@article{EngelmannSchmittMilleretal., author = {Engelmann, Bastian and Schmitt, Simon and Miller, Eddi and Br{\"a}utigam, Volker and Schmitt, Jan}, title = {Advances in machine learning detecting changeover processes in cyber physical production systems}, series = {Journal of Manufacturing and Materials Processing}, volume = {4}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, pages = {108 -- 108}, abstract = {The performance indicator, Overall Equipment Effectiveness (OEE), is one of the most important ones for production control, as it merges information of equipment usage, process yield, and product quality. The determination of the OEE is oftentimes not transparent in companies, due to the heterogeneous data sources and manual interference. Furthermore, there is a difference in present guidelines to calculate the OEE. Due to a big amount of sensor data in Cyber Physical Production Systems, Machine Learning methods can be used in order to detect several elements of the OEE by a trained model. Changeover time is one crucial aspect influencing the OEE, as it adds no value to the product. Furthermore, changeover processes are fulfilled manually and vary from worker to worker. They always have their own procedure to conduct a changeover of a machine for a new product or production lot. Hence, the changeover time as well as the process itself vary. Thus, a new Machine Learning based concept for identification and characterization of machine set-up actions is presented. Here, the issue to be dealt with is the necessity of human and machine interaction to fulfill the entire machine set-up process. Because of this, the paper shows the use case in a real production scenario of a small to medium size company (SME), the derived data set, promising Machine Learning algorithms, as well as the results of the implemented Machine Learning model to classify machine set-up actions.}, language = {en} } @article{NeuberSchmittEngelmannetal., author = {Neuber, Till and Schmitt, Anna-Maria and Engelmann, Bastian and Schmitt, Jan}, title = {Evaluation of the Influence of Machine Tools on the Accuracy of Indoor Positioning Systems}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {24}, pages = {10015 -- 10015}, language = {en} } @article{EngelmannSchmittTheilackeretal., author = {Engelmann, Bastian and Schmitt, Anna-Maria and Theilacker, Lukas and Schmitt, Jan}, title = {Implications from Legacy Device Environments on the Conceptional Design of Machine Learning Models in Manufacturing}, series = {Journal of Manufacturing and Materials Processing}, volume = {2024}, journal = {Journal of Manufacturing and Materials Processing}, language = {en} } @article{EngelmannSchmittHeusingeretal., author = {Engelmann, Bastian and Schmitt, Anna-Maria and Heusinger, Moritz and Borysenko, Vladyslav and Niedner, Niklas and Schmitt, Jan}, title = {Detecting Changeover Events on Manufacturing Machines with Machine Learning and NC data}, series = {Applied Artificial Intelligence}, journal = {Applied Artificial Intelligence}, publisher = {Taylor \& Francis}, language = {en} } @article{SchmittMillerEngelmannetal., author = {Schmitt, Anna-Maria and Miller, Eddi and Engelmann, Bastian and Batres, Rafael and Schmitt, Jan}, title = {G-code evaluation in CNC milling to predict energy consumption through Machine Learning}, series = {Advances in Industrial and Manufacturing Engineering}, volume = {2024}, journal = {Advances in Industrial and Manufacturing Engineering}, number = {8}, abstract = {Computerized Numeric Control (CNC) plays an essential role in highly autonomous manufacturing systems for interlinked process chains for machine tools. NC-programs are mostly written in standardized G-code. Evaluating CNC-controlled manufacturing processes before their real application is advantageous due to resource efficiency. One dimension is the estimation of the energy demand of a part manufactured by an NC-program, e.g. to discover optimization potentials. In this context, this paper presents a Machine Learning (ML) approach to assess G-code for CNC-milling processes from the perspective of the energy demand of basic G-commands. We propose Latin Hypercube Sampling as an efficient method of Design of Experiments to train the ML model with minimum experimental effort to avoid costly setup and implementation time of the model training and deployment.