@article{WernerBullmannFetzeretal., author = {Werner, Max and Bullmann, Markus and Fetzer, Toni and Deinzer, Frank}, title = {Unified Probabilistic and Similarity-Based Position Estimation from Radio Observations}, series = {Sensors}, volume = {25}, journal = {Sensors}, number = {13}, publisher = {MDPI AG}, issn = {1424-8220}, doi = {https://doi.org/10.3390/s25134092}, abstract = {We propose a modeling approach for position estimation based on the observed radio propagation in an environment. The approach is purely similarity-based and therefore free of explicit physical assumptions. What distinguishes it from classical related methods are probabilistic position estimates. Instead of just providing a point estimate for a given signal sequence, our model returns the distribution of possible positions as continuous probability density function, which allows for appropriate integration into recursive state estimation systems. The estimation procedure starts by using a kernel to compare incoming data with reference recordings from known positions. Based on the obtained similarities, weights are assigned to the reference positions. An arbitrarily chosen density estimation method is then applied given this assignment. Thus, a continuous representation of the distribution of possible positions in the environment is provided. We apply the solution in a Particle Filter (PF) system for smartphone-based indoor localization. The approach is tested both with radio signal strength (RSS) measurements (Wi-Fi and Bluetooth Low Energy RSSI) and round-trip time (RTT) measurements, given by Wi-Fi Fine Timing Measurement. Compared to distance-based models, which are dedicated to the specific physical properties of each measurement type, our similarity-based model achieved overall higher accuracy at tracking pedestrians under realistic conditions. Since it does not explicitly consider the physics of radio propagation, the proposed model has also been shown to work flexibly with either RSS or RTT observations.}, language = {en} } @inproceedings{WernerBullmannFetzeretal., author = {Werner, Max and Bullmann, Markus and Fetzer, Toni and Meißner, Pascal and Deinzer, Frank}, title = {Interpolation of Position Estimates for Radio Fingerprinting using Gaussian Process Regression}, series = {2025 International Conference on Indoor Positioning and Indoor Navigation (IPIN)}, booktitle = {2025 International Conference on Indoor Positioning and Indoor Navigation (IPIN)}, publisher = {IEEE}, doi = {10.1109/IPIN66788.2025.11213294}, pages = {1 -- 6}, language = {en} } @inproceedings{HuffstadtFetzerPetryetal., author = {Huffstadt, Karsten and Fetzer, Toni and Petry, Christian and Deinzer, Frank}, title = {3D Interaction Design: Increasing the stimulus-response correspondence by using stereoscopic vision}, series = {Proceedings of the 11th IEEE International Conference on Automatic Face and Gesture Recognition Conference and Workshops}, volume = {1}, booktitle = {Proceedings of the 11th IEEE International Conference on Automatic Face and Gesture Recognition Conference and Workshops}, doi = {10.1109/FG.2015.7163120}, pages = {1 -- 6}, abstract = {This paper presents a hand-based interaction approach for grabbing and manipulating virtual objects within immersive virtual environments. Considering the stimulus-response of humans, interacting with objects is easier if depth information is provided by stereoscopic vision. However, most people are used to work in monoscopic virtual environments. Therefore, we propose a case study, to analyze if an interaction approach using stereoscopic vision, compared to a conventional monoscopic vision, results in a higher user acceptance and stimulus-response correspondence. Our interaction approach is based on a robust and fast running 3D hand- and head-tracking provided by Microsoft's Kinect. We present a simple non-collision-based method for grabbing and manipulating objects within a 3D virtual environment. By tracking the head, the user is able to move within the environment and interact depending on his current position. The use of stereoscopic vision allows a natural and instinctive hand interaction with the augmented object. Finally, the experimental results and studies show how the use of stereoscopic vision improves the mental mapping and thus the user acceptance and stimulus-response correspondence in consideration of using the here presented interaction approach.