp, Kevin and Lenski, Philipp and Z{\"a}nglein, Marc}, title = {Einsatz von Thermografieger{\"a}ten zur ber{\"u}hrungslosen Detektion der Haftungseigenschaften an keramischen W{\"a}rmed{\"a}mmschichten}, address = {Berlin}, language = {de} } @misc{HartmannAnhaltPageletal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Pagel, R. and Sarge, S.}, title = {Temperature calibration of thermoanalytical apparatus above 1000 °C by means of Metal-Carbon Eutectics}, address = {Rotterdam (Niederlande)}, language = {en} } @inproceedings{HartmannAnhaltEdler, author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Edler, F.}, title = {High-temperature fixed-points for improved temperature metrology above 1100 °C}, address = {Graz}, language = {en} } @inproceedings{HartmannManaraZipfetal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Zipf, Matthias and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter and Tutschke, Andreas and Hallam, Andrew and Hanspal, Jagdevinder and Langley, Mark and Hodge, D.}, title = {Development of Long Wavelength Infrared Radiation Thermometry for Measurements in Gas Turbines}, address = {Darmstadt}, language = {en} } @inproceedings{HartmannKeawprasertAnhaltetal., author = {Hartmann, J{\"u}rgen and Keawprasert, T. and Anhalt, Klaus and Taubert, Dieter Richard and Abd ElMageed, A. and Sperling, A.}, title = {Absolute Calibration of Spectral Responsivity for a Radiation Thermomemeter}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {287 -- 288}, language = {en} } @inproceedings{HartmannKrenekAnhaltetal., author = {Hartmann, J{\"u}rgen and Krenek, S. and Anhalt, Klaus and Lindemann, A. and Hollandt, J{\"o}rg}, title = {A dynamic method to measure emissivity at high-temperatures}, address = {Portoroz (Slowenien)}, language = {en} } @inproceedings{Hartmann, author = {Hartmann, J{\"u}rgen}, title = {Radiation thermometry at PTB}, address = {Tokyo (Japan)}, language = {en} } @article{HartmannZipfManaraetal., author = {Hartmann, J{\"u}rgen and Zipf, Matthias and Manara, Jochen and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter}, title = {Identification of wavelength regions for non-contact temperature measurement of combustion gases at high temperatures and high pressures}, series = {High Temperatures - High Pressures}, volume = {49}, journal = {High Temperatures - High Pressures}, number = {3}, pages = {241 -- 260}, abstract = {Stationary gas turbines are still an important part of today's power supply. With increasing temperature of the hot combustion gas inside a gas turbine, the efficiency factor of the turbine increases. For this reason, it is intended to operate turbines at the highest possible gas temperature. Therefore, in the combustion chamber and especially at the position of the first stage guide vanes the gas temperature needs to be measured reliably. To determine the gas temperature, one promising approach is the application of a non-contact measurement method using a radiation thermometer. A radiation thermometer can measure the gas temperature remotely from outside of the harsh environment. At ZAE Bayern, a high temperature and high pressure gas cell has been developed for this purpose in order to investigate gases and gas mixtures under defined conditions at high pressures and high temperatures. This gas cell can …}, language = {en} } @article{HartmannAnhaltSperfeldetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Sperfeld, P. and Sakharov, M. and Khlevnoy, B. and Ogarev, S. and Sapritsky, V.}, title = {Irradiance measurements of Re-C, TiC-C and ZrC-C fixed point blackbodies}, abstract = {Specially designed Re-C, TiC-C and ZrC-C fixed-point cells for irradiance measurements have been produced by VNIIOFI. In several investigations at VNIIOFI and PTB the usability of the design for irradiance measurements has been demonstrated. Current developments of furnace uniformity demonstrate further improvements to the systems.