@article{SchmittSeitzScherdeletal., author = {Schmitt, Jan and Seitz, Philipp and Scherdel, Christian and Reichenauer, Gudrun}, title = {Machine Learning in the development of Si-based anodes using Small-Angle X-ray Scattering for structural property analysis}, series = {Computational Materials Science}, volume = {218}, journal = {Computational Materials Science}, issn = {1879-0801}, abstract = {Material development processes are highly iterative and driven by the experience and intuition of the researcher. This can lead to time consuming procedures. Data-driven approaches such as Machine Learning can support decision processes with trained and validated models to predict certain output parameter. In a multifaceted process chain of material synthesis of electrochemical materials and their characterization, Machine Learning has a huge potential to shorten development processes. Based on this, the contribution presents a novel approach to utilize data derived from Small-Angle X-ray Scattering (SAXS) of SiO_2 matrix materials for battery anodes with Neural Networks. Here, we use SAXS as an intermediate, high-throughput method to characterize sol-gel based porous materials. A multi-step-method is presented where a Feed Forward Net is connected to a pretrained autoencoder to reliably map parameters of the material synthesis to the SAXS curve of the resulting material. In addition, a direct comparison shows that the prediction error of Neural Networks can be greatly reduced by training each output variable with a separate independent Neural Network.}, language = {en} } @article{ScherdelMillerReichenaueretal., author = {Scherdel, Christian and Miller, Eddi and Reichenauer, Gudrun and Schmitt, Jan}, title = {Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML)}, series = {Processes}, volume = {9}, journal = {Processes}, number = {4}, pages = {672 -- 672}, language = {en} } @article{SeitzScherdelReichenaueretal., author = {Seitz, Philipp and Scherdel, Christian and Reichenauer, Gudrun and Schmitt, Jan}, title = {Machine Learning in the development of Si-based anodes using Small-Angle X-ray Scattering for structural property analysis}, series = {Computational Materials Science}, volume = {218}, journal = {Computational Materials Science}, pages = {111984 -- 111984}, language = {en} }