}, language = {en} } @inproceedings{HartmannDzemkoEngelmannetal., author = {Hartmann, J{\"u}rgen and Dzemko, Mikita and Engelmann, Bastian and Schmitt, Jan}, title = {Toward Shifted Production Strategies Through Additive Manufacturing: A Technology and Market Review for Changing Value Chains}, series = {7th CIRP Global Web Conference (86)}, volume = {86}, booktitle = {7th CIRP Global Web Conference (86)}, doi = {10.1016/j.procir.2020.01.029}, pages = {228 -- 233}, abstract = {In the last decade many different additive manufacturing (AM) technologies for metal, plastic or ceramic processing raise from research to commercialization. As a result, AM grows into different business areas and transforms structures and processes. Hence, the contribution tends to show the change in added values though the availability of different additive manufacturing technologies based on a technology screening and market research. Regarding the named purpose, a broad market research of 83 companies and 339 printer models has been conducted to find patterns of AM technology market share and regions to structure indicators such as accuracy by processed material classes with a specified AM method. Printing materials as metal, plastic, ceramic and carbon have been considered. The categorization is done by the AM principles: power bed fusion, material extrusion, vat photopolymerization and …}, language = {en} } @inproceedings{SchmittAntonovSchmittetal., author = {Schmitt, Anna-Maria and Antonov, Anna and Schmitt, Jan and Engelmann, Bastian}, title = {Classification of Production Process Phases with Multivariate Time Series Techniques}, series = {2024 22nd International Conference on Research and Education in Mechatronics (REM)}, booktitle = {2024 22nd International Conference on Research and Education in Mechatronics (REM)}, doi = {10.1109/REM63063.2024.10735481}, language = {en} } @inproceedings{HartmannDobhanEngelmannetal., author = {Hartmann, J{\"u}rgen and Dobhan, Alexander and Engelmann, Bastian and Eberhardt, Lars and Heusinger, Moritz and Raab, C and Schleif, Frank-Michael and T{\"u}rk, M.}, title = {Optimierung von Prozessen und Werkzeugmaschinen durch Bereitstellung, Analyse und Soll-Ist-Vergleich von Produktionsdaten: Digitalkonferenz}, language = {en} } @article{SchmittEngelmannManghisietal., author = {Schmitt, Jan and Engelmann, Bastian and Manghisi, Vito Modesto and Wilhelm, Markus and Uva, Antonello and Fiorentino, Michele}, title = {Towards gestured-based technologies for human-centred smart factories}, series = {International Journal of Computer Integrated Manufacturing}, volume = {36}, journal = {International Journal of Computer Integrated Manufacturing}, number = {1}, issn = {1362-3052}, pages = {110 -- 127}, abstract = {Despite the increasing degree of automation in industry, manual or semi-automated are commonly and inevitable for complex assembly tasks. The transformation to smart processes in manufacturing leads to a higher deployment of data-driven approaches to support the worker. Upcoming technologies in this context are oftentimes based on the gesture-recognition, - monitoring or - control. This contribution systematically reviews gesture or motion capturing technologies and the utilization of gesture data in the ergonomic assessment, gesture-based robot control strategies as well as the identification of COVID-19 symptoms. Subsequently, two applications are presented in detail. First, a holistic human-centric optimization method for line-balancing using a novel indicator - ErgoTakt - derived by motion capturing. ErgoTakt improves the legacy takt-time and helps to find an optimum between the ergonomic evaluation of an assembly station and the takt-time balancing. An optimization algorithm is developed to find the best-fitting solution by minimizing a function of the ergonomic RULA-score and the cycle time of each assembly workstation with respect to the workers' ability. The second application is gesture-based robot-control. A cloud-based approach utilizing a generally accessible hand-tracking model embedded in a low-code IoT programming environment is shown.}, language = {en} } @incollection{EngelmannSchmitt, author = {Engelmann, Bastian and Schmitt, Jan}, title = {Industrie 4.0 f{\"u}r Studierende des Wirtschaftsingenieurwesens}, series = {Kompetenzen f{\"u}r die digitale Transformation 2020: Digitalisierung der Arbeit-Kompetenzen-Nachhaltigkeit 1. Digitalkompetenz-Tagung}, booktitle = {Kompetenzen f{\"u}r die digitale Transformation 2020: Digitalisierung der Arbeit-Kompetenzen-Nachhaltigkeit 1. Digitalkompetenz-Tagung}, pages = {265 -- 273}, language = {de} }