}, language = {en} } @article{TorresSospedraJimenezKnauthetal., author = {Torres-Sospedra, Joaqu{\´i}n and Jim{\´e}nez, Antonio R. and Knauth, Stefan and Moreira, Adriano and Beer, Yair and Fetzer, Toni and Ta, Viet-Cuong and Montoliu, Raul and Seco, Fernando and Mendoza-Silva, Germ{\´a}n M. and Belmonte, Oscar and Koukofikis, Athanasios and Nicolau, Maria Jo{\~a}o and Costa, Ant{\´o}nio and Meneses, Filipe and Ebner, Frank and Deinzer, Frank and Vaufreydaz, Dominique and Dao, Trung-Kien and Castelli, Eric}, title = {The Smartphone-Based Offline Indoor Location Competition at IPIN 2016: Analysis and Future Work}, series = {Sensors}, volume = {17}, journal = {Sensors}, number = {3}, issn = {1424-8220}, doi = {10.3390/s17030557}, language = {en} } @article{EbnerFetzerDeinzeretal., author = {Ebner, Frank and Fetzer, Toni and Deinzer, Frank and Grzegorzek, Marcin}, title = {On Wi-Fi Model Optimizations for Smartphone-Based Indoor Localization}, series = {ISPRS International Journal of Geo-Information}, volume = {6}, journal = {ISPRS International Journal of Geo-Information}, number = {8}, issn = {2220-9964}, doi = {10.3390/ijgi6080233}, language = {en} } @inproceedings{EbnerFetzerKoepingetal., author = {Ebner, Frank and Fetzer, Toni and K{\"o}ping, Lukas and Grzegorzek, Marcin and Deinzer, Frank}, title = {Multi Sensor 3D Indoor Localisation}, series = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2015)}, booktitle = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2015)}, pages = {1 -- 11}, language = {en} } @article{EbnerFetzerBullmannetal., author = {Ebner, Markus and Fetzer, Toni and Bullmann, Markus and Deinzer, Frank and Grzegorzek, Marcin}, title = {Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {22}, issn = {1424-8220}, doi = {10.3390/s20226559}, language = {en} } @inproceedings{FetzerDeinzerKopingetal., author = {Fetzer, Toni and Deinzer, Frank and Koping, Lukas and Grzegorzek, Marcin}, title = {Statistical indoor localization using fusion of depth-images and step detection}, series = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2014)}, booktitle = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2014)}, doi = {10.1109/IPIN.2014.7275509}, pages = {407 -- 415}, language = {en} } @article{DeinzerFetzer, author = {Deinzer, Frank and Fetzer, Toni}, title = {Die Mischung macht's: Mit KI und Augmented Reality die Welt immersiv erkunden}, series = {Transfer - Das Steinbeis-Magazin}, volume = {2021}, journal = {Transfer - Das Steinbeis-Magazin}, number = {3}, pages = {39 -- 41}, language = {de} } @inproceedings{BullmannFetzerEbneretal., author = {Bullmann, Markus and Fetzer, Toni and Ebner, Markus and Kastner, Steffen and Deinzer, Frank and Grzegorzek, Marcin}, title = {Data Driven Sensor Model for Wi-Fi Fine Timing Measurement}, series = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2022)}, booktitle = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2022)}, language = {en} } @inproceedings{EbnerFetzerBullmannetal., author = {Ebner, Markus and Fetzer, Toni and Bullmann, Markus and Kastner, Steffen and Deinzer, Frank and Grzegorzek, Marcin}, title = {PIPF: Proposal-Interpolating Particle Filter}, series = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2022)}, booktitle = {International Conference on Indoor Positioning and Indoor Navigation (IPIN 2022)}, language = {en} } @article{KastnerEbnerBullmannetal., author = {Kastner, Steffen and Ebner, Markus and Bullmann, Markus and Fetzer, Toni and Deinzer, Frank and Grzegorzek, Marcin}, title = {Magnetic Signature Sensor Model for Accurate Short-Distance Localization}, series = {2022 IEEE Sensors}, journal = {2022 IEEE Sensors}, doi = {10.1109/SENSORS52175.2022.9967176}, pages = {1 -- 4}, language = {en} } @article{FetzerMaierEbneretal., author = {Fetzer, Toni and Maier, Julian and Ebner, Markus and Bullmann, Markus and Deinzer, Frank}, title = {Digitales Spaghetti-Diagramm zur Laufweganalyse}, series = {wt Werkstattstechnik online}, volume = {112}, journal = {wt Werkstattstechnik online}, number = {10/2022}, pages = {727 -- 731}, language = {de} } @inproceedings{BullmannFetzerEbneretal., author = {Bullmann, Markus and Fetzer, Toni and Ebner, Frank and Deinzer, Frank and Grzegorzek, Marcin}, title = {Fast Kernel Density Estimation Using Gaussian Filter Approximation}, series = {21st International Conference on Information Fusion, FUSION 2018, Cambridge, UK, July 10-13, 2018}, booktitle = {21st International Conference on Information Fusion, FUSION 2018, Cambridge, UK, July 10-13, 2018}, doi = {10.23919/ICIF.2018.8455686}, pages = {1233 -- 1240}, language = {en} } @article{BullmannFetzerEbneretal., author = {Bullmann, Markus and Fetzer, Toni and Ebner, Frank and Ebner, Markus and Deinzer, Frank and Grzegorzek, Marcin}, title = {Comparison of 2.4 GHz WiFi FTM- and RSSI-Based Indoor Positioning Methods in Realistic Scenarios}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {16}, issn = {1424-8220}, doi = {10.3390/s20164515}, language = {en} } @article{FetzerEbnerBullmannetal., author = {Fetzer, Toni and Ebner, Frank and Bullmann, Markus and Deinzer, Frank and Grzegorzek, Marcin}, title = {Smartphone-Based Indoor Localization within a 13th Century Historic Building}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {12}, issn = {1424-8220}, doi = {10.3390/s18124095}, language = {en} } @article{FetzerEbnerDeinzeretal., author = {Fetzer, Toni and Ebner, Frank and Deinzer, Frank and Grzegorzek, Marcin}, title = {Using Barometer for Floor Assignation within Statistical Indoor Localization}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {1}, issn = {1424-8220}, doi = {10.3390/s23010080}, language = {en} } @inproceedings{FetzerBullmannKastneretal., author = {Fetzer, Toni and Bullmann, Markus and Kastner, Steffen and Deinzer, Frank and Grzegorzek, Marcin}, title = {Advancing Smartphone-based Indoor Positioning through Particle Distribution Optimization}, series = {2024 27th International Conference on Information Fusion (FUSION)}, booktitle = {2024 27th International Conference on Information Fusion (FUSION)}, publisher = {IEEE}, doi = {https://doi.org/10.23919/FUSION59988.2024.10706408}, pages = {1 -- 8}, language = {en} } @inproceedings{KastnerBullmannEbneretal., author = {Kastner, Steffen and Bullmann, Markus and Ebner, Markus and Fetzer, Toni and Deinzer, Frank and Grzegorzek, Marcin}, title = {Refinement of Sparsely Tagged Ground Truth Paths Using PDR and Particle Filter Smoothing}, series = {2024 14th International Conference on Indoor Positioning and Indoor Navigation (IPIN)}, booktitle = {2024 14th International Conference on Indoor Positioning and Indoor Navigation (IPIN)}, publisher = {IEEE}, doi = {https://doi.org/10.1109/IPIN62893.2024.10786186}, pages = {1 -- 6}, language = {en} } @inproceedings{KastnerEbnerBullmannetal., author = {Kastner, Steffen and Ebner, Markus and Bullmann, Markus and Fetzer, Toni and Deinzer, Frank and Grzegorzek, Marcin}, title = {SIMUL: Synchronized IMU Dataset of Walking People at Six Body Locations}, series = {2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)}, booktitle = {2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)}, publisher = {IEEE}, doi = {https://doi.org/10.1109/IPIN57070.2023.10332491}, pages = {1 -- 7}, language = {en} } @inproceedings{FetzerBullmannEbneretal., author = {Fetzer, Toni and Bullmann, Markus and Ebner, Markus and Kastner, Steffen and Deinzer, Frank and Grzegorzek, Marcin}, title = {Interacting Multiple Model Particle Filter for Indoor Positioning Applications}, series = {Proceedings of the 2023 International Technical Meeting of The Institute of Navigation}, booktitle = {Proceedings of the 2023 International Technical Meeting of The Institute of Navigation}, language = {en} }