}, language = {en} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Ebert, Hans-Peter and M{\"u}ller, Michael and M{\"o}ller, F. and Kr{\"u}ger, U. and Schmidt, F. and Knopp, Kevin and Lenski, Philipp and Z{\"a}nglein, Marc and Ochs, Dennis and Shandy, Amir}, title = {Non-contact detection of the adhesion properties of ceramic based thermal barrier coatings by determining the surface temperatures using thermography}, address = {Venedig (Italien)}, language = {en} } @inproceedings{HartmannHayFleurenceetal., author = {Hartmann, J{\"u}rgen and Hay, B. and Fleurence, N. and Razouk, R. and Anhalt, Klaus and Sarge, S. and Wu, J. and Milosevic, N. and Cataldi, M. and Lorrette, C. and Knopp, Kevin and Boboridiss, K. and Manara, Jochen and Vidi, Stephan and Pichler, P. and Denner, T.}, title = {Metrological facilities for thermophysical properties measurements at very high temperature}, address = {Darmstadt}, language = {en} } @inproceedings{MachinHartmannAnhaltetal., author = {Machin, Graham and Hartmann, J{\"u}rgen and Anhalt, Klaus and Beyon, G. and Edler, F. and Fourez, S. and Jimeno-Largo, p. and Lowe, D. and Morice, R. and Sadli, M. and Villamanan, M.}, title = {Future perspectives for high-temperature metrology from the FP5 HIMERT project}, address = {Lyon (Frankreich)}, language = {en} } @inproceedings{HartmannKnoppLenskietal., author = {Hartmann, J{\"u}rgen and Knopp, Kevin and Lenski, Philipp and Z{\"a}nglein, Marc and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Schreiber, Ekkehard and Kr{\"u}ger, U. and Brunner, Martin}, title = {Optische Sensorik f{\"u}r die additive Fertigung}, series = {4SMARTS 2019}, booktitle = {4SMARTS 2019}, isbn = {978-3-8440-6425-4}, pages = {105 -- 116}, language = {de} } @inproceedings{HartmannAnhaltHollandtetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Hollandt, J{\"o}rg and Schreiber, Ekkehard and Yamada, Y.}, title = {Improved thermal stability of the linear pyrometer LP3 for high temperature measurements within the EU-Project HIMERT}, address = {Berlin}, language = {en} } @inproceedings{HartmannAnhaltLindneretal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Lindner, D. and Kr{\"u}ger, U. and Schmidt, Franz}, title = {Camera based investigation of high-temperature fixed-points for radiometric application}, series = {Proceedings of NEWRAD}, booktitle = {Proceedings of NEWRAD}, pages = {267 -- 268}, language = {en} } @inproceedings{HartmannAnhaltTaubertetal., author = {Hartmann, J{\"u}rgen and Anhalt, Klaus and Taubert, Dieter Richard and Hollandt, J{\"o}rg}, title = {Absolute radiometry for the MeP-K}, series = {Tempmeko 2010}, booktitle = {Tempmeko 2010}, address = {Portoroz (Slowenien)}, language = {en} } @inproceedings{HartmannJoumaniHayetal., author = {Hartmann, J{\"u}rgen and Joumani, Y. and Hay, B. and Razouk, R. and Anhalt, Klaus and Sarge, S. and Wu, J. and Milosevic, N. and Cataldi, M. and Lorrette, C. and Boboridis, K. and Manara, Jochen and Vidi, Stephan and Pichler, P. and Denner, T.}, title = {EMPIR Hi-TRACE project - Metrological facilities for measuring thermophysical properties up to 3000 °C}, address = {Chengdu (China)}, language = {en} } @inproceedings{HartmannManaraStarketal., author = {Hartmann, J{\"u}rgen and Manara, Jochen and Stark, Thomas and Zipf, Matthias and Arduini, Mariacarla and Ebert, Hans-Peter}, title = {High temperature test-rig for emissvity and non-contact temperature measurements}, address = {Graz ({\"O}sterreich)}, language = {en} } @inproceedings{HartmannZipfManaraetal., author = {Hartmann, J{\"u}rgen and Zipf, Matthias and Manara, Jochen and Stark, Thomas and Arduini, Mariacarla and Ebert, Hans-Peter}, title = {Non-Contact Temperature Measurement Of Combustion Gases at High Temperatures and High Pressures}, address = {Zakopane (Polen)}, language = {en} } @inproceedings{HartmannKruegerAnhaltetal., author = {Hartmann, J{\"u}rgen and Kr{\"u}ger, U. and Anhalt, Klaus and Taubert, Dieter Richard and Schmidt, Franz}, title = {CCD-camera for measuring temperature and spectral radiance}, address = {Bern}, language = {en} } @inproceedings{HartmannReichling, author = {Hartmann, J{\"u}rgen and Reichling, M.}, title = {Complete Characterisation of local thermal heat transfer in high quality chemical vapour deposited diamond}, address = {Rom (Italien)}, language = {en} }